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Abstract: System logs are almost the only data that records system operation information, so they
play an important role in anomaly analysis, intrusion detection, and situational awareness. However,
it is still a challenge to obtain effective data from massive system logs. On the one hand, system logs
are unstructured data, and, on the other hand, system log records cannot be directly analyzed and
calculated by computers. In order to deal with these problems, current researchers digitize system
logs through two key steps of log parsing and feature extraction. This paper classifies, analyzes,
and summarizes the current log analysis research in terms of log parsing and feature extraction
by investigating articles in recent years (including ICSE, TKDD, ICDE, IJCAI, ISSRE, ICDM, ICWS,
ICSME, etc.). Finally, in combination with the existing research, the research prospects in the field are
elaborated and predicted.

Keywords: log parsing; log mining; anomaly detection; artificial intelligence; deep learing;
machine learing

1. Introduction

In the last decade, there has been significant growth and development in modern
software systems. 24-h service software systems such as communications, short videos,
government services, and search engines have become essential in our daily lives and
can be found everywhere. Unlike traditional services, even a momentary downtime of
these 24/7 software systems can result in immeasurable economic losses [1]. In July 2022,
Microsoft reported that its Teams application could not be accessed normally due to internal
storage service issues, which consequently affected the use of multiple Microsoft products
integrated with Teams [2]. Similarily, in August of the same year, Google experienced the
same situation, which prevented users from accessing its services for about an hour [3].
It can be seen that, with frequent updates of the system and the complexity of functions,
those services that we think are very stable are also facing unpredictable system crashes
at any time. On the other hand, today’s network services are intricately interconnected
with physical and digital services that are closely interwined. Thus, any downtime of
basic services can have cascading effects on end customers. Amazon reported that some
customers had to wait for three hours before their services were restored gradually.

Software system logs are the only data that record software operation information in
system reliability assurance tasks; thus, they play a very important role in the industry [1]
and include many services, such as intrusion detection [4–6], digital forensics [7,8], and
situational awareness [9]. Compared with network data packets, system logs record more
important information, such as memory and CPU information. Based on this, researchers
use system log information to supplement intrusion detection based on network data
packets [6]. Slightly different from this, Lou et al. [5] mined association rules from multi-
source log data, such as security software logs and system logs, to build an intrusion
detection system for cloud platforms. Digital forensics requires researchers to analyze attack
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vectors and further actions from existing scenarios in order to deal with the huge challenge
of the huge and complex log data in the cloud computing system. Dalezios et al. [8]
adopted the Distributed Management Task Force’s (DMTF) Cloud Auditing Data Federation
(CADF) to standardize cloud system logs, which provided a valuable analysis method
for subsequent log-based cloud computing digital forensics. In addition to dealing with
large-scale log data, situational awareness [9] also puts forward higher requirements for
log analysis, such as predicting whether an abnormal state will occur in the future based
on existing log data. In summary, these increasingly diverse downstream requirements all
rely on log analysis tasks. In the past, log analysis was often done by developers manually
constructing rules for regularity screening and anomaly detection. This manual screening
method was effective decades ago. However, today’s widely used software systems are
often very complex, thereby presenting significant challenges to manual processing, which
means a double test of accuracy and efficiency. On the one hand, the composition of the
log statement is complex, as shown in Figure 1. Without professional knowledge, the
statement contains a large number of characters that are difficult to be understood directly,
for example, ’081109’, ’145’, and ’dfs.DataNode$DataXceiver’ represent Date, PID, and
Component, respectively. It is difficult to manually select appropriate rules for log and
anomaly detection without relying on professional knowledge. On the other hand, it is
difficult to manually process the continuous log output.

Log1:081109 203519 145 INFO dfs.DataNode$DataXceiver: Receiving block 
blk_-1608999687919862906 src: /10.250.14.224:42420 dest: /
10.250.14.224:50010
Log2:081109 203519 145 INFO dfs.DataNode$PacketResponder: 
PacketResponder 1 for block blk_-1608999687919862906 terminating

Template1:Receiving block <*> src <*> dest <*>
Template2:PacketResponder <*> for block <*> terminating

Figure 1. In the figure, Log1 and Log2 are two HDFS logs; Template1 and Template2 are their
corresponding log templates.

Therefore, it is no longer feasible to rely solely on manual log analysis. In the past
15 years, with the application of machine learning and distributed technology in the field
of log analysis, automated log analysis has greatly improved the efficiency and accuracy
of log analysis. Figure 2 shows the workflow of log anomaly detection in current times.
Log parsing refers to the process of transforming semi-structured log data into structured
statements. The structured log information obtained through this parsing is called a log
template [10,11], as shown in Figure 1. However, on the one hand, computers cannot
directly recognize and process this original language information. On the other hand,
these log templates often contain diverse log features, so log features need to be encoded
and represented, which is the role of feature extraction. Anomaly detection uses machine
learning or deep learning methods to classify and predict logs in order to merge logs into
abnormal or normal events.

Log Log Parsing
Feature 

Extraction
Anomaly 

Detection

Figure 2. This picture shows the process of log analysis, including log mining, feature extraction, and
anomaly detection.
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In the last decade, the scale of software systems has expanded rapidly, and the field
of log analysis is facing new challenges such as increasing log formats and log volumes.
A large number of researchers have proposed to use machine learning and deep learning
technologies to solve problems in the field of logs. For example, clustering methods are
used for log parsing [12,13], and convolutional neural networks are used for anomaly
detection [14], etc. At this time, researchers use a large number of log features based on
statistics and sequence order. In the last few years, thanks to the rapid innovation of deep
learning algorithms and the accumulation of a large amount of social text data, natural
language processing technology has developed by leaps and bounds. Researchers began to
use log semantic features for anomaly detection and proposed a variety of robust anomaly
detection methods [15–18]. To this day, a large number of articles are still published in
related fields every year. In this regard, we have investigated related articles from the
past 8 years and made the following year distribution statistics. The statistical results are
shown in Figure 3. By investigating the literature, especially the literature from the past
three years, we found that most of the existing scientific research and review literature
focus on the use and innovation of anomaly detection models, while less research has been
published on the acquisition and use of log features. Therefore, this paper describes the
log parsing method, as well as log feature classification and utilization, and introduces
the research status in the field of log anomaly detection. The main contributions of this
paper are as follows: (1) Review, classification, and comparison of the existing analysis
methods, and judgement of the two evaluation indicators at the same time. (2) First-time
classification of the existing log anomaly detection solutions based on the utilization of log
features. We believe that this classification is more in line with the data mining process.
(3) Suggestions made for further research and exploration in the field. The rest of this paper
mainly answers the following questions:

RQ1: To date, what are the log parsing methods in academia, and what are the
differences among them?

RQ2: What kinds of log features can be used in the feature extraction process?
RQ3: How does one apply log features to anomaly detection models, and what are the

specific research applications?
RQ4: What suggestions are there for future research and development in the field of

log anomaly detection?
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Figure 3. This picture shows the literature distribution in the field of log analysis in the last eight years.

The second chapter gives an answer to RQ1. We introduced several classic log parsing
algorithms and several log parsing algorithms proposed in recent years and analyzed
their internal correlation by classifying the underlying principles of these algorithms.
Furthermore, we summarized the evaluation indicators of log parsing and compared the
accuracy of the log parsing algorithms mentioned in the chapter. RQ2 and RQ3 can be
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found in the third chapter. We classified the log features used in existing research, analyzed
and compared the usability of different log features, and combined those findings with the
literature; this paper introduces how existing research use these log features, as well as their
characteristics and the performance of different methods. In Section 4, we introduce the
research prospects and feasible directions in the field of log anomaly detection in the future.

2. Log Parsing

Log parsing is a key step in the log analysis process. Generally, a log message includes
a message header and log content. Information, such as the timestamp and message level
contained in the message header, is easier to extract, but the log content is often a natural
language record, and it is difficult to extract useful information from it. Therefore, in
today’s software engineering, log parsing is still a challenging task. Here are two main
challenges: (1) A large amount of log information will be generated when the complex
and huge software architecture is running, which means the traditional way of manually
constructing regular expressions will be too expensive; (2) Complex software functions and
high-frequency business updates lead to more frequent updates of log templates, thereby
greatly increasing the diversity of log templates [1]. Therefore, an efficient and accurate
log parsing method will directly affect the scientificity and effectiveness of process mining.
This chapter is divided into two sections: Section 2.1 classifies and compares the classic
parsing algorithms and the log parsing algorithms proposed in the past two years from
the perspective of the working principle of the parse, while Section 2.2 summarizes the
existing accuracy indicators and gives a summarization and evaluation of the accuracy of
these algorithms for a public dataset.

2.1. Classification of Log Parsing
2.1.1. Clustering

A log template is an aggregated representation of a group of similar logs, so a clus-
tering algorithm can be used to cluster log messages. We introduce and compare three
clustering-based methods below. LogMine [13] employs hierarchical clustering and an
early abandoning technique, and it iteratively uses clustering and pattern recognition
algorithms to generate hierarchical structures from the bottom up. The advantage of this
method is that any level can be selected as the schema set. In addition, LogMine is scalable
on MapReduce. Therefore, LogMine has been one of the important analysis tools used
by the industry in the past period of time. However, with the actual deployment of a
large number of parsing algorithms on distributed frameworks, due to its complex internal
hierarchy, LogMine’s performance gradually lags behind the latest algorithms. In LPV [19],
researchers have used word-embedding technology to vectorize log events and to cluster
log events according to the similarity of log parsing vectors. Then, through two steps
of intra-cluster merging and inter-cluster merging, log templates are extracted from log
event clusters. Similarly, QuickLogS also uses word-embedding for template clustering.
The difference is that, in QuickLogs [20], researchers use more analytical rules based on
professional knowledge and log message length, and they then convert the pre-processed
log template into a fixed-dimensional vector, use SimHash to reduce the dimension of
features to obtain the vector of each template, and merge similar log templates of the
same length through Hamming distance and token position. Finally, the cosine similarity
algorithm has been used to merge similar log templates of different lengths. This is the
first application that uses SimHash log parsing to speed up parsing efficiency. In addition,
the encoded features generated during the parsing process, such as LPV and QuickLogS,
can be used in downstream feature extraction and anomaly detection, and they have good
prospects for use in model systems that use related methods for anomaly detection.

2.1.2. Heuristic

A heuristic algorithm refers to a method for obtaining a feasible solution within
an acceptable cost based on certain rules and experience. Since log events are usually
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semi-structured data, it is usually feasible and convenient to use expert experience and
relevant rules for parsing, so heuristic rules are used in many studies. The longest common
subsequence refers to the problem of finding the longest subsequence in a set of sequences,
which is very similar to the process of extracting common templates from log statements.
Researchers have proposed a parsing method based on this similarity principle [21]. The
Spell [21] algorithm applies a prefix tree for preprocessing, and uses reverse lookup to
reduce the computational overhead of matching lookups. When a new log event appears,
Spell first searches through the prefix tree to see if the existing log key matches. If there
is no match, it uses the reverse lookup strategy to match the log key. What is worse, if
there is still no match, then it will use loop traversal to search for a match. Therefore, when
the log messages to be parsed are too long, Spell often still needs to use loop traversal to
assist in the search, which makes its performance inefficient on datasets such as OpenStack.
Drain [22] uses a fixed-depth parsing tree for log parsing. On the non-leaf nodes of the
parsing tree, log events are processed according to different heuristic rules, and, then,
the log templates obtained by parsing are stored in the leaf nodes of the parsing tree.
Specifically, at different depths of the parse tree, heuristic matching is performed according
to professional knowledge, log message length, log header token, and log token similarity.
In the matching search process, if the similarity is lower than the set threshold, the current
node will be split so as to update and expand the parse tree. The Drain algorithm shows a
good parsing effect on a wide range of datasets, so it has received widespread attention in
the academic community, and more and more heuristic algorithms based on parsing trees
have been proposed. LTmatch [23] combines the ideas of the Drain and Spell algorithms;
while using a tree structure for efficient access to log data, it compares and matches log
templates based on the longest common subsequence. In addition, LTmatch also performs
weighted matching on the words in the log to adapt to different log datasets. USTEP [24]
also uses a tree structure for log parsing. Unlike Drain, USTEP can encode new log parsing
rules without recording huge log information in its memory. In addition, when the number
of USTEP leaf node templates exceeds the threshold, it will be classified into the parse
tree, and new leaf nodes will be divided at the same time. Researchers have also designed
USTEP-UP, which can share parsing information and knowledge monitoring so that it can
be used for distributed log parsing. There are some differences between the industrial log
dataset and the public academic dataset, such as separators, template nesting, etc., which
prevent some excellent parsing algorithms from being used in the industry on a large scale.
Drain+ [25] is an adjusted version made by researchers of Drain for real datasets. Drain+
generates delimiters based on the statistics of log samples for log message splitting instead
of using a single delimiter. On the other hand, Drain+ merges log templates according to
template similarity to reduce error analysis caused by the same template, but this results
in large differences in log length. This kind of data actually exists in many real datasets.
Paddy [26] maintained a dynamic dictionary as a data structure to improve the efficiency
of matching log templates. In order to improve the accuracy of template matching, Paddy
internally sorts the template set by similarity and length. However, a test on a public
dataset showed that Paddy cannot deal with several GB of log data as efficiently as Drain
can. MoLFI [27] is the only work known to us that employs evolutionary algorithms for log
parsing, which treats the log parsing problem as a multi-objective optimization problem
and uses a genetic algorithm to search for the optimal log template set. Its advantage
is that it requires fewer parameters; accordingly, the analysis efficiency is low, and it is
limited by the characteristics of the genetic algorithm. When faced with different datasets,
it may fall into a local optimal solution, thus resulting in low analysis accuracy. In the
previous literature [1], researchers expressed it as a separate category (such as evolutionary
algorithms). We consider that evolutionary algorithms are also a heuristic algorithm, so we
classify them into this category.
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2.1.3. Utility Itemset Mining

Utility itemset mining is a technique commonly used in data mining, and it is used
to solve specific problems related to identifying high value itemsets in transactional
databases [28,29]. In the field of log parsing, the utility itemset consists of frequently
occurring log words, parameters, time, and other information, with the most critical being
the frequent words that make up the log template. Therefore, more specifically, the practical
itemset mining in the field of log parsing mainly adopts frequent pattern mining.

The log parsing algorithm using frequent pattern mining is often based on the assump-
tion that the words that appear frequently in the log are often part of the template. Similar
to the early log parsing algorithms (SLCT [30], LFA [31]) that adopted frequent pattern
mining, LogCluster [12] also relies on the frequency of words in log events. The difference
is that LogCLuster allows variable length parameters, which combine multiple consecutive
parameter tokens into one parameter token, so LogCLuster is better at handling log data
with variable parameter lengths. When log statements containing the same parameters
appear repeatedly within a period of time, LogCluster will include these frequently oc-
curring parameters into the log template, which makes LogCluster inaccurate with some
datasets. Unlike LogCluster, Logram [32] does not consider the number of occurrences
of log tokens but instead considers the frequency of log n-grams. In Logram, log parsing
is based on the assumption that frequent n-grams may be log templates. Logram first
adopts a recursive method to continuously filter and extract (n-1)-grams from n-grams and
then splices word pairs with a sequence relationship to form a log template. This kind
of frequent pattern mining considering the context can avoid the problem of mis-parsing
parameters. ULP [33] divides logs according to the length of log sentences and potential
template tokens, pre-groups similar log events, and then performs word frequency analysis.
Unlike Logram, ULP performs a separate word frequency analysis within each log group,
rather than all log data, which makes it easier to distinguish log template parts. Prefix-
Graph [34] automatically extracts frequent items of logs by constructing a prefix graph. In
simple terms, this method first constructs a prefix tree for the log message collection, and
each log message is represented as an edge from the root to the leaf node in the prefix tree.
Then, its traverses the entire prefix tree and merges the same nodes of similar tree branches
together to form a prefix graph until the prefix graph does not change. The common node
sequence from the root to the leaf nodes is the log template. Based on the above process,
Prefix-Graph shows excellent accuracy with various datasets. When dealing with datasets
with many templates and long log messages, the prefix tree traversal and merging steps in
the algorithm will bring a certain amount of time overhead.

2.1.4. Others

LogStamp [35] converts the log parsing problem into a sequence labeling problem.
Unlike other log parsing methods, LogStamp considers semantic information in log parsing.
In order to improve the accuracy of the parsing, LogStamp trains the sequence tagger from
two perspectives of word vector and sentence vector. Sentence embedding is used to
reflect the different properties of the log, that is, to divide the log log template, and word
embedding is used to train the log tagger, that is, to associate the word vector with the log
template. This method works well when training with only a small amount of log data.
Existing log parsing schemes are all based on comparing logs in the same dataset, and they
cannot parse a single log. In this regard, Jared Rand et al. [36] explored a method for parsing
a single log message without relying on any other data. To achieve the intended purpose,
the researchers transformed the log parsing problem into a machine translation problem
and conducted experiments on three machine translation architectures. As opposed to
other methods, in LogPunk [37], researchers believe that matching log words is a factor
that affects the parsing effect, so it classifies logs according to the punctuation marks in log
messages and extracts log templates on this basis.



Appl. Sci. 2023, 13, 4930 7 of 21

2.2. Accuracy of Parsing
2.2.1. Evaluation Indicators

There are many evaluation indicators for log parsers, such as accuracy, efficiency,
etc. In addition, researchers have compared and verified the adaptability and incremental
learning ability of the parsers [34]. For the log parser, the most important attribute is the
accuracy of log parsing. It is no exaggeration to say that the accuracy of parsing is directly
related to the completion of downstream tasks. As a machine learning task, traditional
evaluation indicators such as Precision, Recall, and F-measure are applied to log parsing.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 = 2 · Precision · Recall
Precision + Recall

(3)

TP refers to the number of logs that have been parsed into the correct log template, FN
refers to the number of logs that have been parsed into the current log template by mistake,
and FP refers to the number of logs that have been parsed into other error log templates.
However, in this field, the accuracy indicators most commonly used by researchers in
recent years are Parsing Accuracy (PA) and the Rand Index (RI).

In order to better quantify the accuracy of the log parser, researchers proposed the
evaluation indicators of parsing accuracy [38]. They can be interpreted as the ratio of the
number of accurately parsed log messages to all log messages, as shown in Formula (4).
For example, for the log message sequence [L1, L2, L3], the parsed template sequence is
[T1, T2, T3], but the actual template is [T1, T5, T6]; in this case, PA = 1/3. Because the latter
two log events match incorrectly, partially matched events are considered incorrect in
the calculation of the parameter PA. There is no doubt that log parsing accuracy is more
stringent than traditional parameters (such as Recall, F-measure, etc.) [38].

PA =
#Correct_Templates
#Total_Templates

(4)

RI =
TP + TN

TP + TN + FP + FN
(5)

Some researchers have selected the Rand Index as the evaluation index [34,35]. The
Rand Index is a common method to evaluate the accuracy of two or more classification
tasks. The Rand Index is calculated by Formula (5), which has similar calculation formula
to precision and recall, but its specific meaning is different. TP refers to the number of
log pairs that are classified into the same category and have the same template; TN refers
to the number of log pairs that are divided into different categories and have different
templates; FP refers to the number of log pairs that are divided into different categories
and have the same template; FN refers to the number of log pairs that are classified into
the same category and have different templates [34,35]. Compared to the recall and other
evaluation indicators, the Rand Index can more comprehensively describe the accuracy
of the analytical algorithm in the datasets. In addition, there are some studies that use
self-defined accuracy indicators. The researchers in [33] considered the limitations of the
accuracy of the expression of existing indicators, and they also made requirements for
the accuracy of the parsed dynamic tokens. Such indicators are not within the scope of
our research.
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2.2.2. Accuracy

In this section, we will compare the accuracy of the above-mentioned parsing methods.
Due to the limitation that some methods do not provide open source code, we prefer to
use the accuracy data in their articles, and some null data cannot be filled. These data
statistics can be used as an extension of the existing statistics [38]. All experiments were
performed on a computer with 8 G memory, model Intel(R) Core(TM) i5-7300HQ, and CPU
clocked at 2.50 GHz. Table 1 shows the accuracy of the four classical and six new parsing
methods listed in this section on five typical datasets. Each line in Table 1 expresses the
difference in the effect of one log parsing method on different logs. It can be seen that
most of the parsing methods work well on HDFS logs for two reasons: the total number
of log templates in HDFS datasets is small, and the length of the log sentence is short. On
OpenStack logs with complex structures, almost all log parsing methods are less effective.
Looking at the table vertically, one can make a preliminary judgment on the quality of
different log parsing methods regarding the same dataset. Except for the OpenStack dataset,
there are good parsing methods with parsing accuracies higher than 95%. The lower half
of Table 1 shows the specific performance of two classic and two new methods on five
typical datasets. From the table, we can draw the following conclusions: (1) It is relatively
difficult to parse log datasets with long message lengths and a large number of templates.
(2) Compared to the Rand Index, which is widely used in clustering, the parsing accuracy
is a more stringent evaluation index, which explains the rationality of its widespread
use. As mentioned above, the number of log templates and the length of log events are
potential factors that affect the parsing, and Table 2 shows the basic information of the
typical datasets used in Table 1. Although the HDFS dataset has a large amount of data, the
number of vocabulary and the number of templates are the least, which allows the parser
to easily identify log events classified into different templates. In addition, the length of
the log event needs to be considered. The length of the log event reflects the complexity
of the log event structure to a certain extent. The log statement of OpenStack contains
295 characters on average, which is much higher than other datasets. This may be related
to why various parsers perform poorly on it. It can be seen that most log datasets can be
better parsed by one or more existing log parsing methods. However, for log datasets with
complex log structures such as OpenStack, accurate parsing is still difficult. Existing log
parsing methods seem to be “length sensitive”. For example, MoLFI uses an evolutionary
algorithm to discover the optimal set of log templates, but OpenStack’s complex log events
contain too many interleaved variable parts (parameters, etc.). This makes it easy for the
evolutionary algorithm to incorporate those frequently occurring variable parts into the
log template, which results in greatly reduced parsing accuracy. After testing, it was only
0.213, which is marked as “*” in Table 1.

Table 1. Accuracy of some log parsing methods mentioned in this article.

Metrics Log Parser Year HDFS BGL Zookeeper OpenStack Hadoop

PA LogCluster 2015 0.546 0.835 0.732 0.696 0.563
PA Spell 2016 0.999 0.787 0.964 0.764 0778
PA Drain 2017 0.999 0.963 0.967 0.733 0.948
PA MoLFI 2018 0.998 0.960 0.839 0.213 * 0.957
PA Paddy 2020 0.940 0.963 0.986 0.839 0.952
PA QuickLogS 2021 0.998 - 0.965 0.837 -
PA USTEP 2021 0.998 0.964 0.988 0.764 0.951
PA LTmatch 2021 1 0.933 0.987 0.835 0.987
PA Drain+ 2022 1 0.941 0.967 0.807 0.954

RI Spell 2016 0.999 0.880 0.999 0.917 0.999
RI Drain 2017 1 0.912 1 0.904 0.982
RI Prefix-Graph 2021 0.989 0.993 1 0.890 0.999
RI LogStamp 2022 1 0.98 0.95 - 0.95

“*” This method is not suitable for this dataset, and the explanation is given in this paper.
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Table 2. Basic information of the test datasets used in Table 1.

Datasets # Words # Templates LenMAX LenAVE Size # Messgae

HDFS 132 30 320 139 1.58 GB 11,175,629
BGL 1053 619 928 156 74.32 MB 4,747,963

Zookeeper 261 95 387 1387 10.4 MB 74,380
OpenStack 282 51 450 295 61.4 MB 207,820

Hadoop 880 298 592 121 48.2 MB 394,308
“#” This symbol represents the number of counts.

For datasets such as OpenStack with long log event lengths and complex log event
formats, the potential feasible methods are as follows: (1) Multi-layer grouping of log
events—group log events by length, and, then, divide the grouped content layer by layer
so as to reduce the impact of “length sensitivity”; (2) Do not use the method of relying
on sequence comparison—for example, use the idea of LogStamp to sequence label each
word in the log event, and combine parts marked as templates into log templates; (3) Take
preprocessing measures for the logs to be parsed. Log events are semi-structured texts,
which contain a large number of parameters and time fields that carry less information,
and some information can be discarded in the preprocessing stage. In fact, just like other
machine learning application scenarios, a good preprocessing step can greatly improve the
parsing effect.

In addition, we also noticed that most of the parsing methods proposed in recent
years are online log analysis solutions, such as Prefix-Graph, Drain+, USTEP, etc., which is
related to the huge potential of online log parsing methods. Online log parsing methods
can extract available information from real-time log streams, thus providing the possibility
for downstream intrusion detection and situational awareness.

3. Feature Extraction and Utilization

The parsed log template sequence often has tens of thousands or even hundreds of
thousands of logs. In order to facilitate log feature extraction and subsequent processing,
the log sequence that results after log parsing need to be partitioned. In other words, the
log is divided into blocks of limited size according to the log event occurrence time or a
specific identifier (such as blk_id in the HDFS log). According to the method of grouping, it
can be divided into time grouping and session grouping. Time grouping divides logs into
sequences based on a self-defined time span and can be divided into fixed time windows
and sliding time windows according to whether the time spans overlap. Session grouping
is based on labels (such as blk_id) in log events, and log events are divided into multiple
groups of log sequences according to labels [1].

Generally speaking, most parsing methods will separate keywords describing the
running status of the log, such as ERROR, INFO, etc. However, due to the high complexity
of the software system, it is difficult to accurately judge the current running status of the
system only by relying on these keywords, so there is an urgent need for an automated
method to obtain the features in the log and make use of these features. In order to
automatically analyze the log, it is necessary to convert the log template that results after
log parsing into numerical information that the machine can understand. According to
the investigation of He et al., the existing research mainly utilizes two types of numerical
information for logs: digital features and graphical features [1]. The content of this chapter
is arranged as follows. The first and second subsections introduce the current main log
features and their utilization, respectively. The third subsection makes statistics and
comparisons between the current anomaly detection methods.

3.1. Digital Features

Digital features are values or log strings that can be directly extracted from logs,
and they are the most commonly used type of log features in log feature extraction and
utilization. A variety of log features can be extracted directly or indirectly from log
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partitions, some of which can be used alone for downstream anomaly detection, which can
be called main features, such as log count features, log index features, log event features,
etc. The other part of log features is often used to cooperate with the main features to
improve the accuracy of anomaly detection in a certain dataset or certain aspects, such
as log time features, log parameter features, etc. Our survey results show that the main
features extracted from log templates have been used more in anomaly detection research,
while the features based on the variable parts of logs have been less used by researchers
and can be called secondary features. In the following, we classify and introduce existing
methods from the perspective of log digitization feature extraction and utilization.

3.1.1. Log Count Features

Log counting refers to counting the number of log events in a log block to generate
log vector information. The dimension of the vector often represents the number of event
types in the entire log dataset. For the log template sequence shown in Figure 4, assuming
that there are only four different types of log templates in the current dataset, the log count
vector is [5, 4, 0, 2], because there were five occurrences of Event 1, four occurrences of
Event 2, one occurrence of Event 4, and Event 3 did not occur. This log feature allows
the establishment of quantitative relationships between the occurrences of different log
events over time. Since it is relatively easy to extract log count features and can be used to
achieve certain results in anomaly detection, it has been used in many works. He et al. [39]
combined multiple log count features into a log count matrix and used the matrix as a
feature to use and compare six machine learning methods such as Decision Tree, SVM,
and PCA. Xie et al. [40] divided log events into dependent and independent events and
judged anomalies by detecting whether the log sequence violated the dependency pattern
of the log. Zhao et al. [41] found that there is a number relationship between different
log templates: the value of one dimension in the counting feature increases, and the value
of the other dimension decreases. Therefore, the application of multivariable time series
anomaly detection technology can improve the accuracy of anomaly detection.

3.1.2. Log Index Features

In contrast to the log count feature, the log index feature is not based on the frequency
of log events. Instead, it is based on the encoding of the log templates index. Each log event
template can be encoded into an index number, and the index numbers sorted by execution
time are combined to form the log index feature. Each log event template can be encoded
into an index number, and the index numbers sorted by execution time are combined to
form the log index feature. Furthermore, for the log template sequence shown in Figure 4,
its log index vector may be [1, 1, 4, 2, 1, 1, 2, 2, 4, 2, 1], as each number represents the index
of its corresponding template. Obviously, this method can not only record the number
distribution of log events, but can also preserve the positional relationship of log events,
which makes the log index feature more widely used. Du et al. [14] used LSTM to capture
the potential log sequence relationship of log index vectors to predict whether the next log
event deviated from the normal log event sequence. Lu et al. [42] proposed a CNN-based
anomaly detection method by using a parser to find log constants that frequently appeared
in log events, named it log-key, and then constructed a one-to-one mapping of the log-key
and index. Next, they sorted the index according to the time spent to construct an index
vector, encoded the index vector into an index matrix, and finally used three convolutional
layers of different sizes of filters for feature extraction. This method can well capture the
log features of different ranges in the log index. Similar to Lu et al., Yen et al. [43] also
exploited the feature extraction ability of a CNN, used convolution filters of different sizes
for feature extraction, and then used LSTM to capture the relationship between sequences
for anomaly detection.

It should be noted that, due to the unevenness of the log partition, the vector lengths
generated by the log index feature are often different, so shorter and longer log vectors
need to be processed, but deleting the vector length can easily cause data loss, which
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makes it difficult for the above methods to achieve a better average effect on multiple sets
of datasets.

Template1:Receiving block <*> src <*> dest <*>
Template1:Receiving block <*> src <*> dest <*>
Template4:Deleting block <*> file <*>
Template2:PacketResponder <*> for block <*> terminating
Template1:Receiving block <*> src <*> dest <*>
Template1:Receiving block <*> src <*> dest <*>
Template2:PacketResponder <*> for block <*> terminating
Template2:PacketResponder <*> for block <*> terminating
Template4:Deleting block <*> file <*>
Template2:PacketResponder <*> for block <*> terminating
Template1:Receiving block <*> src <*> dest <*>

Figure 4. Log template sequence after log parsing. The “*” in the figure represents the variable part
in the log template.

3.1.3. Log Event Features

The log count features and the log index features mainly focus on the distribution
of log events in time and space, which is a statistical feature. However, with changes in
system functions, modification of log statements, and other actual operations that lead
to changes in the syntax or types of log events, the above log features cannot guarantee
normal operation while maintaining the existing coding structure. Furthermore, such
statistical features cannot describe the semantic information contained in the log. With the
development of deep learning models and natural language processing technologies, the
feature extraction of log events using related technologies has become the most common
method in today’s research.

Bertero et al. [44] regarded log sentences as ordinary natural language texts, rather
than formatted templates, and applied Google’s word2vec for word embedding to obtain
log event features. Word2vec can obtain the contextual features of log sentences very well,
but it has difficulty in obtaining log semantics. Meng et al. [15] proposed a template vec-
torization representation method, Template2Vec, by adding log synonyms and antonyms,
which could extract semantic information in logs simply and effectively. It is also the first
feature extraction method that considers log semantic information. This method can match
new generated, unseen log templates into existing log templates based on semantic features,
which allows the model to adapt to the changing actual production environment without
frequent modification, and Meng et al. utilized both log count features and log semantic
features to detect the statistical and logical relationships of log events. LogRobust [16]
obtains word embedding through FastText, uses TD-IDF for vector weighting, converts
each log event into a fixed-dimensional semantic vector to obtain the semantic information
embedded in the sentence, and uses Bi-LSTM for semantic learning. This method can adapt
to basically similar, but not identical, log statements generated with iterative updates of the
system. Li et al. [18] used Bert for log feature extraction. In contrast to other feature extrac-
tion methods, this method adds a self-attention layer to the encoder to obtain information
implicit in log sentences. Huang et al. [17] split the compound long words in the log into
multiple sub-words and at the same time used Bert to generate word vectors. In this way,
the log template sentence was transformed into a list of word vectors. Wang et al. [45]
believed that calculating the log event vector from the word vector brought huge com-
putational overhead, so they proposed that LogEvent2Vec directly encode the log event
vector from the log event. Specifically, for the log sequence [Li+1, Li+2, . . . , Li+L, . . . , Li+M],
Wang et al. used [Li+L−k, . . . , Li+L−1, Li+L+1, . . . , Li+L+k] as the input of word2vec, and the
goal was to obtain the log event features of the log event Li+L. This method of encoding
log features according to the log context can simultaneously represent the log sequence
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features and log semantic features. However, its actual effect remains to be further verified.
Ying et al. [46] counted the log word frequency in their research, and calculated the weight
WeightWord

Log of each word in each log event through TF-IDF; for example, by converting

the event L into a word weight vector [WeightWord1
L , WeightWord2

L , . . . , WeightWordn
L ], each

dimension value represents the weight representation of a word in the dictionary in the
log L.

3.1.4. Log Sequence Features

A log sequence refers to a set of consecutive log records in a log file. The log event
features encoded by a log event cannot record enough information, and, in particular, the
relationship feature before the log event cannot be recorded. On the other hand, in order to
meet different anomaly detection methods, it is also necessary to construct log sequence
features. For example, the time series information of log event features cannot meet the
needs of random forest classification. Just as sentence vectors or log event vectors are
obtained from word vectors, log sequence features are generated in a similar manner. For
example, by using TF-IDF to transform log sequence features into a weighted average
representation of log event features, the weight of rare log events is higher than that of
common log events.

Lv et al. [47] considered that some words in the log are invalid words (such as “to”),
and the word embedding technology word2vec cannot filter these pairs of meaningless
words. Furthermore, because word2vec uses words as the coding unit, these frequent
invalid words will increase the vector space. In order to reduce the waste of computing
resources, a method called log2vec was proposed. Log2vec performs part-of-speech tagging
on words, and vocabularies tagged as invalid words are set to zero vectors by the encoder.
Then, the log event vector is generated by weighting the corresponding log template words,
and, similarly, the log sequence vector is generated by averaging the log event vector.
Yang et al. [48] explored the method of constructing log sequence features by modeling
the word–word interaction information in a log sequence. This encoding method using
word-by-word matching can deal well with new logs in the evolution of the system. In
LogEvent2Vec [45], the log event is used as the input of the encoder to obtain the correlation
between log events, and, on this basis, the log sequence vector is obtained by averaging the
log event vector. It should be noted that, although this log sequence feature is aggregated
from log event features, it does not mean that it is more suitable for anomaly detection.
Since it is limited by machine learning classifiers, the accuracy is often lower than that of
deep models, and the method of using log sequence features is not as effective as the latter.
One possible way to improve accuracy is to reduce the size of the log event window [49].

3.1.5. Log Time Features

Generally, in the process of converting log original events into log templates will
separate the original statements into multiple parts. As shown in Figure 5, a parsed
original HDFS log statement is divided into seven different parts: Date, Time, Pid, Level,
Component, Template, and ParameterList. In addition to the log template repeatedly
mentioned above, there is a large amount of information that has not been used, including
time characteristics such as date and time.

Most current sequence prediction methods are based on time-independent event
sequences, such as predicting natural language sequences. However, for many real log
events, the time span between events contains key sequence information. Time series are
often event-dependent (a single time series has no practical significance). Li et al. [50]
proposed two time encoding methods for this: (1) time masking of event embedding and
(2) event-time joint embedding. Both methods can improve the accuracy of time series
forecasting, which provides a precondition for applying time coding in log analysis.

Log event features and log sequence features have the ability to describe the running
status of the software system, but it is relatively difficult to find some other problems (such
as performance detection [51]). The traditional method to detect performance anomalies is
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to perform intrusive detection when the system is running, which will affect the system per-
formance. When the system has a performance problem, the time interval of some events
in the system log will change significantly. Based on this, the researchers in [14] considered
using the non-intrusive method of log exception detection to deal with the potential perfor-
mance problems of the system. In order to capture time interval anomalies, the researchers
Li et al. [18] calculated the time difference of two logs ∆ti = timei − timei−1(∆t1 = 0) and
then combined the time differences between all logs to obtain the time difference sequence
∆T = [∆t1, ∆t2, . . . , ∆tk]. However, the time difference sequence is a one-dimensional time
series and can only contain limited information. Therefore, Li et al. and Xiao et al. [52] used
one-hot encoding and a custom linear layer to upgrade the feature dimension of the time
difference sequence to make it serve downstream tasks. However, the logs generated by
modern distributed systems are usually interwoven by multiple processes, which makes it
challenging to effectively extract and utilize temporal features.

Log3:081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 
for block blk_38865049064139660 terminating

 Date  Time Pid Level           Component
081109 203615 148 INFO dfs.DataNode$PacketResponder

Template
PacketResponder <*> for block <*> terminating

ParameterList
['1', 'blk_38865049064139660']

Figure 5. Components of an HDFS log. The “*” in the figure represents the variable part in the
log template.

3.1.6. Log Parameter Features

Most log parsers also separate the parameter values in the log statement while parsing the
log statement into a log template, as shown in the parameter list [‘1’, ‘blk_38865049064139660’]
in Figure 5. These parameters may be software function return values, block information,
etc. These log parameters often record important system data, which makes it feasible to
use log parameters to encode auxiliary models for anomaly detection. In DeepLog [14], log
time intervals and parameter values are extracted simultaneously, and an LSTM model
is constructed for parameter value vector sequences of different log event types, which
simplifies the problem to multi-parameter anomaly detection. However, log parameters in
some cases have numerical units or practical meanings, such as ‘took 1 seconds to upload’
and ‘took 800 ms to upload’. Although the numerical values of the parameter values are
quite different, the practical meanings they express are relatively close. Therefore, it is
not possible to simply use standards such as average values to measure parameter value
information in order to realize the interaction between parameter values and log templates.
Huang et al. [17] combined parameter value encoding and log event encoding with the aim
to integrate log template information into parameter value encoding. LogAD [41] not only
models the value and variation of parameters, but also pays attention to the distribution
characteristics of parameters, such as the city and browser type that request access.

3.1.7. Others

In addition to the log characteristics described above, the log also contains many
other kinds of information, such as log level, process ID, component name, etc. Log levels
include INFO, DEBUG, ERROR, WARN, etc. Even in different types of system logs, there
are relatively few differences in the identification of log levels, so it is easier to obtain a
universal log level encoder. The occurrence of the log levels ERROR and WARN has a high
probability of judging that there is an error in the program operation, even if the system
program can solve some errors by itself. Multiple process is a necessary technology for
system software with complex functions. A set of log statements is often a collection of logs
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generated by multiple process tasks, so the process ID and component name can be used as
one of the characteristics for identifying and dividing logs [52].

3.2. Graphical Features

Graph analysis has been widely used in different research domains [53–55], and graph
embedding techniques have attracted much attention. Perozzi et al. [56] used Random
Walk to sample nodes in the graph, and obtained the co-occurrence relationship between
nodes in the graph to learn the vector representation of nodes, which is similar to the idea of
word2vec encoding of a natural language. In contrast to the random walk strategy based on
the depth-first traversal algorithm, Tang et al. [57] adopted a breadth-first traversal strategy
and defined the second-order similarity between graph nodes at the same time, which made
the graph embedding method suitable for weighted graphs. Grover et al. [58] took the
work of both into account, combined a depth-first search and a width-first search to sample
vertices, and optimized the maximum occurrence probability of their neighboring vertices
and given vertices. Simultaneously, neighboring nodes had the same encoding, which is
different from Tang et al. Researchers have been working on graph structure in log mining.
Hacker et al. [59] proposed a log graphical method based on a one-dimensional Markov
random field, which can represent conditional probability relationships before words
and phrases in log events. The existence of specific words depends on the arrangement
of the preceding words. In order to obtain the logical (interdependent) and sequential
relationships of system events, the researchers mined log features by constructing directed
graphs that describe system relationships or system behavior. Compared to digital features,
graphical features can better describe the intrinsic relationship between different log events.
Therefore, graphical features are often used not only for anomaly detection, but also for
intrusion analysis, intrusion detection, anomaly classification, and diagnosis. However,
these functions are not entirely within the scope of our research. Therefore, in this section,
a brief introduction is given to the methods of using graphic features in the existing work.

Since the objects in the log have relatively complex logical and sequential relationships,
it is a great challenge to construct a log graph. Zhao et al. [60] extracted log objects and
constructed 1:1, 1:n, n:m logical relationship structure diagrams between different objects
to reconstruct the execution flow from logs afterwards to analyze the performance and
behavior of distributed server stacks. Milajerdi et al. [61] built a high-level scenario
graph based on log entities and the information flow between entities to detect advanced
persistent threats. Liu et al. [62] classified log events into three log graphs by setting ten
discriminant rules. These rules were the following: (1) Construct a log heterogeneous graph
within a day based on the causality and sequence relationships within a day. (2) Construct
a multi-day log heterogeneous graph based on the logical relationship of events within
multiple days. (3) Finally, construct an object-based log heterogeneous graph according
to user login and browsing behaviors, as well as the logical relationship among them.
On this basis, the problem of unbalanced data categories and diversified attack methods
was solved by using a graph-based random walk strategy. Yang et al. [63] constructed a
continuous-time dynamic graph based on the specific operations and execution time in the
log, which can be used for fine-grained anomaly discovery and tracking. Zhang et al. [64]
studied the use of graph structures to describe system behavior sequences and combined
them with microservice logs to train deep graph models to detect abnormal behavior in
microservice systems.

3.3. Comparison of Feature Utilization

Table 3 compares some existing anomaly detection methods, especially those proposed
in the last two years. The main focus is on the log features used, Robustness, Rationale,
Accuracy, Recall, and F-measure values for the dataset. Because the HDFS is the most widely
used in the field of log anomaly detection, we used the anomaly detection performance of
the HDFS as the measure. He et al. [39] used log count features for anomaly detection on
three unsupervised (LogCluster, PCA, Invarants Mining) and three supervised learning
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(Logistic Regression, Decision, SVM) algorithms with the aim to evaluate the performance
of the six methods mentioned above. Although the log count feature is a simple statistical
feature, it only expresses the distribution of log events in space, which often makes its
robustness poor. However, in both work LogAD [41] and LogDP [40], anomaly detection
was performed by modeling the relationship between the number of occurrences of different
log events, and good results were achieved with various datasets. DeepLog [14] models
the log index sequence, which enables DeepLog to have the ability to express sequence
features. LogCNN [42] also exploits log index features. Compared with the log count
feature, the log index feature can express the connection of log events in time. However,
the above methods cannot handle unknown log data well, and their robustness is poor.
LogAnomaly [15], LogRobust [16], HitAnomaly [17], LogBert [65], and other methods use
NLP technology to extract log features, and these methods have good robustness. However,
anomaly detection methods that only use a single type of log feature have trouble efficiently
dealing with multiple types of anomalous events. Detection methods using multiple log
features (Deeplog [14], SwissLog [18], AllInfolog [52], etc.) have a better chance of detecting
potential performance problems that are difficult to find in the system (such as system
blocking, etc.).

Table 3. Feature utilization, robustness, and effect comparison of log anomaly detection methods.

Methods Year
Features

Robustness Principle
HDFS

Count Time Event Index Sequence Parameter Precision Recall F1

LogCluster 2016 X Cluster 0.99 0.77 0.87
SVM etc. 2017 X SVM etc. - - -
IM etc. 2017 X IM etc. - - -
DeepLog 2017 X X X LSTM 0.93 0.94 0.93
LogCNN 2018 X CNN - - -
CausalConvLSTM 2019 X CNN/LSTM 0.9 1 0.94
LogAnomaly 2019 X X LSTM 0.96 0.94 0.95
LogGAN 2020 X X GAN/LSTM 1 0.36 0.53
LogRobust 2020 X X Bi-LSTM 0.98 1 0.99
SwissLog 2020 X X X BERT/LSTM 0.97 1 0.99
HitAnomaly 2020 X X X Transformer 1 0.97 0.98
LogEvent2vec 2020 X RF etc. - - -
ConAnomaly 2021 X X LSTM 1 0.98 0.98
LogBert 2021 X X BERT 0.87 0.78 0.82
LAnoBERT 2021 X X BERT - - 0.96
LogAD 2021 X X X X X LSTM etc. - - -
KNN-Based 2021 X X KNN 0.97 0.99 0.98
LogDP 2021 X X MLP 0.98 0.99 0.99
Sprelog 2021 X X RoBERTa - - -
PLELog 2021 X X GRU 0.95 0.96 0.96
AllInfoLog 2022 X X X X RoBERTa/Bi-

LSTM
0.99 0.99 0.99

DeepTraLog 2022 X X SVDD/GGNNs - - -

“-” This method does not use HDFS logs or does not show this indicator.

We can see that, with the increasingly powerful performance of deep models, using
log event features combined with deep neural networks seems to have become a popular
anomaly detection method in recent years. In addition, researchers have done some research
on the different issues of log analysis. To solve the problem that the existing distributed
anomaly detection models are difficult to migrate, Guo et al. [66] built a distributed
log detection system using broad federated learning. In order to reduce the impact of
homologous encryption and other schemes on the overall efficiency of the system, Guo et
al. designed a lightweight CNN model, which did not guarantee the accuracy of anomaly
detection. Chen et al. [67] proposed LogTransfer, which is a transfer learning log anomaly
detection method that uses transfer learning from tagged log datasets and then detects
anomalies on other log datasets that are similar but have different log events, considering
that existing anomaly detection methods tend to be less robust and are only good at one
type or specific log dataset. This improves the performance of the scheme on a wide range
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of real-world datasets. In the system log, the number of normal log sequences was far
greater than the number of abnormal log sequences. This sample imbalance problem
greatly affected the accuracy of the anomaly detection. Xia et al. [68] proposed to alleviate
the class imbalance of log datasets by using generative adversarial networks. In their
research, the feature extraction link also used log index features, captured features through
the generator, generated credible log sample data, and finally used the discriminator to
identify whether the sample was generated by the generator so as to improve the sample
quality of the generator. However, this method is less robust on real-world datasets.
Yang et al. [69] proposed a semi-supervised anomaly detection method called PLELog,
which uses probabilistic label estimation to reduce the anomaly detection error caused by
uneven sample labels.

4. Prospects

Open datasets can be more accurately parsed by at least one log parser, but there is
currently no log parser for multitype datasets. Even though log parsers such as Drain+ and
Prefix-Graph show good results for a variety of datasets, they still have trouble dealing
with data with a complex structure of log events, long variable parts, and nested log
structures. We propose three possible solutions for this: (1) Group log events one by one;
(2) Do not use text similarity comparison to classify; (3) Use preprocessing to remove some
insignificant numerical features. However, these schemes may reduce the efficiency of
parsing. Especially for online log parsers that are used in system monitoring and auditing,
it is important to balance the accuracy and efficiency of the parser. On the other hand, some
studies [70,71] abandon log parsing and extract the semantics of preprocessed log event
statements directly. We think this is meaningful and promising, because the accuracy of log
anomaly detection is limited to some extent by the accuracy of log parsing. As mentioned
earlier, existing log parsers cannot guarantee the robustness and accuracy of parsing. In
addition, using an unresolved log anomaly detection scheme can help produce a lighter
anomaly detection framework, which will help break down barriers between anomaly
detection for different log datasets.

In the concept of parsing accuracy, not exactly matching a template is considered
an error, and, in some cases, we think this is too restrictive, such as tokens ‘blk*’ and ‘*’.
Therefore, we strongly encourage researchers to try other evaluation metrics, such as using
the adjusted Rand coefficient, which may better compare the difference between the parsed
template grouping and the real template grouping.

At present, distributed systems are gradually developing toward heterogeneous com-
puting, cloud computing, and mixed loads. The question of how to analyze logs in dis-
tributed systems while ensuring data privacy may become a difficult problem. In terms of
log processing, some researchers have proposed using a distributed framework to analyze
the system logs of distributed systems [72]. However, for a large-scale distributed system,
even summarizing the parsed log templates from different terminals will consume a lot
of time and resources, and there are also data security issues in the process. On the other
hand, the difference in log statements between different distributed systems may be very
large, which makes it difficult for a model built on a certain distributed system to be used
on other distributed systems. This is something to be solved in the industry in the future.
Although some researchers [66,67] have engaged in related work, there are still broad
research prospects. For example, by combining graph feature technology to extract the rela-
tionship between log events and performing sequence flow relational transfer learning on
log event relationships, this makes it possible to achieve multi-functional security detection
and analysis across datasets and detection purposes.

LOGPAI [73] and other publicly available data [74] provide researchers with valuable
log datasets and several available toolkits. However, many log parsing and anomaly
detection researches do not open source their work, which makes it difficult to compare
the pros and cons of different methods in the same experimental framework, and it is also
difficult for future researchers to make feedback and improve existing work. In addition,
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there is currently a lack of anomaly detection frameworks that can be deployed and used
online, which may bring great convenience to those who need them.

It is a feasible direction to apply log analysis work to situational awareness and
digital forensics, but it also poses new challenges to log analysis. To put it simply, most of
the existing log anomaly detection schemes detect abnormal behaviors that have already
occurred, and such delayed detection often cannot be used for situational awareness.
Situational awareness needs to predict possible future events or trends based on past logs
or other data. Situational awareness is often applied in the environments of multi-device,
multi-system, and multi-task, so the parsing, sequencing, standardization, and feature
aggregation of multi-category logs are also one of the problems to be solved urgently.
Similarly, digital forensics also needs to face problems that involve multiple devices. Unlike
situational awareness, digital forensics does not require the prediction of future statuses
and trends. The key issue is to analyze the relationship between data entities in different
types of information carriers to achieve information traceability and tracking, so graphical
features may be the main applied research method.

5. Summary

In recent years, with the explosive growth of software system scales, system logs
have become an important medium for recording software system behavior and analyzing
system health. This paper mainly discusses two steps in automatic log parsing: log parsing
and feature extraction. In the log parsing section, this paper compared the parsing methods
in recent years on a variety of datasets. Although the parser principles are different, they
can achieve good accuracy with most datasets. For complex log datasets that are difficult to
parse accurately, three potential feasible solutions have been proposed. Feature extraction
is an important step in log analysis. This paper introduced and compared the existing log
feature extraction schemes, described the log feature utilization of researchers in recent
years, and labeled the robustness and results of different methods. Finally, the potential
research directions were described.

By surveying recent articles, this paper categorizes, analyzes, and summarizes the
current research on log analysis in terms of log parsing and feature extraction. This paper
is intended to enable researchers outside the field to have a certain understanding of log
analysis and log feature extraction and utilization, as well as to fill in the gaps for new
researchers in the field.
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The following abbreviations are used in this manuscript:

DMTF Distributed Management Task Force
CADF Cloud Auditing Data Federation
PID Process Identity Document
PA Parsing Accuracy
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RI Rand Index
HDFS Hadoop Distributed File System
BGL Blue Gene/L
PCA Principal Component Analysis
SVM Support Vector Machine
LSTM Long Short-Term Memory
CNN Convolutional Neural Networks
TF-IDF Term Frequency–Inverse Document Frequency
Bi-LSTM Bi-Directional Long Short-Term Memory
NLP Natural Language Processing
IM Invariant Mining
GAN Generative Adversial Network
BERT Bidirectional Encoder Representation from Transformers
RF Random Forest
KNN K-Nearest Neighbor
MLP Multilayer Perceptron
RoBERTa Robustly Optimized BERT Pretraining Approach
GRU Gate Recurrent Unit
SVDD Support Vector Data Description
GGNNs Gated Graph Neural Networks
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