
Citation: Mozo, A.; Karamchandani,

A.; de la Cal, L.; Gómez-Canaval, S.;

Pastor, A.; Gifre, L. A

Machine-Learning-Based Cyberattack

Detector for a Cloud-Based SDN

Controller. Appl. Sci. 2023, 13, 4914.

https://doi.org/10.3390/app13084914

Academic Editor: Christos Bouras

Received: 10 February 2023

Revised: 29 March 2023

Accepted: 5 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Machine-Learning-Based Cyberattack Detector for a
Cloud-Based SDN Controller
Alberto Mozo 1,* , Amit Karamchandani 1 , Luis de la Cal 1 , Sandra Gómez-Canaval 1 , Antonio Pastor 2

and Lluis Gifre 3

1 ETSI Sistemas Informáticos, Departamento Sistemas Informáticos, Universidad Politécnica de Madrid,
28031 Madrid, Spain

2 Telefónica I+D, 28050 Madrid, Spain
3 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), 08860 Castelldefels, Spain
* Correspondence: a.mozo@upm.es

Abstract: The rapid evolution of network infrastructure through the softwarization of network
elements has led to an exponential increase in the attack surface, thereby increasing the complexity of
threat protection. In light of this pressing concern, European Telecommunications Standards Institute
(ETSI) TeraFlowSDN (TFS), an open-source microservice-based cloud-native Software-Defined Net-
working (SDN) controller, integrates robust Machine-Learning components to safeguard its network
and infrastructure against potential malicious actors. This work presents a comprehensive study of
the integration of these Machine-Learning components in a distributed scenario to provide secure
end-to-end protection against cyber threats occurring at the packet level of the telecom operator’s
Virtual Private Network (VPN) services configured with that feature. To illustrate the effectiveness of
this integration, a real-world emerging attack vector (the cryptomining malware attack) is used as a
demonstration. Furthermore, to address the pressing challenge of energy consumption in the telecom
industry, we harness the full potential of state-of-the-art Green Artificial Intelligence techniques
to optimize the size and complexity of Machine-Learning models in order to reduce their energy
usage while maintaining their ability to accurately detect potential cyber threats. Additionally, to
enhance the integrity and security of TeraFlowSDN’s cybersecurity components, Machine-Learning
models are safeguarded from sophisticated adversarial attacks that attempt to deceive them by
subtly perturbing input data. To accomplish this goal, Machine-Learning models are retrained with
high-quality adversarial examples generated using a Generative Adversarial Network.

Keywords: software-defined networking; machine learning; energy efficiency; green AI; adversarial
attack; cryptomining attack; cybersecurity

1. Introduction

As technology advances, the importance of security in network operations increases as
software components take on a larger role and human intervention becomes less necessary.
As a result, a top priority for next-generation SDN controllers is to ensure a secure environ-
ment [1]. To achieve this goal, the TeraFlow project [2] developed a novel SDN controller
(TeraFlowSDN) for the 5G and beyond network era that integrates technologies, such as
today’s Network Function Virtualization (NFV) and supports new capabilities for flow
management and device integration. Importantly, TeraFlowSDN was established by the
European Telecommunications Standards Institute (ETSI) as a reference implementation
for SDN controllers, and the Open Source Group TeraFlowSDN (OSG TFS) Working Group
was established within ETSI specifically to focus on the development and advancement of
this open-source controller [3].

The evolution of security threats, many of which are due to technological advances,
creates new attack vectors (as in the case of NFV [4]) that require the protection of both
network services and the network controller. To this effect, multiple Network Intrusion

Appl. Sci. 2023, 13, 4914. https://doi.org/10.3390/app13084914 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9743-8604
https://orcid.org/0000-0002-0311-6610
https://orcid.org/0000-0002-1798-8743
https://orcid.org/0000-0002-9757-7871
https://orcid.org/0000-0003-2849-9782
https://orcid.org/0000-0001-9936-9411
https://doi.org/10.3390/app13084914
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084914?type=check_update&version=2

Appl. Sci. 2023, 13, 4914 2 of 33

Detection Systems have been proposed in previous works. However, most of them rely on
outdated methods, such as Snort [5,6], that are unable to handle the encrypted nature of
modern traffic [7]. It is also common for previous studies to rely on the NSL-KDD Dataset
as the training data for the systems [8].

This dataset has been heavily criticized and shown to not be a realistic reflection of
modern traffic [9], which makes many of the aforementioned studies not directly applicable
to real-life scenarios. Furthermore, when studies do take into account novel methods
for attack detection and mitigation, such as Machine Learning [10], they fail to consider
both the intrinsic vulnerabilities of these methods and the energy needs for such systems.
On the one hand, it has been shown that ML models are susceptible to adversarial attacks,
which can compromise the system by slightly altering the input and, thus, producing
false negatives [11,12].

On the other hand, as telecommunication traffic scales up, it becomes critical to im-
plement optimization strategies aimed at reducing energy consumption, which poses a
significant challenge in this industry. In this regard, this paper presents work performed
using the TeraFlowSDN controller to address some of these needs from several perspectives,
incorporating a distributed and scalable cybersecurity solution to the TeraFlowSDN archi-
tecture that (i) relies on standard interfaces to facilitate future extensions and modifications,
(ii) defends not only the network but itself against attacks and (iii) is optimized to reduce
its energy consumption.

To detect malicious flows in the data and control planes, our work proposes to inte-
grate, in TeraFlowSDN, a distributed Intrusion Detection System (IDS) based on Machine-
Learning (ML) and Deep-Learning (DL) components placed at the network edge and in
the SDN controller. A distributed IDS is expected to improve the scalability and decrease
the bandwidth and response time for detecting malicious flows while reporting back to
the controller for an assessment of network security. Many IDSs have been proposed to
identify different types of attacks [13], but proposals that address scalability, bandwidth
and latency issues are lacking.

In this context, our work was conceived in three complementary dimensions: (i) a
distributed ML-based IDS solution (Cybersecurity NetApp) that is integrated within the
TeraFlowSDN architecture, (ii) a Green AI solution to reduce the energy consumption of the
ML cybersecurity components of the solution and (iii) a fortification mechanism of the ML
components to defend themselves against adversarial examples, a new type of attack that
attempts to fool ML models introducing small perturbations in their inputs. To exemplify
these goals, a recently appeared cryptomining attack is proposed as a showcase scenario.

The Cybersecurity NetApp is designed to address the challenge of network threat
capture, identification and mitigation. To achieve this task, the Cybersecurity NetApp
includes two centralized components in the TeraFlowSDN controller, the Centralized
Attack Detector (CAD) and the Attack Mitigator (AM), as well as a distributed component,
the Distributed Attack Detector (DAD), which is placed at a remote site.

The DAD component receives network traffic at the network edge and generates
statistical summaries of the network flows by aggregating packets from the same connection
at regular intervals of time. The DAD component then transmits these statistics to the CAD
component, which uses them as input to an ML-based network traffic classifier running
within it. After a network attack has been detected in the ML classifier, the confidence of the
prediction as well as the flow connection identifier are sent to the AM component. The AM
component then communicates with several core TeraflowSDN components to enforce and
apply the corresponding mitigation strategy in the network elements. For example, based
on a predefined policy, it can be decided that flows with the same connection identifier as
the attack are blocked on the access router.

It is worth noting that the proposed design is distributed, modular and heavily relies
on de facto industry standards based on open-source high-performance Remote Procedure
Call (RPC) frameworks, such as gRPC and Protocol Buffer, making it highly adaptable

Appl. Sci. 2023, 13, 4914 3 of 33

to integrate the detection and mitigation of other attack scenarios into the TeraFlowSDN
Cybersecurity solution.

To address the pressing challenge of energy consumption in the telecommunications
industry, this study proposes a solution that, taking advantage of the latest Green AI
techniques [14], optimizes the energy consumption of the ML models deployed on the
TeraFlowSDN controller, ensuring significant energy savings without compromising perfor-
mance. To this end, a set of optimization experiments were designed to reduce the energy
consumption of the DNN model that is deployed in the CAD component.

First, a deep exploration of the state of the art of energy efficiency was conducted,
identifying a collection of different techniques that were combined into 11 optimization
strategies. An experimental evaluation was performed on all the different optimization
strategies using the original DNN model designed and trained for the CAD. The resultant
models that achieved a significant reduction in energy consumption while maintaining a
good level of performance in attack detection were selected.

To obtain a reliable metric regarding the power consumption during the training,
model optimization, inference and model-loading phases, the experiments were performed
using the Running Average Power Limit (RAPL) interface. It is worth noting that our study
focused on the inference phase, since it is the most energy-consuming in ML applications
that are going to be deployed in a real-time environment, such as the TeraFlowSDN
controller. At the end of the experiments, the total average energy consumption was
reduced by up to 83.30% with a minimal performance degradation of only 0.08% in the
Balanced Accuracy score.

In recent years, adversarial attacks have highlighted the weakness of state-of-the-art
ML techniques in terms of robustness and generalisation, inspiring malicious adversaries
to exploit this weakness to attack systems that integrate ML models at the core of their
decision-making process to achieve their purposes. More specifically, adversarial attacks are
referred to as a type of attack in which an attacker deliberately manipulates the inputs to an
ML model by adding carefully crafted perturbations to them, which are often imperceptible
to humans.

The malicious samples obtained, more often referred to as Adversarial Examples (AEs),
can be used to cause an ML model to misclassify an input or to cause the model to classify
the provided samples with an arbitrary label according to the purpose of the attacker. To
minimize the impact of this type of attack in the ML models deployed in the TeraFlowSDN
controller, this work proposes a strategy to fortify ML models against AEs that consists of
crafting high-quality AEs that will be used later in the retraining of an ML model to fortify
it against AEs.

To produce AEs, the experiments rely on a realistic “black-box” setting where the
attacker only has access to the model output and has to design an attack without knowing
the model architecture or parameters or the training dataset used for model learning.
A very promising approach to elaborate AEs in a black-box environment is the use of
Generative Adversarial Networks (GANs). GANs have been shown to be capable of
generating data samples that are indistinguishable from real data samples when used for
training ML models [15].

In addition, GAN-based attacks (e.g., MalGAN [16] and AdvGAN [17]) have been
successfully applied to a variety of ML models. In order to generate high-quality AEs,
this work proposes, as a novelty, to significantly enhance the performance of the MalGAN
architecture using an activation function based on the Smirnov transformation that is added
in the output of the generator [18]. In sharp contrast with other solutions, our enhanced
MalGAN equipped with the new activation function allows us to generate high-quality
AEs, whose statistical distribution is very close to the real data but maintains good evasion
rates when input into the attacked ML models.

Appl. Sci. 2023, 13, 4914 4 of 33

1.1. Contributions

• This work proposes a novel and scalable architecture of distributed cybersecurity
components integrated within TeraFlowSDN, the open-source ETSI reference imple-
mentation for SDN controllers.

– The proposed design is integrated as a series of ML-based security components
into a microservice-based cloud-native SDN architecture. By using open and stan-
dardized interfaces (e.g., Protocol Buffers and gRPC), this solution allows an easy
interconnection, exchange and substitution of security components in a seamless
and modular way that does not impact the remainder of the components in the
controller. Furthermore, the standardized design of the proposed components is
general enough to be used by other ML-based components that the TeraFlowSDN
controller could require in the future.

– Contrary to other solutions that only offer either network attack detection or
mitigation solutions, our components offer a fully integrated pipeline, including
both of these actions.

• Existing energy optimization techniques were examined and compiled into a novel
set of 11 optimization strategies to reduce the energy consumption of deep neural
networks. These novel strategies were applied to the TeraFlowSDN ML-based attack
detectors without a noticeable negative impact on the models’ performance. This
allowed for a reduction in the average energy consumption by up to 83.30% with
minimum performance degradation.

• In order to protect TeraFlowSDN ML-based components against adversarial attacks,
this study proposes a new mechanism to generate high-quality adversarial examples
that can be used to retrain and fortify ML models. To this end, we present, as a novelty,
an extension of the MalGAN generative network equipped with a Smirnov Transform
in the generator network to produce adversarial examples that can fool ML models
but are still very close to real attack examples.

• Previous works have typically relied on outdated network traffic datasets, such as
the NSL-KDD dataset for training IDS. Our work makes use of 5G network traffic
generated in a new environment based on a fully virtualized 5G network that generates
realistic traffic reflecting current standards.

1.2. Paper Structure

The remainder of the manuscript is organized as follows. Section 2 provides an
overview of previous work related to the integration of ML-based IDS into SDN solutions.
Section 3 describes the setup of the cryptomining attack scenario selected as the use case and
provides a detailed description of how cryptomining attacks are performed and detected
as well as the mitigation strategy adopted to counter them. Section 4 shows the integration
of the Cybersecurity ML-based components into the TeraFlowSDN architecture describing
the components and their interfaces as well as the workflows implemented to integrate the
end-to-end attack detection and mitigation process into the TeraFlowSDN controller.

Section 5 describes the ML model used to integrate the cryptomining attack-detection
capability into TeraFlowSDN. In particular, it details the setup in Telefonica premises to
obtain the dataset used to train the model, the model architecture and the training and
evaluation procedures. Section 6 presents the results of the energy efficiency optimization
of the ML models and highlights the main trade-offs between performance and energy
efficiency. Section 7 shows how adversarial attack resilience is added to the ML-based
TeraFlowSDN cybersecurity components. Finally, in Section 8, our main conclusions and a
summary of the main findings of this work are presented along with a proposal for future
research and development in this field, highlighting the areas that require more attention
and exploration.

Appl. Sci. 2023, 13, 4914 5 of 33

2. Related Work

Since the introduction of the OpenFlow protocol [19] in 2008, many aspects of the field
of softwarization of telecommunication networks have evolved. SDNs decouple the control
and data plane so that they are managed by a centralized controller [20]. Since the SDN
controller has a global view of the network, it can access a variety of information from both
the network and the data plane. This centralization of information facilitates the creation of
Machine-Learning solutions in SDNs to make knowledge-based decisions in diverse areas
of networks.

In recent years, great efforts have been made in the industry to develop and inte-
grate automation and decision making in the network field. This has led to a variety of
applications of Machine Learning to solve different problems related to Software Defined
Networks (SDNs). For instance, some of these works [21] integrated Machine-Learning
techniques in SDNs to automate the traffic classification of slices. Others [22] used Deep-
Learning techniques, such as Long Short-Term Memory and Gated Recurrent Units to
predict network traffic, thus, allowing the SDN controller to predict and manage traffic
congestion by rerouting the flow to a path with more available bandwidth.

In [23], the authors showed how security vulnerabilities have been found in multiple
widely used SDN architectures, such as OpenDaylight (ODL) [24] and the Open Network
Operating System (ONOS) [25]. Among other security issues, tampering with network
information, service interruption and unauthorized access to system information have been
reported on SDN networks.

Previous works [5,6] have presented Network Intrusion Detection Systems (NIDS)
that use Snort to detect attacks in traffic and later apply specific countermeasures, such
as network reconfiguration. Although these tools may work in specific scenarios, Snort
is a signature-based detection system and is, therefore, not equipped to detect unknown
attacks or attack patterns outside of its ruleset. Furthermore, it has been shown that
rule-based heuristic methods, such as Snort, are not suitable for NIDS when dealing with
encrypted traffic [7].

The layer of encryption makes it difficult for Snort to inspect the contents of the packet,
and therefore, attackers can use this to bypass this detection method. This is a significant
problem as increasingly traffic is being encrypted, making it increasingly difficult for NIDS
to detect attacks. For that reason, this study focuses on deep-learning solutions as they
do not rely on packet inspection, and our training dataset includes both encrypted and
non-encrypted traffic to ensure that the extra layer of encryption will not prevent our
system from detecting malicious traffic.

The literature includes works where a deep analysis of the creation of a NIDS in
relation to an SDN can be observed [8]. The authors of this study performed a series of
tests on different Machine-Learning classifiers, such as Random Forest, Decision Trees
and XG-Boost, to find the best-performing algorithm to detect attacks. The experiments
were performed using the NSL-KDD dataset, which is a data-mining dataset containing
different traffic features with their corresponding tag that determines whether the traffic
is normal or part of an attack. This dataset also contains a variety of attacks, containing
Denial-of-Service, User-to-Root, Remote-to-Local and Probe attacks.

This paper achieved good results in the detection of attacks and their classification
but does not go into detail on how to proceed with these attacks. In contrast, our solution
offers a full pipeline of components that interact with each other within the SDN to stop
the attack connections from their source. Furthermore, even though the NSL-KDD dataset
is one of the most popular and complete IDS datasets, it still suffers from some of the
problems [9] that prevent it from being a perfect representative of existing real networks.
These excerpts from the KDD Cup 1999 dataset do not represent realistic traffic and do
not contain traffic belonging to 5G networks, such as in our study. In contrast, the traffic
that was used to train and test our models was generated in a fully virtualized 5G network
and represents normal and attack traffic faithfully according to the latest network traffic
patterns and encryption methods.

Appl. Sci. 2023, 13, 4914 6 of 33

Another work in the literature implements an NIDS to detect Distributed Denial-
of-Service (DDoS) attacks using an Openflow SDN controller [26]. Their method uses
Self-Organizing Maps and an unsupervised artificial neural network, which was trained
with standard and DDoS traffic generated by them to classify traffic. In their study, they also
focused on the lightweight nature of their method. Since they only used a small number of
relevant features, they achieved a lower overhead than traditional approaches based on the
KDD-99 dataset.

This study offers novelty in the selection of a small number of features and the creation
of a custom dataset to detect DDoS attacks. However, it does not include any type of
countermeasure once the attack has been detected. The purpose of NIDS in this study is
merely informative, since it alerts the system administrator of the predicted threat. This
research served as a seminal contribution to the field of Network Intrusion Detection (NID)
in Software-Defined Networking (SDN); however, despite its initial significance, its efficacy
as a detection system remains untested in light of recent developments, such as the advent
of 5G network traffic, which may have altered network traffic patterns.

Some works have focused on addressing attack mitigation in IoT networks by using
an SDN controller and previously assuming that the attacks have already been detected by
a NIDS present in an IoT system [27]. This study proposes the use of an in-system SDN
controller as a honeypot to isolate the attacker’s traffic. The purpose of this controller is
two-fold: to isolate the attacker and maintain a connection with them through network
spoofing and the use of phantom nodes. Network spoofing is a technique in which the
controller creates false network elements, such as fake IP addresses, to mislead the attacker.

Phantom nodes are network elements that do not actually exist but appear to be
present to the attacker. Using these techniques, the controller can maintain a connection
with the attacker while isolating their traffic in a quarantined environment. This allows
the controller to detect the attacker’s malicious activities without placing the actual system
at risk. This study presents an innovative approach to attack mitigation and the tracking
of malicious activity utilizing an SDN controller. However, it should be noted that the
study does not provide information on the initial step of attack detection and, therefore,
represents only part of the entire threat detection and prevention pipeline.

Other studies offer a complete pipeline of intrusion detection and attack mitigation in
different fields, for example, in the context of Industrial Healthcare Systems using an SDN
controller and Reinforcement Learning [10]. This paper follows the detection of attacks
on telecontrol equipment and systems in the medical field and tests a series of Machine-
Learning methods, including Logistic Regression, Random Forest, SVM and CART Decision
Tree Classifiers, which offer the best results against the TCP/IP network and device payload
flow statistics.

Once the attacks are classified, the cost of the attack is computed, and this information
is used to select an appropriate mitigation strategy. This work offers promising results
in the context of cyberattack detection and mitigation using Machine Learning in SDNs
but does not consider the possible vulnerabilities of the models to adversarial attacks. Our
work takes this concept one step further by evaluating the models against sophisticated
adversarial attacks techniques that could potentially mislead the Machine-Learning models
by introducing slight disturbances in the input features [11,12] making them resilient
against them.

Many recent works have highlighted the good results obtained by applying ML tech-
niques to NIDS, which achieved results of over 99.46% F1-score in DoS attack detection [28],
97.29% F1-score in DDoS attack detection [29] and over 99.95% F1-score detecting different
types of connection flooding [30]. All of these show the good applicability of DL techniques
for cyberattack detection. However, all of them fail to consider the energy needs of such
systems when scaled to the dimensions of telecommunication systems. Even though some
of them mention feature reduction to reduce model complexity [30], relating this to a faster
processing time, the studies, overall, do not offer other possible optimization strategies that
could make the models more energy-efficient and applicable to real-life traffic dimensions.

Appl. Sci. 2023, 13, 4914 7 of 33

In conclusion, after performing a thorough inspection of the literature, it is evident
that most works lack a complete pipeline of network attack detection and mitigation. Many
of the solutions focus only on one of the two components of a complete system and do so
in a case-specific way that does not make them applicable to other ML-based scenarios.
Furthermore, none of the previous SDN controller proposals (e.g., ODL, NOX and ONOS)
contemplated that IDS and its ML components that use industry standard protocols and
interfaces or that are integrated within their architecture by design as TeraFlowSDN does
with its components.

This lack can limit the scalability and flexibility of previous solutions, which is not
the case in TeraflowSDN, where the ML components can access the rest of the internal
components in a flexible and efficient way using the interfaces and protocols established
within the microservice-based architecture. In addition, to the best of our knowledge,
previous works lack information regarding two vital points.

On the one hand, they failed to analyse how the energy consumption impacts their
ML-based cybersecurity solutions, and they did not attempt to take any steps towards
making their ML models more energy efficient by applying optimization strategies. This is a
critical point, especially considering the scale of real-world telecommunication applications.
On the other hand, previous solutions that have applied ML towards the creation of NIDS
in SDN solutions failed to test the resilience of their models against novel adversarial
attacks, which could leave their systems vulnerable to false negatives by introducing small
perturbations in the input data.

Table 1 presents a summary of the primary findings and contributions of previous
studies in the research field that this article addresses. As demonstrated in the table, the
fortification of ML models against adversarial attacks has been largely overlooked in the
current literature. On the other hand, although there are some works that address the issue
of optimizing the energy efficiency of ML models in this context, these works are largely
speculative and lack experimental validation. Our proposal departs from related works
by addressing these two crucial issues by providing empirical evidence and experimental
validation of the proposed techniques.

The table also shows how, even though most of the proposed solutions base their
experiments on open-source SDN controllers, the availability of their code in most cases
is non-existent or limited to pseudo-code. This can hinder their applicability to other
problems and is a main distinguishing point in our proposal. In sharp contrast, the solution
proposed in this work is integrated in TeraFlowSDN (TFS) (an open-source controller with
publicly available code) and utilizes standardized interfaces to make it easily adaptable to
other ML problems in an SDN controller. The open nature and modularity of our approach
are key characteristics that distinguish it from previous proposals.

Appl. Sci. 2023, 13, 4914 8 of 33

Table 1. Comparative analysis of the contributions of the proposals related to our work.

Proposals Public Code SDN Controller
Used Dataset Attack Types NIDPS

Implementation
Detection
Method

Mitigation
Strategy

Energy
Efficiency

Optimization

Fortification
against

Adversarial
Attacks

Our work Yes TeraFlowSDN
(TFS)

Synthetic
Dataset

Cryptomining
Attacks Complete Deep Neural

Network

Drop packets of
detected attack

connections
Yes Yes

Xing et al. [5] No SDNIPS
controller

Synthetic
Dataset ICMP Complete Snort Network

reconfiguration No No

Chung et al. [6]
No

(Pseudo-code
available)

non-specified
controller

Synthetic
Dataset DDoS Complete Snort Countermeasure

pool No No

Alzahrani et al. [8] No POX SDN
controller NSL-KDD DDoS, PROBE,

R2L and U2R Only detection
Decision Tree,

Random Forest
and XGBoost

No No No

Radoglou–
Grammatikis

et al. [10]

No
(Pseudo-code

available)
Ryu controller

Custom IEC 60
870-5-104

dataset

IEC 60 870-5-104
cyberattacks Complete CART classifier

Security
strategies,

including asset
isolation

No No

Zhou et al. [11]
No

(Pseudo-code
available)

N/A UNSW-
SOSR2019

Hierarchical
Adversarial

Attack
NA N/A NA No No

Aiken et al. [12] Yes Faucet SDN
controller CICIDS dataset Adversarial

Attacks NA N/A NA No No

Perera et al. [21] No RYU Controller
P Network

Traffic Flows
(Kaggle)

NA None

K-Means, SVM,
Decision Trees
and Random

Forest

NA Limited No

Prabhavat et al. [22]
No

(Pseudo-code
available)

RYU Controller Synthetic
Dataset NA None

LSTM and
Gated Recurrent

Units
NA Limited No

Braga et al. [26] No NOX Controller Synthetic
Dataset DDoS Only detection Self-Organizing

Maps No No No

Appl. Sci. 2023, 13, 4914 9 of 33

Table 1. Cont.

Proposals Public Code SDN Controller
Used Dataset Attack Types NIDPS

Implementation
Detection
Method

Mitigation
Strategy

Energy
Efficiency

Optimization

Fortification
against

Adversarial
Attacks

Lin et al. [27] No

SDN-enabled
hardware

switches and
ONOS SDN
Controller

Synthetic
Dataset

IoT cyber
attacks Only mitigation N/A Honeypot traffic

rerouting No No

Kamel et al. [28] No No
implementation

DDOS-attack
SDN dataset DDoS Only detection Decision Trees No No No

Makuvaza et al. [29]
No

(Pseudo-code
available)

No
implementation CICIDS 2017 DDoS Only detection Deep Neural

Network No No No

Alzahrani et al. [30] No RYU Controller Synthetic
Dataset

Fin flood, UDP
flood, ICMP

flood, OS probe
scan, port probe

scan, TCP
bandwidth
flood and

TCPsynflood

Only detection

KNN, AdaBoost,
Decision Trees,
Random Forest,

Naïve Bayes,
Multilayer
Perceptron,
SVM and
XGBoost

No No No

Appl. Sci. 2023, 13, 4914 10 of 33

3. Cyberthreat Analysis and Protection Use Case

The scenario presented in this work introduces scalable and reliable security assess-
ment of the services established using the TeraFlowSDN controller. TeraFlowSDN is an
innovative open-source, cloud-native Software-Defined Networking (SDN) controller that
integrates with existing Network Function Virtualization (NFV) and Multi-Access Edge
Computing (MEC) frameworks and offers revolutionary capabilities for both service-level
flow management and the integration and management of the underlying network infras-
tructure, including transport network elements (optical and microwave links) and Internet
Protocol (IP) routers, while incorporating cybersecurity capabilities through ML and foren-
sics for multi-tenancy based on Distributed Ledgers.

3.1. Cyberthreat Analysis and Protection Scenario

The use case presented in this work demonstrates that novel approaches enabled by
Machine-Learning techniques allow TeraFlowSDN to cope with new cyber threats, such
as the detection of malicious encrypted traffic (e.g., cryptomining malware). Since the
detection and identification of malware network flows traversing the data plane cannot be
performed on a central ML-based component due to scalability issues and slow response
times, this work proposes the implementation of a distributed solution where ML compo-
nents are deployed on Point of Presence (PoP) nodes. To this end, a feature extractor is
deployed at the network edge to collect and summarize the packets. The flow statistics
aggregated by the feature extractor are sent to an ML classifier. Based on the real-time
identification of malicious flows, the ML model is able to report to the TeraFlowSDN
controller at scale to perform a security assessment.

The setup considered for this demonstration is illustrated in Figure 1. Assuming a
typical telecommunication MPLS-based network, a Level 3 Virtual Private Network (VPN)
service (L3VPN) is deployed using the TeraFlowSDN controller. The controller activates this
service using provisioned templates over the standardized Internet Engineering Task Force
(IETF) Network Configuration Protocol (NETCONF) South-Bound Interface against the
different Provider Edge (PE) routers from the ADVA manufacturer. In this demonstration, a
traffic generator, emulating a branch office, is connected to one PE to replay a mix of normal
traffic with cryptomining malware activity. The second PE, the central office, provides
internet access offered by the L3VPN service and leverage by the malware. This specific
malicious traffic is represented as a red dashed line in Figure 1.

Figure 1. Global overview of the cyber threat analysis and protection process [31].

As part of the VPN provisioning process, a request for mirroring only the traffic
in the logical interfaces that conform to the L3VPN is also included to copy the traffic
towards a logical component co-located to the ADVA (grey dash-dot-dot line in Figure 1).
This distributed component (detailed in Section 4.2.1 as the Distributed Attack Detector)
will extract and calculate statistical features from network flows to be delivered to the
TeraFlowSDN controller for further processing.

Appl. Sci. 2023, 13, 4914 11 of 33

The Cybersecurity TeraFlow NetApp component identifies the attack as a cryptomin-
ing activity and proposes a mitigation solution to the TeraFlow Core components, which
triggers the mitigation. This mitigation is instantiated (the green dash-dot line in Figure 1)
as a new customized Access Control List (ACL) rule in the ADVA router with specific
parameters (the protocol identifier (Transmission Control Protocol), destination IP address
and destination port). Figure 1 shows an additional branch office to represent multisite
L3VPN functionality where the same rule can be enforced in additional PE routers, thus,
providing protection to all offices of the L3VPN client.

3.2. Cryptomining Attack Detection

One of the most prevalent contemporary networking threats is the misuse of com-
puting resources for cryptomining attacks. As described in [7], cryptomining entails the
validation of transactions on a decentralized cryptocurrency blockchain. A cryptomining
attack involves the creation of a botnet, which consists of compromised devices that act as
miners to validate transactions and earn digital currency rewards, such as Ethereum (ETH)
and Monero (XMR), for the attacker.

The attacker may exploit devices already infected with malware or infect new devices
to enlist their resources to create the botnet for cryptomining. The attacker may use
various methods, such as spreading malicious links on social networks, phishing attacks,
and disseminating malicious applications, to infect devices.

Additionally, the attacker must choose the cryptocurrency to mine and the cryptomin-
ing pool to join to validate transactions. A mining pool is a service that enables miners to
pool their resources to validate transaction blocks and receive rewards. After obtaining all
the necessary components, the attacker can establish the botnet to mine cryptocurrencies
for their gain.

According to [32], the network is the most effective place to detect cryptomining
traffic promptly and accurately. However, detecting such activity on the network can be
challenging due to encryption methods that protect the payload and obscure its contents.
For instance, attackers can leverage the Secure Sockets Layer/Transport Layer Security
(SSL/TLS) encryption protocol to conceal the cryptomining protocol within the encrypted
communication’s payload. This renders traditional techniques, such as Deep Packet In-
spection (DPI) or Cryptomining Pool Domain Name Identification (in the case of using
Server Name Indication (SNI) or web proxies) ineffective in detecting cryptomining activ-
ity in current networks. Consequently, more advanced techniques are required to equip
cybersecurity professionals to deal with these real-world situations.

To address these challenges, ML techniques can be employed to train models that
accurately identify the presence of cryptomining traffic in real time, even when encrypted,
by leveraging network and transport-level data-flow characteristics [32]. Accordingly,
in this study, an ML model was trained using a substantial set of network features de-
rived from network flow statistics to detect cryptomining activity for both encrypted and
unencrypted links with a high degree of accuracy. This ML model forms part of the Cyber-
security TeraFlowSDN NetApp, which enables the detection of cryptomining traffic in the
network’s data plane in real time, thereby facilitating appropriate remediation measures to
safeguard the network.

4. Integration of an ML-Based Cybersecurity Detector and Mitigator in the
TeraflowSDN Controller

In this section, first, we provide a brief overview of the TeraFlowSDN architecture.
Then, we discuss the integration of the ML-based cybersecurity detector and mitigator
in the TeraFlowSDN architecture. Finally, we present the workflows of the proposed
integrated system for detecting and mitigating cyber-attacks in TeraFlowSDN networks.

Appl. Sci. 2023, 13, 4914 12 of 33

4.1. TeraFlowSDN Architecture

TeraFlowSDN is an open-source, cloud-native reference implementation for Software-
Defined Networking (SDN) controllers that has been endorsed and sponsored by the
European Telecommunications Standards Institute (ETSI) to support high-capacity IP and
optical networks and to provide a toolbox for experimentation with innovative network
technologies and use cases beyond 5G. ETSI is a pre-eminent non-profit organization that
specializes in the development and publication of global standards for Information and
Communication Technologies (ICT).

TeraFlowSDN is a collaborative effort of the Open Source Group TeraFlowSDN (OSG
TFS), a dedicated working group within ETSI focused on the development of TeraFlowSDN
to provide a comprehensive set of tools and platforms for the rapid prototyping and
experimentation of novel network technologies and use cases. OSG TFS builds upon
the results of the EU-funded TeraFlow 5G PPP research project and has developed a mi-
croservices architecture that is designed to facilitate network transformation. The software
platform provides support for features, such as flow aggregation, management, network
equipment integration, AI/ML-based security and forensic evidence for multi-tenancy.
The software will also be a valuable tool for research projects and ETSI groups working on
network transformation.

The software platform will be instrumental in addressing the challenges of autonomous
networks and cybersecurity, which are prevalent in the telecommunications industry. Addi-
tionally, the software will be beneficial to several ETSI industry specification groups that are
focused on network transformation and will facilitate the integration of existing Network
Functions Virtualization (NFV) and Multi-Access Edge Computing (MEC) frameworks.
Furthermore, the software is designed to interoperate with the ETSI Open Source MANO
(OSM) platform.

TeraFlowSDN also strives to gain support and foster collaboration with existing and
future research projects in the 5G PPP and the Smart Grid and Services Joint Undertaking
(SNS JU) domains. The TeraFlowSDN source code is publicly accessible in the repository
(https://labs.etsi.org/rep/tfs/controller, accessed on 5 April 2023) under the Apache
2.0 license, making it accessible and available to a wide range of stakeholders in the
ICT industry.

The TeraFlowSDN controller architecture consists of stateless microservices interacting
with each other to fulfil network management tasks in addition to a few stateful microser-
vices responsible for keeping the state of the network. TeraFlowSDN relies on Kubernetes
to handle the containers supporting the microservices. Kubernetes is a state-of-the-art
container orchestrator that provides a broad set of management capabilities and can operate
geographically distributed infrastructures.

Figure 2 shows the proposed microservice-based architecture. Following the design
principles from cloud-native applications, each component is implemented as a microser-
vice that is able to export a set of Remote Procedure Call (RPC) services to other components.
Each microservice can be instantiated once or with multiple replicas, which allows the
application of load-balancing techniques. By adopting stateless microservices, requests can
be handled by any replica of the microservice.

Load balancing works by establishing an endpoint that will receive all the requests
for a service. The endpoint acts as a load balancer by delegating each request to one of
the replicas of the service. The load balancer is also responsible for keeping track of the
replicas, i.e., tracking the addition and deletion of replicas and updating its internal list
of replicas. Depending on the RPC implementation adopted, the built-in Kubernetes load
balancer may be used, or an external one may be adopted. Each replica is composed of a
pod, i.e., a collection of containers that are managed by Kubernetes as a single entity.

The Context component stores the network configuration (e.g., the topologies, devices,
links and services) and its status as managed by the TeraFlowSDN components in a No-SQL
database to optimize concurrent access. Internally, it implements a database API enabling
switching between different backends. The TeraFlowSDN controller uses its North-Bound

https://labs.etsi.org/rep/tfs/controller

Appl. Sci. 2023, 13, 4914 13 of 33

Interface (NBI) component (previously known as Compute) to receive Layer 2 Virtual
Private Network (L2VPN) requests and convert them to necessary connectivity services or
Transport Network Slices via the Slice and Service components.

The Service component is responsible for selecting, configuring and deploying the
requested connectivity service through the South-Bound Interface (SBI). To this end, the SBI
component interacts with the network equipment through pluggable drivers. In addi-
tion, a Driver Application Programming Interface (API) has been defined to facilitate the
addition of new network protocols and data models to the SBI component. The Automa-
tion component implements several Event Condition Action (ECA) loops to define the
automation procedures in the network.

Monitoring manages the different metrics configured for the network equipment
and services, stores monitoring data related to selected Key Performance Indicators (KPI)
and provides the means for other components to access the collected data. Internally,
the Monitoring component relies on a database to store the monitoring data as a time
series, exploiting its powerful querying and aggregation mechanisms for retrieving the
collected data.

Figure 2. TeraFlowSDN architecture [33].

The North-Bound Interface (NBI) component serves as the interface for internal gRPC
(gRPC Remote Procedure Call) and protocol buffers towards external Representational State
Transfer (REST)-like requests. It provides a Representational State Transfer API (REST-API)
that is based on NBI external systems, such as Network Function Virtualization (NFV)
and Multi-Access Edge Computing (MEC) frameworks. Another component included is
a Web-Based User Interface (WebUI) that uses the gRPC-based interfaces made available
by the TeraFlowSDN components to inspect the network state and to issue operational
requests to the TeraFlowSDN components.

TeraFlowSDN provides extended and validated support for OpenConfig-based routers
and interaction with optical SDN controllers through the Open Networking Foundation
(ONF) Transport API (TAPI). Moreover, TeraFlowSDN release 2 includes complete inte-
gration for microwave network elements (through the Internet Engineering Task Force
(IETF) network topology YANG model) and Point-to-Multipoint integration of XR optical
transceivers and P4 routers. New features for P4 routers include loading a P4 pipeline
on a given P4 switch, obtaining runtime information (i.e., flow tables) from the P4 switch
and pushing runtime entries into the P4 switch pipeline, thus, allowing total usage of the
P4 switches.

Appl. Sci. 2023, 13, 4914 14 of 33

Cybersecurity components are integrated in the architecture for attack detection (either
distributed or centralized) and mitigation in order to protect the network from known
and unknown cyberthreats at the IP and optical levels. The integration of the IP layer
cybersecurity components is described in detail in the next section.

4.2. Integration of the Cybersecurity Components in the TeraFlowSDN Architecture

The TeraFlowSDN controller utilizes a robust cybersecurity framework to protect the
network from potential cyberthreats that could compromise the integrity or performance
of the network. The Cybersecurity NetApp, consisting of three main modules, is focused
on detecting and mitigating network attacks to ensure seamless and secure functioning.

This section delves into the details of the different components that compose the
cybersecurity framework and how they cooperate to provide a continuous assessment of
the security status of IP services on the network. The Cybersecurity NetApp focuses on the
capture, identification and mitigation of network threats, implementing a protection layer
that is crucial for the correct functionality that SDN controllers need to provide.

The Cybersecurity NetApp includes two core centralized components, the Centralized
Attack Detector and the Attack Mitigator, along with a distributed component, the Dis-
tributed Attack Detector, to be placed at a remote site (e.g., a Point of Presence (PoP) node).
The distributed attack detection and mitigation workflow provides TeraFlowSDN with
a continuous assessment of the security status of IP services. Figure 3 depicts the three
cybersecurity and other core components that live in the TeraFlowSDN controller and
how they are connected together to implement the end-to-end cyber threat analysis and
mitigation process in the network.

Figure 3. Cybersecurity component architecture.

4.2.1. Distributed Attack Detector

The Distributed Attack Detector (DAD) component monitors the network data plane
for the presence of malicious network flows by receiving IP traffic from co-located packet
processors. The DAD is deployed at the edge of the network (e.g., at the central office
or edge data centre) to improve the scalability and response time in the attack-detection
process and enable the real-time detection of malicious traffic. For this purpose, a packet
processor is used to generate statistical summaries of the network flows by aggregating
packets into flow-level statistics, where each flow is an aggregate of packets belonging to

Appl. Sci. 2023, 13, 4914 15 of 33

the same packet flow (same source IP address, source port, destination IP address and
destination port).

This approach of sending summary statistical characteristics of monitored traffic to the
CAD also favours scalability, as it eliminates the need to send full traffic information to the
centralized controller. Monitoring traffic at the IP layer is expected to use a considerable
amount of bandwidth between the packet processors and the DAD, but avoiding the
transmission of huge amounts of telemetry to the TeraFlowSDN controller is a major
improvement in terms of preserving the network bandwidth to the controller and, therefore,
improving the scalability. In addition, processing traffic at the edge of the network allows
for reduced delays in the attack-detection process.

Unlike the other components, the DAD does not expose a gRPC server but rather
runs a script to obtain and process network traffic. In the current deployment, the packet
processor is emulated by re-injecting network packets previously stored in a PCAP file
using tcpreply, which is a standard tool available on Linux systems. The injected packets are
processed with the Tstat [34] tool to generate statistical summaries of the network flows by
aggregating all new packets arriving within a specific time window that can be configured.

In addition, Tstat obtains additional information about the status of the connection
and stores this information in the log file. The DAD continuously reads the information
generated from this log file, processes it to extract the information in a structured way and
adjusts it to apply the gRPC message format expected by the CAD. Once this is completed,
the DAD communicates with the CAD to send this information.

In the current implementation, it uses unary gRPC messages to report the traffic
monitoring summary information collected by Tstat to the Centralized Attack Detector
component, which makes inferences with the ML model to detect IP-level attacks. In later
versions, flow messages will be implemented to avoid the delay limitations that can occur
with current unary messages.

4.2.2. Centralized Attack Detector

The Centralized Attack Detector (CAD) component provides IP-layer attack-detection
capabilities and a consolidated attack-detection mechanism based on DAD reports. The CAD
consolidates information collected from multiple instances of the DAD. This allows for
the monitoring of malicious network traffic while forming a view of the security status of
IP traffic. The CAD stores the information it receives from multiple instances of the DAD
within a certain time interval, and this can be parameterized in a buffer. From the sum-
marized traffic statistics received from the different instances of the DAD, this component
performs attack detection using an embedded ML model.

After the configured time interval elapses, the ML model classifies each connection
in the buffer as normal traffic or as part of an attack, and a confidence level decision is
derived. From this inference, the CAD produces a description of the connection, including
a confidence value indicating the probability that the connection is an attack or normal
traffic. If a connection is detected to be part of an attack with a confidence level at or above
a configurable threshold, the CAD notifies the Attack Mitigator component with the attack
description, providing a full characterization of the attack properties and other relevant
information to perform an attack-mitigation strategy.

In the current implementation, the ML model used is the Random Forest model that
was previously converted and stored in the ONNX (Open Neural Network Exchange)
format. This format allows the embedding of a compiled model with an optimized graph
that can reduce the overall size of a model, speed up the prediction inference time and
reduce the use of computing resources.

In addition, security monitoring cycles are run periodically with a configurable time
interval to collect Key Performance Indicators (KPIs) that provide an overview of the
security status of the network. This information is stored in a database for further anal-
ysis and security audits. In addition, these KPIs are displayed on a Grafana dashboard

Appl. Sci. 2023, 13, 4914 16 of 33

to provide the network administrators with a real-time view of the current state of the
network cybersecurity.

4.2.3. Attack Mitigator

The Attack Mitigator (AM) component is responsible for computing viable attack-
remediation solutions to prevent the execution of attacks identified by the CAD component.
Upon receiving an attack notification, the role of the AM component is to instruct certain
core components of TeraFlowSDN to enforce appropriate actions that can mitigate the
attacks detected on the network.

For example, in the case of detecting a cryptomining attack, the AM component
communicates with the Service component, which is responsible for managing the services
that are running on the TeraFlowSDN controller, to update the configuration of the service
on which the attack has been detected in order to implement a new ACL rule to block
the malign connection. This ACL rule is then configured by the Device component in the
network devices through the standardized OpenConfig protocol over the South-Bound
Interface. In particular, the ACL rule is configured in the ingress interface of the device
located at the edge of the network (see Figure 1).

In its current state, the AM component possesses only one mitigation strategy, which
consists of adding an ACL rule to the corresponding router that blocks traffic from a
specific source that has been classified as an attack. The plan is to evolve this component
in the future to add more complex functionalities and different network-aware mitigation
strategies. For example, before deciding to permanently block a source, a module could
be added to assess the severity of the threat or the confidence that the traffic is an attack.
If the potential attack is classified as having low confidence or a small impact, the AM
component could wait to receive more alerts corresponding to that source to activate any
countermeasures or could activate less severe strategies. The AM could, for instance,
consider the risk level to add a timer to the instruction to block traffic and allow it to expire
in a certain amount of time.

In addition to this, several interesting mitigation strategies that could be integrated
into the AM have been studied in previous works [35]. One of the strategies is threat-based
routing in which traffic that is classified as an attack can be redirected through the path
with the least-utilized links in terms of bandwidth consumption. This would allow traffic
to still reach its destination through a longer route but would minimize the impact on
standard traffic.

This solution is very forgiving of false positives and could be a good alternative for
attacks classified as low impact or with low confidence in classification. Other solutions
proposed by the study are to assign long timeouts to the flows detected as malicious and
to aggregate them to occupy the least amount of space in the TCAM (Ternary Content
Addressable Memory) tables, thus, reducing the communication from component to com-
ponent. Another possible mitigation would be to redirect potentially harmful traffic to a
separate component that monitors the traffic more closely to ensure that it is not harmful.

The isolation of traffic from the central system was also proposed as an effective
mitigation strategy in another study [27], where an in-system SDN controller acted as a
honeypot to isolate the attacker’s traffic. That study used a separate controller to protect the
system while maintaining the connection with the attacker and to mislead them through
network spoofing to gather more data about their intentions. Obtaining more information
about possible attacks could help develop better security measures in the future.

In summary, although the current implementation of the AM would protect the system
against detected attacks by blocking the traffic from the source on the router, the compo-
nent is still a work in progress, and it is expected to evolve with new functionalities
that help it adapt to the context and information of the attack with an array of complex
mitigation strategies.

Appl. Sci. 2023, 13, 4914 17 of 33

4.3. Attack Detection and Mitigation Workflows

This section presents the main workflows that illustrate how the Cybersecurity Ne-
tApp interacts with other TeraFlowSDN core components to implement the detection and
mitigation of network attacks at the IP layer.

When a new service is created on TeraFlowSDN, the Cybersecurity NetApp communi-
cates with the core components during the different stages of the process. The Cybersecurity
NetApp starts by subscribing to service events from the Context component during start-up.
When a service request is received, the service setup stage is triggered, which involves
changes to several components of TeraFlowSDN. The service identifier is then returned to
the customer who requested the service. The KPI setup stage then starts with the Context
component notifying the Cybersecurity NetApp about the new service.

The Cybersecurity NetApp will then begin performing the attack detection and mitiga-
tion process on the service and tracking relevant KPIs through the Monitoring component.
To implement the detection and mitigation of network IP-level attacks, four workflows
were created with each workflow focusing on a specific part of the system.

The first workflow focuses on the DAD component and covers the process of collecting
traffic statistics from IP-level traffic and reporting to the CAD component. The second
workflow focuses on the CAD component and covers the process of processing the traffic
statistics reported by the DAD component and making inferences with the ML model to
detect IP-level attacks. The third workflow focuses on the AM component and covers
the process of computing attack-remediation solutions in response to attack notifications
from the CAD component. Finally, the fourth workflow focuses on the monitoring of
cybersecurity KPIs and covers the process of collecting and storing KPIs related to the
security status in the network.

4.3.1. Workflow 1—Capture and Label Traffic at the Edge of the Network

The DAD component workflow is specified in Figure 4. First, the DAD component
requests the features that serve as input to the ML model in the CAD component via an
RCP method to this same component. The DAD stores the list of these features in a local
variable. The DAD then communicates via RCP methods with the Context component in
order to obtain the service_id and endpoint_id attributes so that the connection is traceable in
the TeraFlowSDN System and the mitigation strategies can later be implemented on the
correct devices.

Figure 4. Distributed Attack Detector component workflow.

After the traffic is received in the machine where a DAD instance is deployed, it is
grouped into flow-level statistics using the Tstat tool. The DAD component selects the

Appl. Sci. 2023, 13, 4914 18 of 33

appropriate features that will later serve as input for the ML model using the local list of
these features as a guide. Once all of these features and the connection data are grouped into
a L3CentralizedattackdetectorMetrics object, this object is sent via the RCP method SendInput
to the CAD.

4.3.2. Workflow 2—Detect Cryptomining Malware Connections Using Supervised ML

As described in Figure 5, the CAD component receives and stores flow statistics in the
form of L3CentralizedattackdetectorMetrics objects. It then calls a function with these objects
as the parameters to perform inference with the ML model using these objects as input
features. As a result, the ML model classifies the statistics contained in each of these objects
as either belonging or not belonging to a crypto-mining attack. If the statistics belonging to
a particular flow are classified as a cryptomining attack, the SendOutput RCP method is
called and sends the confidence score and the result of the attack classification to the AM,
together with the corresponding flow information (source and destination IP address and
port, protocol, service_id, etc.) in an L3AttackmitigatorOutput object.

Figure 5. Centralized Attack Detector component workflow.

4.3.3. Workflow 3—Mitigate Detected Cryptomining Attacks

The workflow of the AM component is given in Figure 6. In this diagram, it can be seen
that, after the component receives the connection data belonging to a cryptomining attack,
it creates a mitigation strategy. At the moment, this strategy consists of creating an ACL
rule to drop the traffic belonging to that particular connection. AM then communicates with
the Context component to receive the instance representing the service where the attack
was detected (i.e., the service specified by the service_id contained in the flow information).
After receiving the service object, the ComposeMitigation method is responsible for adding
the new ACL rule to drop the traffic belonging to the flagged connection.

After calling the RCP method UpdateService with the modified service instance, the Ser-
vice component propagates the newly created configuration rule to the Device component,
which is responsible for incorporating the ACL rule in the corresponding router using the
OpenConfig protocol to drop the malign connection, thus, completing the implementation
of the current mitigation strategy.

Appl. Sci. 2023, 13, 4914 19 of 33

Figure 6. Attack Mitigator component workflow.

4.3.4. Workflow 4—Monitor Relevant Cybersecurity-Related Key Performance Indicators

CAD monitors five relevant KPIs for each active service. Below, the cybersecurity KPIs
that are observed and recorded and their associated KPI sample type are listed:

• Cryptomining detector confidence in security status over the last time interval (KPI
ML CONF).

• Security status against cryptomining attacks of the service in a time interval (KPI L3
CRYPTO SECURITY STATUS).

• Number of attack connections detected in a time interval (KPI UNIQUE ATTACK CONNS).
• Number of unique compromised clients of the service in a time interval (KPI UNIQUE

COMPROMISED CLIENTS).
• Number of unique attackers of the service in a time interval (KPI UNIQUE ATTACKERS).

The values of KPI L3 ML CONFIDENCE are collected for predictions that take place
during a specific time interval (e.g., 5 s). This is performed separately for predictions that
correspond to an attack and predictions that correspond to normal traffic. At the end of
each time interval, the values of both lists are aggregated independently to calculate the
average. If an attack connection occurred during that time interval, the average confidence
of the predictions corresponding to an attack is sent to the Monitoring component as KPI
L3 ML CONFIDENCE with “1” as the KPI L3 SECURITY STATUS SERVICE.

Otherwise, the average confidence of the predictions corresponding to normal traffic
is sent to the Monitoring component as KPI L3 ML CONFIDENCE with “0” as the KPI L3
SECURITY STATUS SERVICE. The KPI L3 UNIQUE ATTACK CONNS counts the number
of unique attack connections that were detected in each time interval. As with the previous
KPIs, these values are collected during each time interval. Once the interval is over,
these values are aggregated and sent to the monitoring component. Note that the packet
aggregator running in the DAD component aggregates the new packets from the same
connections as soon as they are received, and the characteristics are sent to the ML model.

For this reason, if subsequent packets are received from the same connections, the DAD
will produce new statistics that the ML model will also ingest. For this reason, connec-
tions may be detected as an attack more than once. However, in KPI L3 UNIQUE ATTACK
CONNS, these repeated connections will only be counted as one. Similar to KPI L3 UNIQUE
ATTACK CONNS, KPI UNIQUE COMPROMISED CLIENTS measures the number of com-

Appl. Sci. 2023, 13, 4914 20 of 33

promised cryptocurrency clients in each time interval by counting the number of flows that
correspond to the same source IP.

On the other hand, KPI UNIQUE ATTACKERS measures the number of unique at-
tackers in each time interval by counting the number of flows that correspond to the
same destination IP. KPI L3 UNIQUE ATTACK CONNS provides a measure of the inten-
sity with which compromised clients attack the network. KPI UNIQUE COMPROMISED
CLIENTS and KPI UNIQUE ATTACKERS extend this information by revealing the scale of
the compromised network and quantifying how many attackers are involved in attacking
the network.

CAD creates these KPIs at launch time by registering KpiRequest for each KPI through
the Monitoring client and thereby requesting the Monitoring service process to create and
add them to the Management DB as depicted in Figure 7. For each KpiRequest, a KpiDescrip-
tor is provided that includes the service information, device and endpoint identifiers as well
as the description and KPI sample type of each KPI. Once successfully created, the KPIs can
be effectively monitored by sending samples to the Monitoring service via the RPC method
IncludeKpi. As each sample is received by the Monitoring service, they are inserted into the
QuestDB database, which collects the TeraFlowSDN metrics to be accessible through the
Grafana dashboard, where they are displayed in a linear time-series representation.

Figure 7. Monitoring component workflow.

5. Analysis of the Attack Detector

In this section, we describe, in detail, the ML model that we trained for the task of
detecting cryptomining attacks in the CAD component. First, we describe the setup that
we used to collect the data used to train the model. Next, we present the structure of the
model and the procedure that was followed to train it. Finally, we evaluate the model using
several standard performance metrics.

5.1. Cryptomining Dataset Creation and Traffic Labelling

It is common for other works to make use of the NSL-KDD dataset, which is a data-
mining dataset containing different traffic features with their corresponding tag that de-
termines whether the traffic is normal or part of an attack. The dataset contains a variety
of attacks, containing Denial-of-Service, User-to-Root, Remote-to-Local and Probe attacks.
Even though the NSL-KDD dataset is one of the most popular and complete IDS datasets, it
still suffers from some problems [9] and is, therefore, not a perfect representative of existing
real networks.

Appl. Sci. 2023, 13, 4914 21 of 33

In contrast to these excerpts from the KDD Cup 1999 dataset that do not represent
realistic traffic, all of our experiments and the training of our models were performed
using 5G network traffic generated in a real environment based on a fully virtualized 5G
network [7]. This environment allowed us to emulate real 5G traffic in a controlled way that
was on demand and to take into account this new standard that had not been considered in
most of the solutions proposed in the past.

The dataset that was used to train the model that will serve as a target in the demon-
stration of the proposed methodology was developed for the precise task of detecting
cryptomining attacks [32]. This dataset was generated in the Mouseworld lab [36], an open
lab for 5G experimentation that provides Network Digital Twin emulation capabilities [37]
and is located at the Telefonica I+D premises.

This emulation environment allowed us to configure and execute specific attacks
mixed with normal traffic (e.g., web, file hosting and streaming) by instantiating virtual
machines that deployed normal traffic and specific attack clients connected to real servers
located at different points on the internet. In this way, the Mouseworld lab can be used
to set up and emulate attack scenarios in a controlled way and to generate and collect, in
a PCAP file, all packets of the attack and normal traffic to be used later for the training
and testing of ML algorithms. One key feature of the Mouseworld Lab is the repeatability
capacity, which allows us to evaluate different mitigation tools or versions under the same
conditions and using similar statistical patterns.

The data that were collected for our study in the Mouseworld lab contain traffic
samples represented by a set of flow (TCP connection) statistics derived from network
packets using the Tstat tool. The statistics of a TCP connection were calculated periodically
(at fixed intervals or when a new burst of packets was received), resulting in many different
examples in the dataset for the same flow representing the state of the connection over its
lifetime. This traffic data was labelled to create the dataset that was used to train and test
the cryptomining detector.

In particular, two types of traffic can be found in the dataset, samples corresponding
to normal traffic and samples corresponding to cryptomining attacks. In this case, each
sample of the dataset was tagged as either 0 (normal traffic) or 1 (cryptomining attack
traffic) using the IPs and ports of the known attack connections.

5.2. Training of the Machine-Learning Model for Cryptomining Detection

The architecture employed to implement the model for the task of cryptomining
detection utilized a Fully Connected Neural Network (FCNN) architecture. This approach
accurately predicts the labels of the dataset with a high degree of accuracy. This architecture
was chosen based on its superior performance in the context of the cryptomining attack
as demonstrated in a previous study that performed an exhaustive comparison with other
similar techniques [32].

The TensorFlow library was used to train a FCNN-based classifier to predict whether
a connection corresponded to cryptomining activity or not according to all features derived
from Tstat statistics except for the IPs and ports, which were used only to label the dataset
(class labels). Note that source and destination IPs and ports can be easily changed by the
attacker; therefore, they do not provide significant information to the ML-based detector.

The structure of the FCNN model is specified below. In particular, the model consists
of a stack of three fully connected layers with 20, 30 and 10 neurons with ReLU activation
followed by a fully connected layer with two neurons and SoftMax activation as output
layer. The training hyperparameters are as follows: a batch size of 4096 and the Adam
optimizer with a learning rate of 0.001. Furthermore, the early stopping technique is used
to automatically terminate the training process if the validation loss does not improve for
20 epochs, restoring the model weights to those obtained in the epoch with the lowest
validation loss after training is complete. For the validation procedure, 20% of the training
data are reserved for the validation split. Finally, as a loss function, the categorical cross-
entropy function is used.

Appl. Sci. 2023, 13, 4914 22 of 33

During the experimentation, it was observed that, although the model’s accuracy
using all available features was high, a considerable number of these features did not
significantly contribute to the predictive performance. Therefore, in order to enhance the
training efficiency and model inference, a random selection of the most commonly utilized
features was made. This resulted in a reduction of the required input to ten features while
maintaining a high F1 Score (>95%). The selected features are enumerated in Table 2, where
it is worth noting that, if a feature has a CS (Client–Server) and SC (Server–Client) identifier,
it is because it has been measured in both directions. On the other hand, if a feature has
only one identifier, it is because it has been measured in the direction indicated by the
identifier type (CS or SC).

Table 2. Selected features of the Crypto dataset to train the baseline model.

CS ID SC ID Name Type Description

13 27 SYN count Numeric Number of SYN segments observed (including rtx).

- 90 window scale - Scaling values negotiated [scale factor]

70 - MSS Bytes MSS declared

71 94 max seg size Bytes Maximum segment size observed

72 95 min seg size Bytes Minimum segment size observed

73 96 win max Bytes Maximum receiver window announced (already scaled by the
window scale factor)

74 97 win min Bytes Minimum receiver window announced (already scaled by the
window scale factor)

76 99 cwin max Bytes

Maximum in-flight-size computed as the difference between
the largest sequence number so far, and the corresponding last
ACK message on the reverse path. It is an estimate of the
congestion window

77 100 cwin min Bytes Minimum in-flight-size

78 - initial cwin Bytes First in-flight size, or total number of unack-ed bytes sent
before receiving the first ACK segment

CS: Client to server traffic. SC: Server to client traffic.

Additionally, to ensure that one variable did not dominate the results due to its scale,
all data underwent standardization to achieve a mean of 0 and a standard deviation of 1.
This standardization greatly improved the results obtained from the FCNN model.

5.3. Performance Evaluation of the Machine-Learning Model for Cryptomining Detection

Once trained, the model was evaluated in an offline fashion. For this purpose, a test
dataset representing 20% of a reserved portion of the total dataset that was never used for
model training was first selected, and then inference was run on it. The performance of the
model was then evaluated by comparing the predicted results with the actual labels in the
data. The metrics used to measure the model performance include the well-known metrics
of the Precision, Balanced Accuracy, F1 Score and Confusion Matrix. Balanced Precision
was incorporated among the evaluation metrics to account for the imbalances that exist
in the dataset. A brief explanation of the metrics used and other relevant definitions is
provided in the following.

• True Negative (TN): number of cases in which the model correctly predicted a nega-
tive outcome. The True Negative Rate (TNR) measures the rate of negative outcomes
that were correctly predicted as negative.

• False Positive (FP): the number of cases in which the model incorrectly predicted a
positive outcome. The False Positive Rate (FPR) measures the rate of negative samples
that were mislabelled as positives.

Appl. Sci. 2023, 13, 4914 23 of 33

• False Negative (FN): the number of cases in which the model incorrectly predicted
a negative outcome. The False Negative Rate (FNR) measures the rate of positive
samples that were mislabelled as negative.

• True Positive (TP): the number of cases in which the model correctly predicted a
positive outcome. The True Positive Rate (TPR) measures the rate of positive samples
that were correctly labelled as positive.

• Accuracy: the rate of correct predictions made by the model. It is calculated by taking
the ratio of True Positives and True Negatives to the total number of predictions.
The formula is given by: Accuracy = (TP + TN)/(TP + TN + FP + FN).

• Balanced Accuracy: the Accuracy of the model in predicting both positive and neg-
ative classes. The formula is given by: Balanced Accuracy = (TP/P + TN/N)/2,
where P is the total number of positive examples and N is the total number of
negative examples.

• Precision: the True Positive Rate of all positive predictions made by the model. The for-
mula is as follows: Precision = (TP)/(TP + FP).

• Recall: the true positive rate of all True Positive examples in the dataset. The formula
is as follows: Recall = (TP)/(TP + FN).

• F1 Score: it is calculated by taking the harmonic mean of the Precision and Recall.
The formula is given by: F1 Score = 2 × (Precision × Recall)/(Precision + Recall).

• Confusion Matrix: The Confusion Matrix (Figure 8) is a visual representation of the
model’s performance and is used to analyse the model’s ability to correctly classify
the data into different classes.

The results of the evaluation are shown below.

• Accuracy: 0.99996.
• Balanced Accuracy: 0.99543.
• Precision: 0.99998.
• Recall: 0.99543.
• F1 Score: 0.99541.

From the evaluation results, it can be seen that the FCNN model achieved excellent
performance with an Accuracy of 0.99996, a Balanced Accuracy of 0.99543, a Precision of
0.99998, a Recall of 0.99543 and an F1 Score of 0.99541. This shows that the model is capable
of accurately predicting the labels of the dataset with a high degree of accuracy.

Figure 8. Confusion matrix showing the results of a classification model and comparing the actual
values to the predicted outcomes. The table displays the number of True Positives, True Negatives,
False Positives and False Negatives.

Appl. Sci. 2023, 13, 4914 24 of 33

6. Energy Efficiency

In this section, an evaluation of the energy efficiency optimization of the DNN model
deployed in the CAD component responsible for the cryptomining detection task is pro-
vided. We present a comparison of the energy efficiency achieved with a set of 11 opti-
mization strategies that we designed combining different state-of-the-art techniques. Then,
we discuss the energy efficiency trade-offs arising from the model optimization and iden-
tify the best performing approaches for the task at hand according to a variety of criteria
considering different energy efficiency and accuracy requirements.

First, in Section 6.1 an analysis of the ways in which energy consumption is measured
is performed. After that, Section 6.2 presents all of the different state-of-the-art optimization
strategies that have been tested. Once the strategies have been specified, Section 6.3 pro-
vides some final details and parameters that were taken into account for the experimental
setup. Finally, Section 6.4 offers a comprehensive analysis of the results and conclusions
derived from the conducted experiments.

6.1. Measuring Energy Consumption

After evaluating the different state-of-the-art optimization techniques that were avail-
able, optimization strategies that combine the different techniques to measure the energy
consumption of the cryptomining detector deployed in the CAD component were designed.
To measure the energy consumption of the DL-based cryptomining detector, this study
leveraged the Performance Monitoring Counters (PMCs) due to their precise and granular
measurements and their ability to measure energy consumption in real time and with
low overhead [38].

For each combination of techniques to be applied, the baseline model that was analysed
in Section 5.3 was trained, and then the optimization techniques were applied sequentially
according to the order specified in the optimization strategy defined by the particular
combination to be applied. In the inference stage, the prediction performance was evaluated
using a batch size of 256 samples, which was determined to be the optimal batch size for the
application in terms of latency and energy efficiency. In each inference test, we calculated
the Accuracy and F1 Score as well as the Balanced Accuracy to account for the class
imbalance that exists in our data. Once all the repetitions were performed, the metrics
obtained at each time step among all the repetitions were aggregated using the mean,
standard deviation and maximum value.

6.2. Selected Model-Optimization Strategies

Several different optimization strategies were selected to offer combinations of the
most promising state-of-the-art techniques [39,40]. Table 3 displays the different sets of
strategies divided by post-processing quantization, training-aware model compression
techniques and a combination of both of them.

Table 3. Energy efficiency optimization strategies.

Set Opt. Strategy Id. Opt. Strategy

N/A 0 No optimizations (baseline)

Post-Training
Optimization Techniques

1 Full 8-bit Integer (INT8) Weight Quantization [41–43]

2 Half-Precision Floating-Point (FP16) Weight Quantization [42,44]

3
Full Integer Weight Quantization with 16-bit Integer (INT16)
Activations and 8-bit Integer (INT8) Weights [45]

Training-Aware
Optimization Techniques

4 Pruning-Aware Model Fine-Tuning [46]

5 Quantization-Aware Model Fine-Tuning [42,47]

6
(1) Neural Architecture Search [48]
(2) Knowledge Distillation [49]

Appl. Sci. 2023, 13, 4914 25 of 33

Table 3. Cont.

Set Opt. Strategy Id. Opt. Strategy

Combined Optimization
Techniques

7
(1) Pruning-Aware Model Fine-Tuning [50]
(2) Quantization-Aware Model Fine-Tuning [50]

8
(1) Neural Architecture Search
(2) Knowledge Distillation
(3) Pruning-Aware Model Fine-Tuning

9
(1) Neural Architecture Search
(2) Knowledge Distillation
(3) Quantization-Aware Model Fine-Tuning

10

(1) Neural Architecture Search
(2) Knowledge Distillation
(3) Pruning-Aware Model Fine-Tuning
(4) Quantization-Aware Model Fine-Tuning

11
(1) Pruning-Aware Model Fine-Tuning
(2) Optimal Post-Training Quantization

12
(1) Neural Architecture Search
(2) Knowledge Distillation
(3) Optimal Post-Training Quantization

13

(1) Neural Architecture Search
(2) Knowledge Distillation
(3) Pruning-Aware Model Fine-Tuning
(4) Optimal Post-Training Quantization

6.3. Experimental Setup

An experimental evaluation in which all combinations of optimization techniques
defined in Section 6.2 were applied to the cryptomining detector described in Section 5
was performed. In addition, the experiments were repeated five times with a 1 s time
interval for sample measurements to collect energy efficiency metrics. In the experiments,
a balanced profile was established, defining, as a performance threshold, a minimum
acceptable reduction in energy consumption concerning the non-optimized model of 25%
and a minimum Balanced Accuracy of 0.9. Furthermore, to apply the balanced profile,
the ratio of these two factors was set to 0.5 for both to obtain the optimization strategy that
leads to the most balanced results between the two objectives.

6.4. Analysis of the Results Obtained

Figure 9 shows the percentage of the total average CPU power consumption obtained
for each optimization strategy during the inference phase. The values represented were
obtained from the aggregation of measured values collected during the duration of model
inference at 1 s intervals and over five iterations for each optimization strategy using a
batch size of 256 (medium size) to perform the prediction.

In summary, it can be observed that almost all optimization strategies lead to a signifi-
cant reduction in energy consumption, exceeding, in most cases, the threshold of reduction
in energy consumption with respect to the non-optimized model that was set at the be-
ginning of the experimental evaluation. The knowledge distillation technique provided
the largest reduction in energy consumption in most cases studied, reducing the total
average energy consumption by up to 82.304% with a minimal performance degradation
of only 0.08% in the Balanced Accuracy, 0.016% in the Accuracy and 0.11 in the F1 Score.
Conversely, the optimization strategy that achieved the worst results for the percentage of
total average CPU energy consumption reduction, was the full integer quantization.

Although it did not have a significant negative impact on the Balanced Accuracy, it
caused a 97.14% increase in energy consumption, making it the only tested optimization
strategy that increased the baseline inefficiency. Therefore, in our case, the use of the

Appl. Sci. 2023, 13, 4914 26 of 33

knowledge distillation technique to optimize the DNN model implemented in the CAD
component is the most recommended strategy among the ones evaluated, as it provides
the highest energy savings and minimal performance degradation.

Figure 9. Energy consumption reduction obtained with each optimization strategy in the inference
phase with respect to the non-optimized model using a batch size of 256.

7. Resilient Cyberthreat Detector against Adversarial Attacks

The technique of adversarial training was chosen to secure the Machine-Learning
model against the recently appeared adversarial attacks that generate inputs know as
adversarial examples (AEs). These inputs are specifically designed to deceive the Machine-
Learning model and trigger incorrect predictions that benefit the attacker. The adversarial
training approach is a technique employed in the field of Machine Learning, which entails
retraining a model with adversarial examples.

The goal of this technique is to enhance the model’s robustness and ability to defend
against potential attacks by exposing it to various adversarial scenarios. By undergoing this
process, the model can better adapt to the challenges presented by such attacks, thereby
increasing its overall efficacy in combating them. Specifically, this work proposes to retrain
the Machine-Learning model with high-quality adversarial examples to create a resilient
classifier that can defend itself against adversarial attacks.

Therefore, to strengthen the TeraFlowSDN ML-based attack detectors against adver-
sarial attacks, we designed a GAN-based solution to generate high-quality adversarial
examples, which are very similar to real attack data but are able to fool the ML-based
attack detector by misclassifying them. These high-quality AEs can be used later to re-
train the TeraFlowSDN ML models and fortify the attack detectors against this type of
sophisticated attack.

Our solution is inspired by the standard GAN architecture proposed in [51], which
consists of two main components: the generator and the discriminator. In [15], it is shown
that this architecture can be used to generate synthetic network traffic data that can fully
replace real data in the training of ML models without significant performance loss. The
generative model developed in this work is an extension to the MalGAN architecture [16].
In this design, the discriminator is used to model a third component, the unknown black-
model target (e.g., the attacked TeraFlowSDN ML model). The discriminator in this specific
setting is referred to as a substitute model, as it will attempt to learn the black-box behaviour.

As a consequence, this configuration implies a higher complexity in the training
process compared with the standard GAN [52] as the behaviour of a given classifier that

Appl. Sci. 2023, 13, 4914 27 of 33

will act as a black-box model during the training phase must also be tracked. Figure 10
shows an overview of the MalGAN architecture, in which each box contains an ML model
that is producing predictions, and each circle contains input or output data.

These boxes are, from left to right: (i) the generator, which is the DNN to be trained for
AE generation; (ii) the black-box detector, which is the model that is the target of the attack;
and (iii) the substitute model, which will attempt to learn the behaviour of the target model
and will also serve as a trainer for the generator to learn how to produce effective AEs.
Benign data represent the normal traffic transmitted on the network and malign data model
the attack that will be manipulated to fool the ML (black-box) model into misclassifying it.

Unfortunately, experimental observations showed that, although the AEs generated
by MalGAN achieved a very good ratio of misclassification when input to the black-box
model (very close to a 100% evasion ratio), they were very different from real both malign
and benign examples, which can favour their detection by using simple statistical filters
(e.g., based on the mean of the real benign and malign data distributions).

Figure 10. Overview of the enhanced GAN solution based on MalGAN.

As a novelty, our enhanced version of the MalGAN architecture uses a custom activa-
tion function based on the Smirnov Transform (ST) [18] as the last layer of the generator
to help to generate AEs that mimic the statistical behaviour of real malign examples, thus,
transforming the generator output variables into variables that, from a statistical perspec-
tive, are distributed exactly the same as the input variables. Our proposal is related to a
key problem with GANs: typically, without further tuning, the output distribution of each
of the random variables obtained in the generator output is approximately normal.

This is related to the mode-collapse problem, a well-reported behaviour of the GANs.
To address this problem, the job of the generator is facilitated by using, as an activation
function of each output variable, a customized function that is able to capture the statistical
subtleties of each variable of the malign data. Each customized function implements
the inverse of the Smirnov Transform of each malign data variable. This transformation
converts random vectors with normal marginal distributions (the output of a normal
GAN) into random vectors with approximately the marginal distribution of the malign
data variable.

In addition, the ST activation function is fully deterministic and differentiable, which
allows it to be seamlessly integrated into the backpropagation step during the GAN training
processes. In [18], the experimental results demonstrated the significant improvement
provided by this custom activation function when applied in GAN architectures in terms
of the quality of the generated samples.

The GAN was trained with the same datasets used in Section 5.1 and previously
described in [32]. The generator and discriminator networks were defined as three-layer
FCNNs (Fully Connected Neural Networks) assuming a moderate complexity in the black-
box model. In the case that the black-box model is supposed to be more complex, more
layers and neurons can be added to the generator and discriminator. The details of the
training process and hyperparameters used are similar to those described in [18].

Appl. Sci. 2023, 13, 4914 28 of 33

In Figure 11, the results obtained for the Vainilla MalGAN are compared to our
proposal (MalGAN equipped with ST activation functions). The top row shows the Vainilla
MalGAN distances (Figure 11a) and evasion ratios (Figure 11b) at each epoch, and the
bottom row plots the distances (Figure 11c) and evasion ratios (Figure 11d) for a MalGAN
equipped with ST activation functions.

It can be seen that, although the evasion ratios of the Vainilla MalGAN are roughly
1.0, this architecture completely fails to generate synthetic adversarial examples that are
close to the malign data and far from the benign data since its distances between (i) malign
and generated malign data (MG), (ii) malign and generated malign data that fool the black-
box model (MGF) and (iii) benign and generated malign data (BG) are very far from the
expected: BG should be similar to the distance between benign and malign data (BM) and
MG and MGF should be small and close to the distance between two samples of malign
data (MM).

This is a clear symptom that the generator is producing adversarial (synthetic) exam-
ples that are very different from the real malign examples, and therefore, they could be
identified in a real environment using a simple statistical filter. Note that, to effectively
fortify an ML model against these types of attack, AEs should be virtually indistinguishable
from the real malign data. It is worth noting that the Vainilla MalGAN training process was
slightly modified to avoid generating synthetic data that were very far from the real data
by substituting the black-box labels that were added to the synthetic adversarial examples
by their real labels.

However, as can be seen in Figure 11a, the distances of the generated synthetic data
with respect to benign and malign data still did not achieve the expected good behaviour
as they are far from both the benign and malign data. In sharp contrast, our proposal
(MalGAN equipped with ST activation functions) generated adversarial examples that are
close to the real malign data (Figure 11c), as (i) the MG and MGF distances are small and
close to MM, and (ii) the BG distances are very similar to BM. The trade-off of this solution
is that the evasion ratios (the blue line in Figure 11d) are not as good as those obtained with
the Vainilla MalGAN but are at least greater than the ratio of misclassified malign data (the
orange line in Figure 11d).

Finally, after high-quality adversarial examples were produced, the black-box model
of the CAD component was retrained using these high-quality adversarial examples to
create a resilient ML-based classifier that can defend itself against the suggested threat
model. In order to test the degree of resilience of the retrained ML model, we reserved a
dataset of malign data that was not used for training the GAN. The reserved data had not
been seen by the GAN during its training and can, therefore, be considered as data similar
to what could appear in a real scenario.

By using examples from this dataset along with Gaussian noise vectors, we generated
synthetic samples that were statistically very similar to an attack generated by a malicious
attacker. To measure the degree of resilience that the ML model offers in real time, we
counted the synthetic samples that managed to deceive the new version of the ML model
that was strengthened with our adversarial examples. This approach enabled us to assess
the robustness of the model to adversarial attacks in a real-world scenario. The end result
in our scenario was a retrained ML model in which the Accuracy in detecting new AEs
generated with different MalGANs increased to 99% (i.e., the evasion ratio decreased from
the original 48% to 1%).

Appl. Sci. 2023, 13, 4914 29 of 33

(a) Distances (Vainilla MalGAN) (b) Evasion rate (Vainilla MalGAN)

(c) Distances (MalGAN with ST activation) (d) Evasion rate (MalGAN with ST activation)

Figure 11. (Left column) Distances between samples of real and synthetic data distributions: BM
(benign and malign data), MG (malign and generated malign data), MGF (malign and generated
malign data that fool the black-box model), BG (benign and generated malign data), GG (two samples
of generated malign data) and MM (two samples of malign data). (Right column) Evasion ratios:
(blue) generated malign examples (AEs) and (orange) real malign examples that are classified as
benign by the black-box model. In all figures, the x-axis represents the GAN training epochs.

8. Conclusions

In this work, a proposal for a standardized and distributed approach to cyber-attack
detection and mitigation in the context of the TeraFlowSDN controller was presented. Ter-
aFlowSDN is an open-source, next-generation, cloud-native Software-Defined Networking
(SDN) controller that has been specifically designed to support the evolving requirements
of 5G and beyond networks. As TeraFlowSDN is the European Telecommunications Stan-
dards Institute reference implementation for SDN controllers, the solution proposed in
this article can serve as a reference framework for future developments of cybersecurity
solutions within commercial SDN controllers.

First, this study proposed a novel distributed component architecture based on Ma-
chine Learning (ML) and Deep Learning (DL) within the TeraFlowSDN controller to imple-
ment scalable attack detectors in the data and control plane. To this end, a set of ML-based
cybersecurity components were integrated into the microservice-based TeraFlowSDN ar-
chitecture. The integration of these cybersecurity components was exemplified with an
end-to-end security analysis and mitigation process based on the detection of cryptomin-
ing activity, an emerging attack vector that is becoming increasingly common in today’s
telecommunication networks.

The proposed solution consists of two centralized components, the Centralized Attack
Detector and the Attack Mitigator, as well as a distributed component, the Distributed
Attack Detector, placed at the edge of the network. Although a specific attack model
(cryptomining) was used to demonstrate the integration of the cybersecurity components
in TeraFlowSDN, the proposed architecture based on microservices and the adoption of
standard interfaces and protocols (Protocol Buffers and gRPC) commonly used in the telco
industry will allow for the seamless integration of new types of attack detectors into the
TeraFlowSDN controller.

Appl. Sci. 2023, 13, 4914 30 of 33

Second, the energy efficiency of the proposed architecture is deemed crucial in our
design considerations as it is expected to become a major limiting factor for the deployment
of new services. To address this challenge, this work proposed a systematic process based
on state-of-the-art optimization techniques that were combined in a set of 11 optimization
strategies that can be applied to reduce the energy consumption of the DL-based attack
detection models used in the TeraFlowSDN Centralized Attack Detector component. Vari-
ous optimization strategies were evaluated, achieving energy consumption reduction of up
to 83.30% with a minimal performance degradation of 0.08% in Balanced Accuracy. It is
worth noting that the proposed method is general enough to be applied in the same way to
any DL-based model before being deployed in the TeraFlowSDN controller.

Last but not least, to strengthen TeraflowSDN ML models against sophisticated adver-
sarial attacks that can mislead them into making the wrong decisions and allow malicious
traffic to bypass the security system, this study proposed a technique to add resilience
to ML models based on retraining the models with high-quality adversarial examples.
To produce these high-quality adversarial examples, MalGAN (an adversarial example
generator based on Generative Adversarial Networks for highly restrictive black-box at-
tack scenarios) was extended by adding, to the generator network, a recently proposed
activation function based on the Smirnov transformation. This improvement allowed us to
generate high-quality adversarial examples that were used to retrain and fortify the ML
model deployed on the TeraFlowSDN controller. After retraining, the resilient ML model
reduced its original evasion ratio from 0.50 to 0.01.

9. Future Work

Given the growing demand for more efficient and sustainable computing systems,
future work should focus on addressing the concern of energy consumption in deep neural
networks by exploring the impact of different model architectures and varying numbers
of parameters in the existing trade-off between the performance and energy consumption
of the model as well as the energy efficiency that can be achieved with the different
optimization techniques presented in this article.

Furthermore, in upcoming research, it could be interesting to investigate the interplay
between energy efficiency and model resiliency in the development of a comprehensive
model that exhibits both energy efficiency and resiliency towards adversarial attacks. Fur-
ther studies will be necessary to understand the relationship between these two important
factors, such as whether optimizing the energy consumption negatively impacts the model’s
ability to withstand attacks and whether enhancing the resiliency requires increased energy
consumption. Additionally, alternative approaches should be investigated for combining
these properties for optimal performance.

The proposed Attack Mitigator component is slated for further development and
enhancement with the integration of advanced functions to enable autonomous network-
based decision making and the deployment of tailored mitigation strategies based on the
confidence level of the attack and the perceived threat level. These complex functions can
be considered as Zero Touch Provisioning actions that can be triggered in response to a
specific detected cyberthreat.

Author Contributions: Conceptualization, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; methodology,
A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; software, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.;
validation, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; formal analysis, A.M., A.K., L.d.l.C., S.G.-C.,
A.P. and L.G.; investigation, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; resources, A.M., A.K., L.d.l.C.,
S.G.-C., A.P. and L.G.; data curation, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; writing—original
draft preparation, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; writing—review and editing, A.M., A.K.,
L.d.l.C., S.G.-C., A.P. and L.G.; visualization, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; supervision,
A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G.; project administration, A.M., A.K., L.d.l.C., S.G.-C., A.P.
and L.G.; funding acquisition, A.M., A.K., L.d.l.C., S.G.-C., A.P. and L.G. All authors have read and
agreed to the published version of the manuscript.

Appl. Sci. 2023, 13, 4914 31 of 33

Funding: This work was partially supported by the European Union’s Horizon 2020 Research and
Innovation Programme under Grant 101015857 (TeraFlow) and Horizon Europe SNS R&I Work
Programme under Grant 101097122 (ACROSS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dargahi, T.; Caponi, A.; Ambrosin, M.; Bianchi, G.; Conti, M. A survey on the security of stateful SDN data planes. IEEE Commun.

Surv. Tutor. 2017, 19, 1701–1725. [CrossRef]
2. Vilalta, R.; Munoz, R.; Casellas, R.; Martínez, R.; López, V.; de Dios, O.G.; Pastor, A.; Katsikas, G.P.; Klaedtke, F.; Monti, P.; et al.

Teraflow: Secured autonomic traffic management for a tera of sdn flows. In Proceedings of the 2021 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 377–382.

3. Dahmen-Lhuissier, S. TFS. Available online: https://www.etsi.org/committee/2064-tfs (accessed on 5 April 2023).
4. Lal, S.; Taleb, T.; Dutta, A. NFV: Security threats and best practices. IEEE Commun. Mag. 2017, 55, 211–217. [CrossRef]
5. Xing, T.; Xiong, Z.; Huang, D.; Medhi, D. SDNIPS: Enabling Software-Defined Networking based intrusion prevention system in

clouds. In Proceedings of the tenth International Conference on Network and Service Management (CNSM) and Workshop, Rio
de Janeiro, Brazil, 17–21 November 2014; pp. 308–311. [CrossRef]

6. Chung, C.J.; Khatkar, P.; Xing, T.; Lee, J.; Huang, D. NICE: Network Intrusion Detection and Countermeasure Selection in Virtual
Network Systems. IEEE Trans. Dependable Secur. Comput. 2013, 10, 198–211. [CrossRef]

7. Mozo, A.; Pastor, A.; Karamchandani, A.; de la Cal, L.; Rivera, D.; Moreno, J.I. Integration of Machine Learning-Based Attack
Detectors into Defensive Exercises of a 5G Cyber Range. Appl. Sci. 2022, 12, 10349. [CrossRef]

8. Alzahrani, A.O.; Alenazi, M.J.F. Designing a Network Intrusion Detection System Based on Machine Learning for Software
Defined Networks. Future Internet 2021, 13, 111.

9. McHugh, J. Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion Detection System Evaluations
as Performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur. 2000, 3, 262–294. [CrossRef]

10. Radoglou–Grammatikis, P.; Rompolos, K.; Sarigiannidis, P.; Argyriou, V.; Lagkas, T.; Sarigiannidis, A.; Goudos, S.; Wan, S.
Modeling, Detecting, and Mitigating Threats Against Industrial Healthcare Systems: A Combined Software Defined Networking
and Reinforcement Learning Approach. IEEE Trans. Ind. Inform. 2022, 18, 2041–2052. [CrossRef]

11. Zhou, X.; Liang, W.; Li, W.; Yan, K.; Shimizu, S.; Kevin, I.; Wang, K. Hierarchical adversarial attacks against graph-neural-network-
based IoT network intrusion detection system. IEEE Internet Things J. 2021, 9, 9310–9319. [CrossRef]

12. Aiken, J.; Scott-Hayward, S. Investigating Adversarial Attacks against Network Intrusion Detection Systems in SDNs. In
Proceedings of the 2019 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
Dallas, TX, USA, 12–14 November 2019; pp. 1–7. [CrossRef]

13. Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutor. 2019,
21, 2224–2287. [CrossRef]

14. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [CrossRef]
15. Mozo, A.; González-Prieto, Á.; Pastor, A.; Gómez-Canaval, S.; Talavera, E. Synthetic flow-based cryptomining attack generation

through Generative Adversarial Networks. Sci. Rep. 2022, 12, 2091. [CrossRef] [PubMed]
16. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. In Proceedings of the Data

Mining and Big Data: Seventh International Conference, DMBD 2022, Beijing, China, 21–24 November 2022; Part II; Springer:
Berlin/Heidelberg, Germany, 2023; pp. 409–423.

17. Xiao, C.; Li, B.; Zhu, J.Y.; He, W.; Liu, M.; Song, D. Generating adversarial examples with adversarial networks. arXiv 2018,
arXiv:1801.02610.

18. González-Prieto, Á.; Mozo, A.; Gómez-Canaval, S.; Talavera, E. Improving the quality of generative models through Smirnov
transformation. Inf. Sci. 2022, 609, 1539–1566. [CrossRef]

19. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

20. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A Survey of Machine Learning Techniques Applied to Software
Defined Networking (SDN): Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 393–430. [CrossRef]

21. Perera Jayasuriya Kuranage, M.; Piamrat, K.; Hamma, S. Network Traffic Classification Using Machine Learning for Software
Defined Networks. In Machine Learning for Networking, Proceedings of the International Conference on Machine Learning for Networking,
MLN 2019, Paris, France, 3–5 December 2019; Boumerdassi, S., Renault, E., Mühlethaler, P., Eds.; Lecture Notes in Computer Science;
Part II; Springer: Berlin/Heidelberg, Germany, 2020; pp. 28–39. [CrossRef]

http://doi.org/10.1109/COMST.2017.2689819
https://www.etsi.org/committee/2064-tfs
http://dx.doi.org/10.1109/MCOM.2017.1600899
http://dx.doi.org/10.1109/CNSM.2014.7014181
http://dx.doi.org/10.1109/TDSC.2013.8
http://dx.doi.org/10.3390/app122010349
http://dx.doi.org/10.1145/382912.382923
http://dx.doi.org/10.1109/TII.2021.3093905
http://dx.doi.org/10.1109/JIOT.2021.3130434
http://dx.doi.org/10.1109/NFV-SDN47374.2019.9040101
http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.1145/3381831
http://dx.doi.org/10.1038/s41598-022-06057-2
http://www.ncbi.nlm.nih.gov/pubmed/35136144
http://dx.doi.org/10.1016/j.ins.2022.07.066
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.1007/978-3-030-45778-5_3

Appl. Sci. 2023, 13, 4914 32 of 33

22. Prabhavat, S.; Thongthavorn, T.; Pasupa, K. Deep Learning-Based Early Detection and Avoidance of Traffic Congestion in
Software-Defined Networks. In Proceedings of the 2022 14th International Conference on Information Technology and Electrical
Engineering (ICITEE), Yogyakarta, Indonesia, 18–19 October 2022; pp. 1–6.

23. Secci, S.; Diamanti, A.; Vilchez, J.M.S.; Bah, M.T.; Vizzarreta, P.; Machuca, C.M.; Scott-Hayward, S.; Smith, D. Security and
Performance Comparison of ONOS and ODL Controllers. Ph.D. Thesis, Open Networking Foundation Informational Report,
Palo Alto, CA, USA, 2019.

24. Medved, J.; Varga, R.; Tkacik, A.; Gray, K. OpenDaylight: Towards a Model-Driven SDN Controller architecture. In Proceedings
of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, Australia, 19 June
2014; pp. 1–6. [CrossRef]

25. Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M.; Koide, T.; Lantz, B.; O’Connor, B.; Radoslavov, P.; Snow, W.; et al. ONOS:
Towards an Open, Distributed SDN OS. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking,
Chicago, IL, USA, 22 August 2014; pp. 1–6. [CrossRef]

26. Braga, R.; Mota, E.; Passito, A. Lightweight DDoS flooding attack detection using NOX/OpenFlow. In Proceedings of the IEEE
Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010; pp. 408–415. [CrossRef]

27. Lin, H. SDN-based In-network Honeypot: Preemptively Disrupt and Mislead Attacks in IoT Networks. arXiv 2019,
arXiv:1905.13254.

28. Kamel, H.; Abdullah, M.Z. Distributed denial of service attacks detection for software defined networks based on evolutionary
decision tree model. Bull. Electr. Eng. Inform. 2022, 11, 2322–2330. [CrossRef]

29. Makuvaza, A.; Jat, D.S.; Gamundani, A.M. Deep neural network (DNN) solution for real-time detection of distributed denial of
service (DDoS) attacks in software defined networks (SDNs). SN Comput. Sci. 2021, 2, 1–10. [CrossRef]

30. Alzahrani, A.O.; Alenazi, M.J.F. ML-IDSDN: Machine learning based intrusion detection system for software-defined network.
Concurr. Comput. Pract. Exp. 2023, 35, e7438. [CrossRef]

31. Secured Autonomic Traffic Management for a Tera of SDN Flows. Deliverable 5.2, Implementation of Pilots and First Evaluation.
Project H2020 Teraflow. Available online : https://www.teraflow-h2020.eu/ (accessed on 5 April 2023).

32. Pastor, A.; Mozo, A.; Vakaruk, S.; Canavese, D.; López, D.R.; Regano, L.; Gómez-Canaval, S.; Lioy, A. Detection of encrypted
cryptomining malware connections with machine and deep learning. IEEE Access 2020, 8, 158036–158055. [CrossRef]

33. Secured Autonomic Traffic Management for a Tera of SDN Flows. Deliverable 2.2, Final Requirements, Architecture Design,
Business Models, and Data Models. Project H2020 Teraflow. Available online: https://www.teraflow-h2020.eu/ (accessed on
5 April 2023).

34. Mellia, M.; Carpani, A.; Lo Cigno, R. TStat: TCP STatistic and Analysis Tool. In Quality of Service in Multiservice IP Networks; Marsan,
M.A., Corazza, G., Listanti, M., Roveri, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2003; pp. 145–157. [CrossRef]

35. Dridi, L.; Zhani, M.F. SDN-Guard: DoS Attacks Mitigation in SDN Networks. In Proceedings of the 2016 fifth IEEE International
Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3–5 October 2016; pp. 212–217. [CrossRef]

36. Pastor, A.; Mozo, A.; Lopez, D.R.; Folgueira, J.; Kapodistria, A. The Mouseworld, a security traffic analysis lab based on
NFV/SDN. In Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany,
27–30 August 2018; pp. 1–6.

37. Mozo, A.; Karamchandani, A.; Gómez-Canaval, S.; Sanz, M.; Moreno, J.I.; Pastor, A. B5GEMINI: AI-driven network digital twin.
Sensors 2022, 22, 4106. [CrossRef]

38. García-Martín, E.; Lavesson, N.; Grahn, H.; Casalicchio, E.; Boeva, V. How to Measure Energy Consumption in Machine Learning
Algorithms. In Proceedings of the ECML PKDD 2018 Workshops, Dublin, Ireland, 10–14 September 2018; Alzate, C., Monreale, A.,
Assem, H., Bifet, A., Buda, T.S., Caglayan, B., Drury, B., García-Martín, E., Gavaldà, R., Koprinska, I., et al., Eds.; Lecture Notes in
Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 243–255. [CrossRef]

39. Guo, Y. A Survey on Methods and Theories of Quantized Neural Networks. arXiv 2018, arXiv:1808.04752.
40. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819.
41. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural

Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713. [CrossRef]

42. Novac, P.E.; Boukli Hacene, G.; Pegatoquet, A.; Miramond, B.; Gripon, V. Quantization and Deployment of Deep Neural
Networks on Microcontrollers. Sensors 2021, 21, 2984. [CrossRef] [PubMed]

43. Post-Training Integer Quantization|TensorFlow Lite. Available online: https://www.tensorflow.org/lite/performance/post_
training_integer_quant (accessed on 5 April 2023).

44. Post-Training Float16 Quantization|TensorFlow Lite. Available online: https://www.tensorflow.org/lite/performance/post_
training_float16_quant (accessed on 5 April 2023).

45. Post-Training Integer Quantization with Int16 Activations|TensorFlow Lite. Available online: https://www.tensorflow.org/lite/
performance/post_training_integer_quant_16x8 (accessed on 5 April 2023).

46. Pruning Comprehensive Guide|TensorFlow Model Optimization. Available online: https://www.tensorflow.org/model_
optimization/guide/pruning/comprehensive_guide (accessed on 5 April 2023).

http://dx.doi.org/10.1109/WoWMoM.2014.6918985
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1109/LCN.2010.5735752
http://dx.doi.org/10.11591/eei.v11i4.3835
http://dx.doi.org/10.1007/s42979-021-00467-1
http://dx.doi.org/10.1002/cpe.7438
https://www.teraflow-h2020.eu/
http://dx.doi.org/10.1109/ACCESS.2020.3019658
https://www.teraflow-h2020.eu/
http://dx.doi.org/10.1007/3-540-36480-3_11
http://dx.doi.org/10.1109/CloudNet.2016.9
http://dx.doi.org/10.3390/s22114106
http://dx.doi.org/10.1007/978-3-030-13453-2_20
http://dx.doi.org/10.1109/CVPR.2018.00286
http://dx.doi.org/10.3390/s21092984
http://www.ncbi.nlm.nih.gov/pubmed/33922868
https://www.tensorflow.org/lite/performance/post_training_integer_quant
https://www.tensorflow.org/lite/performance/post_training_integer_quant
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://www.tensorflow.org/lite/performance/post_training_integer_quant_16x8
https://www.tensorflow.org/lite/performance/post_training_integer_quant_16x8
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide

Appl. Sci. 2023, 13, 4914 33 of 33

47. Quantization Aware Training Comprehensive Guide|TensorFlow Model Optimization. Available online: https://www.
tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide (accessed on 5 April 2023).

48. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. arXiv 2019, arXiv:1808.05377.
49. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
50. Pruning Preserving Quantization Aware Training (PQAT) Keras Example|TensorFlow Model Optimization. Available online:

https://www.tensorflow.org/model_optimization/guide/combine/pqat_example (accessed on 5 April 2023).
51. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
52. González-Prieto, Á.; Mozo, A.; Talavera, E.; Gómez-Canaval, S. Dynamics of fourier modes in torus generative adversarial

networks. Mathematics 2021, 9, 325. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/combine/pqat_example
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.3390/math9040325

	Introduction
	Contributions
	Paper Structure

	Related Work
	Cyberthreat Analysis and Protection Use Case
	Cyberthreat Analysis and Protection Scenario
	Cryptomining Attack Detection

	Integration of an ML-Based Cybersecurity Detector and Mitigator in the TeraflowSDN Controller
	TeraFlowSDN Architecture
	Integration of the Cybersecurity Components in the TeraFlowSDN Architecture
	Distributed Attack Detector
	Centralized Attack Detector
	Attack Mitigator

	Attack Detection and Mitigation Workflows
	Workflow 1—Capture and Label Traffic at the Edge of the Network
	Workflow 2—Detect Cryptomining Malware Connections Using Supervised ML
	Workflow 3—Mitigate Detected Cryptomining Attacks
	Workflow 4—Monitor Relevant Cybersecurity-Related Key Performance Indicators

	Analysis of the Attack Detector
	Cryptomining Dataset Creation and Traffic Labelling
	Training of the Machine-Learning Model for Cryptomining Detection
	Performance Evaluation of the Machine-Learning Model for Cryptomining Detection

	Energy Efficiency
	Measuring Energy Consumption
	Selected Model-Optimization Strategies
	Experimental Setup
	Analysis of the Results Obtained

	Resilient Cyberthreat Detector against Adversarial Attacks
	Conclusions
	Future Work
	References

