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Abstract: A two-dimensional space turntable system has been used to ensure that the Solar X-ray
and Extreme Ultraviolet Imager (X-EUVI) can track the Sun stably, and the prediction of the two-
dimensional turntable trajectory is an important part of payload health management. Different from
the dynamic model using traditional trajectory prediction, we propose a new method for predicting
the pitch axis trajectory of the turntable based on the sun vector and a deep learning CNN-LSTM
model. First, the ideal solar position of the pitch axis was calculated using the sun vector. Then,
the ideal solar position was combined with the running turntable pitch axis motor speed, current,
and solar position error signal as the CNN-LSTM model input data. The model parameters were
trained and adjusted through test data simulation using Fengyun-3E satellite orbit data. Finally, the
next position of the pitch axis was predicted. The test results showed that in the sun vector and
CNN-LSTM model, the RMSE value was 0.623 and the MSE value was 0.388. It was better than the
LSTM model or CNN model alone and could accurately predict the pitch axis position.

Keywords: two-dimensional turntable; pitch axis trajectory; sun vector; CNN-LSTM model; deep learning

1. Introduction

The Solar X-ray and Extreme Ultraviolet Imager (X-EUVI) is a payload of the Sun
synchronous orbit (twilight) FY-3E satellite, which has an orbital altitude of 836 km and an
orbital period of 102 min. This is the first space-based solar X-ray and extreme ultraviolet
(EUV) imager for space weather and space physics in China [1]. FY-3E is a three-axis
stabilized spacecraft with respect to the Earth and changes in the position of the Sun the
X-EUVI coordinate system in real time. Therefore, the two-dimensional turntable system
was developed to track the Sun [1]. It is shown in Figure 1.

When X-EUVI works in orbit, the two-dimensional turntable system first roughly
points to the Sun according to the sun vector from the satellite. Then, X-EUVI precisely
points to the Sun using a turntable lock-in control system based on Trace Guide Telescope
(TGT) solar position data [1].

The two-dimensional turntable includes the pitch axis and the azimuth axis. The
control system of the two-dimensional turntable realizes the accurate direction of the target
by controlling the position, speed, and torque of the two brushless motors, namely the
position axis and the pitch axis [2]. This paper takes the pitch axis trajectory as the research
object. The two-dimensional turntable controls the trajectory depending on the sun vector
data and the solar position data combined with the satellite attitude and other factors.

When the turntable controls the optical axis to point to the sun, the image obtained by
the XEUV is in the center of the field of view as shown in Figure 2.

The main factors affecting the normal running of the turntable include the turntable
motor current, motor voltage, target solar position, and solar position error signal. The
prediction of the two-dimensional turntable trajectory can show the operation status of
the turntable. It is not only important to understand the operation of the turntable itself
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but also that it has an important impact on the evaluation of the operation status of the
satellite platform. The same applies to the trajectory prediction of the spaceborne integrated
platform or intelligent load.
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Figure 1. Schematic diagram of the position of the sun, satellite, and turntable. (a) Schematic diagram
of satellite orbit, and sun is in −Y direction. (b) Turntable optical axis coordinate system.
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Figure 2. Solar images obtained by X-EUVI when the optical axis points to the sun (from the National
Meteorological Satellite Center of China).

The existing models of trajectory prediction involve different algorithms in different
fields, but research on trajectory predictions of a two-dimensional turntable in space is still
lacking. By establishing the traditional motion model, the running track of the turntable
can be predicted. However, due to many unknown and variable factors in the model, the
error is difficult to measure, so the accuracy of the motion model is difficult to guarantee [3].
There are many different methods for trajectory prediction. They include the hidden
Markov model (HMM), based on mathematical statistical methods [4], the Kalman filter [5],
or neural networks and deep learning in machine learning methods [6–10]. The advantage
of the hidden Markov model is that it has a relatively good prediction effect for tracks
with variable states, and the disadvantage is that because of its memoryless nature, it
cannot use the preorder information of track sequence. The hidden Markov model is often
used for long-sequence prediction [11]. It is often used for pedestrian trajectory prediction.
A Kalman filter relies on the information of the previous sequence point and the current
position information to predict the next moment. The advantage is that the state estimation
process is very stable, and because its calculation process is a continuous prediction and
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correction process, it is suitable for trajectory-prediction scenarios requiring strong real-time
performance. However, the Kalman filter is extremely dependent on forecasting the next time
based on the information of the last sequence point and the current position information.

Neural networks and deep learning have strong nonlinear mapping, self-learning, and
adaptive abilities. The disadvantage is that they are very sensitive to the initial network’s
weight, and there is a local minimization problem. When the initial network weight is
not uniform, the training results may be different, so this method is applicable to most
trajectory prediction scenarios. Since there is no uniform standard for the structure of a
neural network, the appropriate network structure should be selected according to the
specific situation in practical application [12].

We proposed to use a sun vector and a one-dimensional convolutional neural network
combined with a long short-term memory network (CNN-LSTM) hybrid neural network
model as a method for predicting the trajectory of the pitch axis of the space turntable. First,
according to the sun position calculation model, we calculated the ideal solar position value
from the sun vector data and then used the ideal solar position value of the pitch axis, pitch
axis motor speed, current, and position error signal data as the input data of the model.
We then selected a specific step of the time sliding window and predicted the position
of the pitch axis at the next time. It was built on a model of CNN-LSTM, the prediction
sequence was set with an adaptive Adam optimizer, and the simulating telemetry data of a
two-dimensional turntable was used for training. We used RMSE and MSE as performance
evaluation indicators.

2. Materials and Methods

The pitch axis pointing model established a two-dimensional turntable to roughly
point to the Sun from the sun vector broadcasted by the satellite platform.

2.1. Sun Vector Calculat Model

The sun vector in the orbital instant root broadcast was the unit vector in the orbital
coordinate system. The sun vector was defined using the J2000 coordinate system [13,14].
After a series of coordinate transformations from the orbit coordinate system to the unit
vector of the optical axis of the guide mirror, the transformation matrix of the satellite
attitude had to be considered as shown in Figure 1. Many error factors were difficult to
determine, setting all the installation errors was ignored, and the satellite attitude was
ignored so the ideal value of the turntable motion could be calculated.

The ideal position value of the pitch axis can be calculated through the sun vector. It is
shown in Equations (1) and (2):

Sun vector:
S0 = [Xs(t) Ys(t) Zs(t)]T (1)

We calculated the ideal value of the pitch axis of the turntable as:

θpitcht = atan
[

Zs(t)
Ys(t)

]
× Dpitcht (2)

where S0 is the sun vector, θpitcht is the pitch axis angle, and Dpitcht is the error matrix, which
is currently set as the unit matrix. According to the above formula, the initial position of
the pitch angle of the turntable could be calculated in advance through the sun vector data
broadcasted by the satellite platform. In the actual operation of the turntable, the platform
attitude factor and the position error should also be considered. In addition, it was also
affected by the operating speed and control current of the turntable itself.

2.2. One-Dimensional Convolution Neural Network (1D-CNN) Model

CNN is a successful deep learning framework first proposed by LeCun et al. [15]. In
the study of deep learning, in 1D-CNN (also known as time-domain convolution), the
convolution kernel is a vector with a length of N, which is used for neighborhood filtering
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of one-dimensional input signals and extracting local features. The kernel slides along a
one-dimensional time axis. It is often used to process NLP and time series data. It is shown
in Figure 3.
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In the convolution layer, the input data information needs to undergo convolution
operation and activation function calculation before flowing to the next layer. The operation
is shown in Equation (3):

ht = σcnn(Wcnn ∗ Xt + bcnn) (3)

where Wcnn represents the weight coefficient of the filter, namely the convolution kernel;
Xt represents the data information of the time, while the input sample * represents the
discrete convolution operation between Xt and Wcnn; bcnn is a bias parameter, which will
be obtained by learning when training the model; σ Cnn stands for the activation function;
and ht represents the output data after the convolution operation.

2.3. Long Short-Term Memory (LSTM) Network Model

A long short-term memory network (LSTM) is an improved cyclic neural network
used to solve the problem that RNN networks cannot deal with long-distance dependence.
Hochreiter proposed the LSTM algorithm [16], which can store data information in a longer
time step. Regarding the problem of time series prediction and analysis, LSTM can predict
future data characteristics through the data characteristics of the past period time. LSTM
networks enable nodes to “remember” or “forget” data through a “gate” structure, which
mainly includes three “gates”: the forgetting gate, the information adding a gate, and the
information output gate. Through these three “gates”, the input of each cell state contains
the output of the previous moment, and the input of the current moment also contains
some information stored by the node itself. Therefore, LSTM has a better performance on
longer sequences. It is shown in Figure 4.
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The LSTM updates for time steps given inputs xt, ht−1, and Ct−1, The operation is
shown in Equations (4)–(9):

ft = σ
(

W f · [Ct−1, ht−1, xt] + b f

)
(4)

it = σ(Wi · [Ct−1, ht−1, xt] + bi) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

ot = σ(Wo[ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

where σ and tanh represent the sigmoid activation function and hyperbolic tangent acti-
vation function, respectively; W and b represent the weight matrix and bias parameters,
respectively; xt represents the input of the LSTM unit at time t; ht represents the output of
the unit corresponding to at time t; and Ct represents the state unit of the LSTM at time t.
The whole LSTM unit includes three thresholds, namely forgetting gate ft, input gate it,
and output gate ot.

2.4. CNN-LSTM Model

The CNN-LSTM model is a hybrid model of two neural network models. We first used
CNN to extract data features and LSTM to further extract temporal features. The specific
structure was as follows: the CNN model used a Conv1D layer and multiple input data as
the time series; the kernel moved in one dimension along the time axis, then we input the
data into LSTM layer and used the LSTM layer to obtain the long-term characteristics of
the pitch axis data. Finally, it output the predicted value. It is shown in Figures 3 and 4.

According to the above, the main factors affecting the pitch axis position include the
ideal position calculated from the sun vector, the pitch axis operation error, the motor
current, and the motor speed. The pitch axis motor current (C; unit: A), initial position
(I; unit: ◦), pitch axis motor speed (S; unit: ◦/s), and pitch axis operation error (E; unit: mV)
were set as input data. The expected position of the pitch axis (Pt, unit: ◦) was out-
put through two CNN network layers and one LSTM layer. The initial position value
was equal to the ideal position value calculated using Formulas (1) and (2) as shown in
Figures 5 and 6.
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Figure 6. CNN-LSTM model operation diagram, the yellow parts represent the layer of CNN, and
the green parts represent the layer of LSTM.

In Figure 6, C represents the pitch axis motor current, I represents the ideal sun
position, S represents the pitch axis motor speed, E represents the pointing error, and Pt is
the predicted position value of the output.

In the CNN network, we set the data input feature to 4. We conducted performance
tests using input time sliding of 3, 5, or 10. Taking into account performance factors, the
best performance was found for a time sliding of 3. The time sliding window was set
at 3, the stride was set at 1, the kernel size was set at 1, and the activation function used
RELU. The activation function of the LSTM layer was RELU. We used a grid search for
hyperparameter optimization. We tested the performance of the SGD, Adagrad, and Adam
optimizers [17] in this application. Finally, the optimizer selected Adam, the loss function
selected MSE, and the drop layer was set to 0.35. The following network architecture design
was sampled. It is shown in Figure 7 and Table 1.
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Table 1. Model parameter table.

Layer (Type) Parameter 1

conv1d (Conv1D) 720
conv1d_1 (Conv1D) 20,880

lstm (LSTM) 139,776
dropout (Dropout) 0

dense (Dense) 129
1 Total params: 161,505; trainable params: 161,505; non-trainable params: 0.

3. Results

We constructed a data set based on orbit data simulated using Fengyun-3E satellite
orbit data and the operation data of the two-dimensional turntable of the Solar X-ray and
Extreme Ultraviolet Imager (X-EUVI).

The main steps to build the CNN-LSTM model were as follows:

(1) We set the time window size K and transformed the data set according to the time
window size to transform the time series into a supervised sequence; that is, we used
the past K values to predict the value of the next time and the original value of the
next time as the supervised value.

(2) We divided the data set used into the training set and test set and converted the data
format into the format required in the CNN-LSTM model, namely (samples, time
steps, features).

(3) The parameters used in the model, including the number of iterations, the amount
of data for each iteration, and the number of neurons, were determined through
continuous attempts.

(4) We established a CNN-LSTM model. After the model for predicting the data in the
data flow was built, the data could be predicted.

The specific process is shown in Figure 8.
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Figure 8. Prediction processing.

3.1. Data Feature Extraction and Data Set Establishment

The data sampling period was 32 s. A total of 34,559 sets of data were set up and sorted
by time. The first 29,562 sets of data were used as training sets, and the last 4997 groups
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were used as test sets. The outliers in the data set were removed and normalized. The
results are shown in Figures 9 and 10.
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3.2. Experiment Environment and Tools

The experimental environment of this research was an AMD FX (tm)—4100 Quad-
Core Processor, 16 GB of memory, the Windows 10 operating system, and Python 3.9, and
PyCharm as development tools. In PyCharm, we used the data packets keras and sklearn.

3.3. Experiment Result

We set epoch = 50 and batch_Size = 70. The change in the loss value with EPOCH
is shown in Figure 11. The training set fluctuated in the early stage. With the increase
in EPOCH, the loss value gradually converged. The predicted value and actual value
are shown in Figure 12 below. It can be seen that the data prediction at some inflection
points had more errors. It also can be seen that when using the CNN-LSTM model, the loss
function of the training set converged better (see Figures 11 and 12).
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Since we achieved good results using the CNN-LSTM model, we used the idea of
ablation to evaluate the impact of each module on performance. In the CNN-LSTM model,
we removed the CNN layers or LSTM layers, both of which had a large impact on the
performance of the system (the number of CNN layers changes also affected the final result).
We selected the CNN model and the LSTM model for the model comparison. The CNN
model was set with three layers of 1D-CNN (Filter = 64), the LSTM model was set with two
layers of LSTM, and the time sliding window was 3. The optimizer was consistent with
the CNN-LSTM model, and the Adam optimizer was selected. The loss function was MSE.
When EPOCH was set to 50, CNN-LMST had the lowest loss and the best effect. This is
shown in Figure 13 for specific values and in Table 2. This model can be used for trajectory
prediction of other motion units.

Table 2. Performance in test data sets for each model.

Model RMSE MSE

LSTM 0.678 0.459
CNN 0.632 0.399

CNN-LSTM 0.623 0.388
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4. Discussion

In this paper, we proposed using a sun vector to calculate the ideal turntable position
value. Then we took the ideal position value and turntable speed, current, and solar
position error signal as date features and used the CNN-LSTM model to realize predicting
the trajectory of the pitch axis. The model could adjust parameters adaptively on the
training set and had a better performance on the test set.

The premise of the conventional feedback method is the need to calibrate the optical
axis in relation to the instrument body coordinate system and the satellite coordinate
system. The position of the pitch axis is then derived by determining the coefficients of
the controller. The disadvantage is that certain parameters may need to be adjusted after a
long period of system operation. The advantage is the high reliability due to the rigorous
model derivation. The advantage of the deep learning method for calculating the pitch axis
position is that it can be used without coordinate system calibration, allowing adaptive
adjustment of the parameters. However, due to its black-box nature, this research is still at
a preliminary stage for on-orbit applications.

Compared with the trajectory prediction method mentioned above, the pitch axis
trajectory prediction of a two-dimensional turntable is a typical time series prediction
problem [18,19]. It is not only related to the previous running state of the turntable but
also is affected by the running state of a period of the time window. From this point of
view, HMM and an extended Kalman filter only predict the next state through the last state,
and the results will affect the accuracy of the prediction [20]. We did not use the equation
of motion either, thereby avoiding uncertainty error analysis. We used a deep learning
model to predict the trajectory by extracting and learning data features. We used a sliding
time window instead of just the last state, and our findings were in accordance with recent
studies indicating that a prediction model based on deep learning can achieve satisfactory
results [21–26]. The prediction model based on the LSTM model could effectively avoid
gradient disappearance or gradient explosion. In the process of debugging parameters,
we also found that the initial value of parameters affected the final performance of the
model. The size of the dataset also limited our choice of models. This model had a better
performance on a small data set. For the comparison of the performance indicators of
the LSTM model and CNN model alone, we could see that the sun vector combined with
CNN-LSTM model had a better performance.

The major limitation of the present study was that the model contained part of the
black box, so the model lacked interpretability. At the present stage, we mainly used the
calculated results to compare with the real values and then used the comparison results to
reverse-extrapolate to achieve the purpose of optimizing the performance of the model. The
generalization ability of the CNN-LSTM model has yet to be verified. In addition, when
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the sliding time window becomes larger, the calculation time of the model will become
longer. It will affect the execution time of the model.

Despite its limitations, the model of CNN-LSTM had a significant short-term predic-
tion effect on turntable trajectory prediction.

Future applications in orbit will be different from the ground simulation. For the
hardware environment, we must choose the processor to meet the onboard radiation—a
hardened and tolerant processor generally using an ARM and field-programmable gate
array (FPGA) fabric for real-time processing [27]. Software algorithms will be transplanted
and optimized accordingly, and the trained network structure needs to be arranged on the
onboard platform to work.

5. Conclusions

With the introduction of intelligent load and spaceborne integration, increasing atten-
tion has been paid to the problems related to two-dimensional turntable motion [28].

In this paper, different from the motion model and equation using traditional trajectory
prediction, we used the sun vector and the CNN-LSTM model to predict the pitch axis
position of the two-dimensional turntable. It had the advantages of adaptive adjustment
of parameters and easier establishment of models. We calculated the ideal sun position
through the sun vector model and input it into the model as a feature to participate in
the prediction. Through comparison of performance indicators, the CNN-LSTM model
combined with a solar vector model was superior to the LSTM model or the CNN model.
The test results showed that the RMSE value was 0.623 and the MSE value was 0.388. The
CNN-LSTM model could accurately predict the two-dimensional turntable operation.

This can be applied not only to track prediction of a turntable but also extended to
other track predictions; for example, vehicle trajectory prediction, navigation trajectory
prediction, etc. It also has broad prospects in other applications such as fault detection by
predicting the state [29–32].
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