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Abstract: Transformers have become increasingly prevalent in computer vision research, especially
for object detection. To accurately and efficiently distinguish the stem end of pomelo from its black
spots, we propose a hierarchical feature detector, which reconfigures the self-attention model, with
high detection accuracy. We designed the combination attention module and the hierarchical feature
fusion module that utilize multi-scale features to improve detection performance. We created a
dataset in COCO format and annotated two types of detection targets: the stem end and the black
spot. Experimental results on our pomelo dataset confirm that HFD’s results are comparable to
those of state-of-the-art one-stage detectors such as YOLO v4 and YOLO v5 and transformer-based
detectors such as DETR, Deformable DETR, and YOLOS. It achieves 89.65% mAP at 70.92 FPS with
100.34 M parameters.

Keywords: real-time object detection; pomelo; transformers; hierarchical feature

1. Introduction

Belonging to the genus Citrus of the family Rutaceae, pomelo (Citrus grandis L. Osbeck)
is one of the three basic species of citrus cultivars, which account for approximately 25% of
the output of Citrus fruit in China [1]. Pomelo is fragrant, sweet and sour, cool and moist,
rich in nutrition, and high in medicinal value. It is not only a fruit that people like to eat,
but also one with therapeutic effects [2].

Nowadays, most of the fruit detection methods consist of traditional image processing
methods, which require hand-crafted features for various situations. It takes much effort
and time to design those features [3]. In traditional image processing, the surface flaw of
pomelo can be easily detected, but the stem end of pomelo is also drastically mistaken
as a flaw. In recent years, deep learning has become more and more influential in the
field of computer vision. With the progress of deep learning technology, image detection
improves significantly.

Researchers optimize algorithms to accomplish vision-based tasks with high accuracy
and reliability [4]. Deep learning approaches, especially vision transformer, can better
perform computer-vision-related tasks [5]. Deep learning algorithms are stronger than
traditional image methods for fruit detection [6]. They excel in feature representation and
extraction, especially in automatically obtaining features from images [7]. Thanks to their
powerful capabilities and easy assembly, they can solve complex and large problems more
efficiently [8].

For the detection of the stem end of pomelo, there are no standard or even clear detec-
tion and grading guidelines. Researchers usually determine the detectors by experience.
The deep learning method is good at extracting the hidden information from labeled image
datasets [9].

Thus, this paper takes the detection of the stem end of pomelo as the research back-
ground and uses the deep learning method to build a detection transformer network that
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meets the real-time requirements in the pomelo sorting system and improves the accuracy
of pomelo detection.

To construct better deep learning architectures, we propose a hierarchical feature
detector with transformers. The proposed model comprises the combination attention
module (CAM) and the hierarchical feature fusion module (HFFM). For object detection,
CAM can let any Vision Transformer (ViT) [10] variant append the patch tokens [Pat-
Tok] [11]. Therefore, this paper can integrate the Swin Transformer [12] backbone with
CAM to be an object detector. The hierarchical feature detector (HFD) can obtain high
scalability with the local attention of the Swin Transformer only using linear complexity.

We evaluated the effectiveness of the combination attention module and the hierarchi-
cal feature fusion module. We also compared the performance of HFD with other models,
such as DETR [13], Deformable DETR [14], LSTM-SSD [15], SAAN-GRU [16], YOLO v4 [17],
YOLO v5 [18], and YOLOS [11], as shown in Figure 1.
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Figure 1. Capabilities of recent object detectors in terms of mean average precision (mAP) and frames
per second (FPS).

The main highlights of this work include the following:

1. A transformer-based network model for instantaneous detection of pomelo was built,
which has high precision and meets real-time requirements. Compared to some of the
state-of-the-art models, our model shows the best performance on the pomelo dataset;

2. We designed the combination attention module, which is better for feature extraction
in our dataset;

3. We designed the hierarchical feature fusion module, which can help detector obtain
more accurate results;

4. A pomelo dataset was constructed to detect the stem end from the black spot.

The rest article of the article is organized as follows. Section 2 introduces some work
related to detection methods, vision transformers, and detection transformers. Section 3
details the pomelo dataset. In Section 4, we specifically describe the HFD structure, includ-
ing the CAM and HFFM. Subsequently, we designed a series of experiments to verify the
effectiveness of our method in Section 5. Finally, Sections 6 and 7 provide a comprehensive
review of our work and contributions.
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2. Related Works

Before the advent of deep learning, the pomelo peel flaw detection task was usually
carried out using machine learning. With the widespread use of deep learning, many
fruit and vegetable detection algorithms have adopted a conjunction of traditional image
algorithms and deep learning methods. Xiao et al. [19] used an improved feature fusion
single multi-box detector for extracting RGB features for the detection of pomelo. The
experimental results are good. However, their datasets are too small. This artificial neural
network is only a detection function, and the generalization performance of the proposed
model is not good. Huang [20] used a back-propagation neural network (BPNN) model to
select the pomelo surface defects, pomelo shape, pomelo size, and other indicators. They
built their own larger fruit dataset, and their data were mainly from daily shooting and
the web. Li et al. [21] proposed using least-square support vector machine (LS-SVM) to
identify pomelo on a 240-image dataset. They achieved good results with this small dataset.
This machine learning method is applicable to the sorting of pomelo.

Moreover, for pomelo, some researchers even use infrared spectroscopy informa-
tion [21,22]. Many traditional image algorithms are used to construct a system for pomelo
maturity measurement and detection [22]. Such works are comprehensive. To determine
categories, researchers count the pomelo color histograms and use thermal cameras to
detect defects. Undoubtedly, these methods increase the hardware cost of a model that
uses only cameras. The study by Jie et al. [23] shows that the conventional convolution
neural network (CNN) achieved the best accuracy compared with the LS-SVM and BPNN
for citrus grandis granulation determination. The quality of the detection model depends
on the feature extraction. To improve the performance of CNN, they added the batch nor-
malization layer. The detection model achieved 97.9% accuracy on the validation set. They
point out that bands of 807–847 nm, 709–750 nm, and 660–721 nm are the spectra greatly
related to pomelo granulation through analyzing the well-trained model layer by layer.
Combined with some studies on functional groups, it is possible to speculate the change
in internal substances, which may provide some hints to develop granulation-detecting
equipment for pomelo.

The limitations of the current state of the art that motivate the present study lie in the
small size of the number of pomelo datasets and the far less targeted improvement of the
deep learning models.

2.1. Detection Methods

There have mainly been two kinds of detectors since the advent of deep learning. They
are the one-stage detection framework and the two-stage detection framework [24,25]. The
two-stage detection framework, which is represented by RCNN [26] and Fast RCNN [27],
generates a series of sparse candidate boxes through CNN, and then classifies and re-
gresses these candidate boxes. It has a more complicated training process because of
the multistage complex pipeline. In practical applications, the time of inference is very
long [24]. Theoretically, it is difficult for us to optimize. RCNN [26] uses CNN networks
to extract image features from empirically driven artificial feature paradigms histogram
of oriented gradients and scale invariant feature transform to data-driven representation
learning paradigms to improve feature-to-sample representation. Fast RCNN [27] only
performs feature extraction for the whole image full region once, introduces suggestion
frame information, and extracts the corresponding suggestion frame features.

By comparison, one-stage detection framework (Representative YOLO [28], SSD [29],
etc.) can avoid the problems mentioned above. YOLO [28] uses the whole image as the
input of the network and takes target detection as a regression problem to solve it. YOLO
directly regresses the position and category of the preselection box on the output layer.
SSD [29] extracts feature maps of different scales for detection. Large-scale feature maps
(the feature map in the front) can be used to detect small objects, while small-scale feature
maps (the feature map in the back) can be used to detect large objects. Moreover, SSD uses
prior boxes (default boxes) with different scales and aspect ratios.
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In summary, one-stage detection frameworks detect objects in a single pass through
the network. Two-stage detection frameworks use a two-stage process to detect objects.
In the first stage, the network proposes regions of interest (ROIs) where objects may be
located. In the second stage, the network classifies the proposed ROIs and refines their
bounding boxes. One-stage detectors are faster and easier to use, but they sacrifice accuracy.
Two-stage detectors are more accurate but are slower and more complex. In practical
applications, provided that the real-time requirements are satisfied (FPS > 50), both one-
stage and two-stage detection frameworks are suitable for distinguishing the stem end of
pomelo from its black spots with higher accuracy.

2.2. Vision Transformers

The original ViT [10] is a model for image classification that uses a transformer-like
architecture on various parts of the image. An image is processed as a series of small
patches by transformers, making it easy to consider the interaction between patches at
all positions, such as global attention. ViT [10] contains three main components: patch
embedding, feature extraction from stacked transformer encoders, and classification head.
However, due to the high computational complexity (increasing in a quadratic way with
the image size), the original ViT cannot be easily applied to a wide range of visual tasks.
By introducing the concept of a shifted window that supports patch reduction and local
attention operations, the Swin-Transformer [12] mitigates the complexity problem and
improves the adaptability to intensive prediction tasks (such as object detection). Pooling-
based vision transformer [30] is able to reduce the ViT structure size and improve the spatial
interaction ratio of ViT by controlling the self-attentive layer. A few methods use vision
transformers as detector backbones. However, they achieve limited success [11,12,30].

2.3. Detection Transformers

Combining the structures of convolutional neural network backbones and transformer
encoder–decoder, detection transformers discard the precisely designed components, such
as anchor generation and maximum suppression. The study by Song et al. [31] shows
that detection transformers can be effective detectors by configuring the attention module
and refining the decoder. Compared to previous detectors [26–30], the original DETR [13]
achieves accurate detection results, but the convergence speed is slow. For example, the
Faster R-CNN [28] requires only 50 epochs for training while DETR needs 150 epochs. In
order to solve this problem, Zhu et al. [14] propose Deformable DETR, which contains
deformable attention to accelerate the slow training speed of DETR and utilize multi-scale
features in the image.

3. Background
3.1. Pomelo Sorting System

As shown in Figure 2, the pomelo images used in this work were collected from a
micro-diameter high-performance pomelo sorting machine developed by the Institute of
Microelectronics of Chinese Academy of Sciences and Jiangxi Reemoon Sorting Equipment
Co., Ltd., (Jiangxi, China). The machine vision part consists chiefly of high-resolution
industrial cameras, LED warm light sources for providing sufficient light to the camera, a
photoelectric switch which is used to control image capture, and conveyor belts with rollers.

The pomelo triggers the photoelectric switch to capture images by the cameras which
have 1280 × 1024 resolution and a rate of up to 60 frames per second. When the cameras
capture images, the pomelo rotates with the roller to obtain the information of the whole
surface of one pomelo. As shown in Figure 3, the pomelo region is extracted after applying
preprocessing methods to every image.
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3.2. Dataset

From the machine vision part, we collected 11,253 pomelo images. Then, we marked
each image with the stem end and the black spot in MS COCO (Microsoft Common Objects
in Context) format. Based on the minimal tag of the category, we extracted the dataset to
balance every object in the dataset.

There are 5173 images of pomelo labeled with 3561 stem ends and 3893 black spots as
experimental data. As shown in Figure 4, we marked each detection object of pomelo with
a bounding box. Nine-tenths of these images (4656) were randomly used as the training set,
and the remaining images (517) were selected as the test set. The details about this dataset
are given in Table 1.
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Table 1. Basic information on the pomelo dataset.

Training Set Test Set Total

Stem end 3193 368 3561
Black spot 3481 412 3893

Total 6674 780 7454
Images 4656 517 5173

4. The Proposed Model

The hierarchical feature detector (HFD), illustrated in Figure 5, reconfigures the Swin
Transformer’s self-attention model. In this way, independent object detection can be
supported, and parameters of Swin Transformer are fully reused. Through the detection
heads (shown in the right part of Figure 5) for classification and box regression, the output
embeddings of the decoder are used as final predictions.
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4.1. Combination Attention Module (CAM)

Figure 6 represents the detailed structure of CAM, which has a novel attention module.
We apply the efficient schemes in the Swin Transformer only to [Pat-Tok] × [Pat-Tok]
attention based on the decomposition, which is the largest part of computational complexity.
This adjustment totally reuses all the parameters of the Swin Transformer though the
projection layers.
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The fundamental [Pat-Tok]s are graded step by step across the attention layers, so
that they can accumulate the core contents in the global feature map, for example, a spatial
form of [Pat-Tok], according to the weights of attention operations, which are computed by
queries and keys. As for [Pat-Tok] × [Pat-Tok] attention, the Swin Transformer performs
local attention on each window barrier, but the shifted window barrier in consecutive
blocks bridges the windows of the previous layers, giving connections among barriers to
obtain global information. A similar method is used to generate hierarchical [Pat-Tok]. So,
we reduce the number of [Pat-Tok]s by a factor of 4 at each stage. In this way, the resolution
of feature maps changes from H/4 ×W/4 to H/32 ×W/32 over the four stages, where H
and W denote the height and width of the input pomelo image.

4.2. Hierarchical Feature Fusion Module (HFFM)

Without any processing, all the multi-scale [Pat-Tok]s of CAM are fed into the neck
component of HFD. The [Pat-Tok]s are encoded. Then, they are decoded into embeddings
of objects. The multi-scale [Pat-Tok]s are fused linearly by the multi-scale deformable
attention of the encoder via weighted aggregation. However, only a few [Pat-Tok]s are
sampled and accounted for computational efficiency. So, we propose a simple but efficient
hierarchical feature fusion module (HFFM), which fuses all tokens with multiple scales
non-linearly, as shown in Figure 7, before putting them into the encoder. Compared with
the simple linear gathering, the proposed HFFM extracts integral information from feature
maps at different scales more accurately.
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Specifically, all the multi-scale [Pat-Tok]s from the different stages are amassed to form
feature maps at different scales with the same size (256) of channel dimension. They are
mixed in a top-down manner. As illustrated in Figure 7, each operator receives two input
feature maps for hierarchical feature fusion. The feature map in lower resolution is resized
by the upsampling operator. Then, HFFM fuses the low-resolution feature map with the
high-resolution one by bilinear interpolation. Hence, HFD can obtain fused multi-scale
features, flattened with the spatial dimension, and chained for all scales as input to the
encoder in the neck component of HFD.
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4.3. Loss Function

Classification loss and box distance loss adopt the loss function of Deformable DETR.
The Hungarian algorithm is used to find a bipartite matching between the ground truth
box and the predicted box because the detection head of HFD returns a fixed-size set of
bounding boxes, which is larger than the number of detection objects in a pomelo image.
In general, there are four kinds of training loss functions: a classification loss lcla, a box
distance loss lb, an IoU aware loss lIoU, and a token labeling loss ltoken.

ldet = γclalcla + γblb + γIoUlIoU + γtokenltoken (1)

For each training loss, the coefficient is set to be γcla= 1, γb= 5, γIoU= 2, and γtoken= 2.

lcla(i) = −log Pci,ai (2)

where ci and ai are the target class label and bipartite assignment of the i-th ground
truth box.

lb(i) = ||Bi, Bai ||1 (3)

where B returns the largest box containing two given boxes.
Directly using the final [Pat-Tok] to predict the IoU score can increase detection

confidence and mitigate the mismatch between ground truth and expected bounding
boxes [32]. So, we predict the IoU score between the ground truth box b̂ and predicted
bounding one b by add a new FFN branch. The IoU aware loss is defined as

lIoU =
1
B∑B

i=1 BCE
(
[Pat− Tok]i, IoU

(
b̂, b

))
(4)

where BCE and B are binary cross-entropy loss function and the total number of objects in
the input pomelo image.

Token labeling can solve multi-scale token recognition problems. HFD selects each
[Pat-Tok] with an individual location-specific supervision, which is gathered by a machine
analyst [33]. The token labeling loss is defined as

ltoken =
1
L∑L

l=1
1
Pl ∑

Pl

i=1 F([Pat− Tok]i, Si) (5)

where Pl and L are the numbers of tokens and scales in the feature map. F is the focal
loss function [34]. [Pat− Tok]i returns the i-th [Pat-Tok] in the feature map from the body
component of HFD. Corresponding to the i-th [Pat-Tok], Si is the token-level label.

5. Experiment

On our pomelo dataset benchmark, we ran and evaluated all experiments. Then, we
used the parameters mean average precision (mAP) and frames per second (FPS) to present
model performance. The mAP is a performance metric commonly used in object detection
tasks. It measures the average precision of a detector over multiple object classes. The
mathematical expression for mAP is

mAP =
1
N∑N

i=1 APi (6)

where N is the number of object classes and APi is the average precision for the i-th class.
The average precision for each class is calculated as follows:

APi =
1
Ri

∑Ri
j=1

P(j) ∗ TP(j)
P(j) ∗ TP(j) + FP(j)

(7)
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where Ri is the total number of ground truth objects in class i, P(j) is the precision at the j-th
retrieved object, TP(j) is the number of true positive detections at the j-th retrieved object,
and FP(j) is the number of false positive detections at the j-th retrieved object.

Below, the implementation details of all experiments are introduced and we perform
comparisons with state-of-the-art approaches.

5.1. Implementation Details

All models were trained using NVIDIA GeForce RTX 3090 cuDNN v8.0.05 with Intel(R)
Xeon(R) Silver 4316 CPU @ 2.30 GHz. Applying mean values and standard deviations, we
normalize the images into [0,1]. We also adopt some standard data augmentation methods,
such as rotating and mirroring.

Using PyTorch, we train HFD with AdamW [35], where β1 and β2 are set as 0.9 and
0.99. HFD uses the initial learning rate of 10 × −4 for its body, neck, and head. On the
contrary, for the pre-trained body, neck, and head, Deformable DETR (Swin Transformer)
and DETR are trained with the initial learning rate of 10 × −5, which is the original setting
of Deformable DETR. Following the YOLOS setting, YOLO v4, YOLO v5, and YOLOS are
trained with the same initial learning rate of 10 × −4.

Under our pomelo dataset, we uniformly set the number of training epochs to 150 and
the batch size to 64, comparable with other state-of-the-art approaches. In addition to the
HFD training from scratch, we use the best weights of pre-training to train other comparison
models. More specifically, we set the anchor box size and scale by default. The detailed
parameter settings and training code of the comparison model are open access [11,13–18].
During the initial epochs of HFD training, the validation accuracy and validation loss
fluctuate rapidly as the model adjusts to the pomelo data. As the training progresses, the
validation accuracy increases, while the validation loss decreases. This indicates that the
model is improving its ability to accurately detect objects in pomelo images. During the
final phase of training, validation accuracy tends to plateau and validation loss fluctuates
in a very small range around 0.6.

5.2. Comparison with State of the Art

Obviously, as shown in Figure 1, the HFD achieves the highest mAP over other
comparison models, and the inference speed meets the real-time requirements (FPS > 50).
It is noteworthy that HFD exceeds YOLOv5-CSPDarknet53 by 1.59% with the highest
mAP of 89.65%. The main reason is that the multi-head attention mechanism used in the
transformers allows the model to focus on multiple regions of an image simultaneously.
This makes the model more efficient at detecting objects across different scales and sizes and
improves its ability to detect small objects. Although the accuracy of YOLOS is acceptable,
the detection speed of YOLOS is slow because the computational complexity for attention
in YOLOS is quadratic. With the same backbone, HFD presents better performance than
DETR and Deformable DETR, both in terms of accuracy and speed. This is because CAM
and HFFM enable the detector to perform the feature extraction ability of transformers
more efficiently. Although the accuracy of HFD is higher than that of YOLOv5, the speed
of HFD is slower than that of YOLOv5. The main reason is that YOLOv5 transforms the
target detection problem into a single regression problem, which improves the detection
speed. In practical applications, for the detection task of pomelo, accuracy is the primary
goal of algorithm optimization when the real-time requirements are satisfied (FPS > 50). As
shown in Table 2, the performance of HFD is optimal for both the total accuracy and the
accuracy for pomelo stem end and black spot.
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Table 2. Comparison of HFD with other network architecture.

Model Backbone Parameters (MB) mAP Speed
(FPS) Stem End Black Spot

DETR [13] Swin-tiny [12] 42.94 75.50 78.91 83.22 68.58
DETR [13] Swin-small [12] 67.35 78.64 62.53 87.39 70.76
DETR [13] Swin-base [12] 104.56 81.28 51.87 90.68 72.82

Deformable
DETR [14] Swin-tiny [12] 39.07 82.15 60.72 91.43 73.80

Deformable
DETR [14] Swin-small [12] 60.63 84.72 49.31 93.75 76.59

Deformable
DETR [14] Swin-base [12] 98.11 87.33 37.24 96.02 79.51

LSTM [15] SSD [29] 5.69 72.54 31.10 80.71 65.29

SAAN-GRU [16] ResNet-50 [36] 10.76 70.28 48.93 79.42 62.16

YOLO v4 [17] CSPDarknet53 [37] 29.46 85.79 84.65 94.91 77.58

YOLO v5 [18] CSPDarknet53 [37] 41.02 88.06 103.58 96.67 80.31

YOLOS [11] DeiT-Ti [38] 7.13 76.24 45.19 81.84 71.20
YOLOS [11] DeiT-S [38] 31.85 80.83 36.64 86.17 76.02
YOLOS [11] DeiT-B [38] 102.79 85.47 29.42 93.56 78.19

HFD Swin-tiny [12] 40.96 83.44 98.03 92.21 75.56
HFD Swin-small [12] 61.17 86.29 82.86 95.48 78.04
HFD Swin-base [12] 100.34 89.65 70.92 98.23 81.93

The best results in every category are marked in bold.

6. Discussion

We empirically demonstrate the combination attention module (CAM) and the hierar-
chical feature fusion module (HFFM) in a pomelo dataset for our model (HFD). Based on
current experiments, the effects of different loss functions are also discussed.

6.1. Computational Complexity

For Swin Transformer [12], the computational complexity is O
(

d2S + dw2C
)

, where
S denotes the number of tokens for self-attention, C denotes the number of tokens for
cross-attention, d is the dimension of embedding, and w denotes the height and width of
the window. As described in Section 4, CAM extends the Swin Transformer to be an object
detector. The computational complexity of HFD is O

(
d2P + dw2P

)
, where P denotes the

number of [Pat-Tok]s.

6.2. Model Architecture

To verify the effectiveness of the CAM, we refer to HFD-Swin-base. The [Pat-Tok] ×
[Pat-Tok] attention operation is removed. As shown in Table 3, the mAP of HFD-Swin-base
without CAM is lower than that with CAM by 2.24%. However, HFD with CAM takes
a little more time. Moreover, Table 3 shows that HFD has higher parameters than that
without CAM.

Table 3. The effectiveness of the combination attention module for HFD with Swin-base.

Model CAM Parameters (MB) mAP Speed (FPS)

HFD-Swin-base × 93.06 87.41 73.68
HFD-Swin-base

√
100.34 89.65 70.92

For HFD, HFFM is added for better optimization. HFFM makes the detector better
at extracting multi-scale features and this non-linear fusion is very simple and efficient.
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With the Swin-base backbone, as shown in Table 4, the extension to HFD only adds 2.49
M parameters but mAP improves from 85.37 to 89.65. This is a significant performance
gain for the better trade-off between accuracy and speed, while the runtime performance
dropped by 5.28 FPS.

Table 4. The effectiveness of the hierarchical feature fusion module for HFD with Swin-base.

Model HFFM Parameters (MB) mAP Speed (FPS)

HFD-Swin-base × 97.85 85.37 76.20
HFD-Swin-base

√
100.34 89.65 70.92

6.3. Loss Function

As illustrated before, HFD has four types of training loss: classification loss lcla, box
distance loss lb, IoU aware loss lIoU, and token labeling loss ltoken. To further understand
the roles IoU aware loss and token labeling loss play, we studied the impacts caused by
different loss functions, which are shown in Table 5.

Table 5. Performance change with different loss function.

Model IIoU ltoken Parameters (MB) mAP

HFD-Swin-base × × 99.51 87.42
HFD-Swin-base

√
× 100.26 88.91

HFD-Swin-base
√ √

100.34 89.65

IoU aware loss and token labeling loss both contribute to the performance improve-
ment. Although they make a decrease in the inference speed of the detector, this decrease
is completely acceptable. Specifically, IoU aware loss helps the performance improvement
of the detector more because for the pomelo detection task, there is a high probability of
mismatch between ground truth and expected bounding boxes.

7. Conclusions

In this paper, to accurately and efficiently distinguish the stem end of pomelo from its
black spot, we propose a hierarchical feature detector (HFD) model with the combination
attention module (CAM) and the hierarchical feature fusion module (HFFM). Figure 8
shows the inference results of HFD.

On our pomelo dataset, HFD achieved mAP of 89.65% at 70.92 FPS with 100.34 M
parameters; the mAP is 8.37% greater than DETR, which also has the backbone of Swin
Transformer (base). It is competitive with the state-of-the-art transformer-based detectors
such as DETR, Deformable DETR, and YOLOS and one-stage detectors such as YOLO v4
and YOLO v5 with high detection accuracy and real-time performance. In particular, the
mAP of the stem end of the pomelo reaches 98.23% in HFD-Swin-base, and the mAP of the
black spot reaches 81.93%.

The limitations of this paper are mainly that it reports some improvements of the
object detection algorithm in the case of a specific fruit (pomelo). When it comes to possible
future enhancements, the proposed HFD should be applied to a wider variety of fruits for
object detection and have a wider practical application impact. The detector can continue
to be optimized to achieve better accuracy and faster speed.
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