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Abstract: Precipitation images play an important role in meteorological forecasting and flood fore-
casting, but how to characterize precipitation images and conduct rainfall similarity analysis is
challenging and meaningful work. This paper proposes a rainfall similarity research method based
on deep learning by using precipitation images. The algorithm first extracts regional precipitation,
precipitation distribution, and precipitation center of the precipitation images and defines the similar-
ity measures, respectively. Additionally, an ensemble weighting method of Normalized Discounted
Cumulative Gain-Improved Particle Swarm Optimization (NDCG-IPSO) is proposed to weigh and
fuse the three extracted features as the similarity measure of the precipitation image. During the exper-
iment on similarity search for daily precipitation images in the Jialing River basin, the NDCG@10 of
the search results reached 0.964, surpassing other methods. This indicates that the method proposed
in this paper can better characterize the spatiotemporal characteristics of the precipitation image,
thereby discovering similar rainfall processes and providing new ideas for hydrological forecasting.

Keywords: precipitation image; feature extraction; similarity analysis; multivariate feature fusion;
Improved Particle Swarm Optimization

1. Introduction

In recent years, flash floods caused by extreme rainfall have led to extensive social
and economic losses [1]. Due to the influence of precipitation intensity, precipitation
distribution, and other factors, there are many uncertainties in the time, location, grade,
and process of floods, which pose great obstacles to early flood warning and prevention.
Therefore, extracting spatiotemporal features of rainfall-runoff processes, identifying and
classifying them, so as to discover similar rainfall-flood patterns from historical rainfall
events to provide guidance and technical support for hydrological forecasting and water
resource utilization, has become an urgent task in the application field of hydrology and
water resources [2,3].

The rainfall-flood similarity analysis uses fuzzy mathematics, data mining, and ma-
chine learning methods to identify the similar (closest) sequence pairs to the current
real-time rainfall-flood sequence from the historical hydrological time series patterns by
defining the similarity measure [4]. The most direct application of rainfall-flood similarity
analysis is to determine whether a current rainfall-flood process is similar or equivalent to
a process in a historical period [5]. In this sense, research on similarity analysis methods
has significant potential for rainfall-runoff process forecasting, environmental evolution
analysis, and hydrological regularity discovery [6,7].

Rainfall similarity analysis is an important part of rainfall-flood similarity analysis
and flood risk assessment [8]. It can not only discover the rules of similar rainfall-flood
patterns in history but also provide new ideas and technical support for rainfall-flood
forecasting. Zhang [9] established a similarity analysis model for precipitation stations
using the K-means clustering algorithm based on the Davies–Bouldin index. Then the
single precipitation type histogram similarity model was adapted to analyze the clustering
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results and obtain similar stations. Xiao [5] proposed a rainfall event similarity analysis
model for rainfall forecasting, which evaluated the similarity between two rainfalls from
multiple perspectives, such as the quantity similarity, pattern similarity, earth mover’s
distance, and rainfall spatial distribution similarity; the experimental results showed the
similar rainfall analysis method is effective and applicable. Ohno [10] developed a new
forecasting technique for predicting whether water levels will exceed a ‘flood’ threshold or
not by using deep learning methods based on weather forecast precipitation images, which
provided a new idea and reference for extending the flood forecast period.

Traditional similarity analysis of rainfall mainly uses time series text data, which can-
not effectively represent the spatial distribution of rainfall. Moreover, the existing research
on rainfall similarity lacks comprehensive measurement methods for multivariate charac-
teristics of rainfall and is greatly insufficient in terms of interpretation. In the past decade,
with the development of information technology, the hydrological departments have ac-
cumulated a large amount of spatiotemporal data, and data types have been expanded
from traditional time series to semi-structured and unstructured. As is shown in Figure 1,
different colors represent different precipitation grade and provide the spatiotemporal
distribution information of precipitation in the Jialing River Basin. However, as time and
spatial scales accumulate, it becomes more difficult to discover useful knowledge from
these increasingly big data. Therefore, utilizing the latest machine learning and artificial
intelligence algorithms to carry out feature extraction and fast similarity analysis on the
accumulated big data of precipitation images to provide technical support for the identifi-
cation of similar rainfall-flood processes and flood control is becoming a meaningful and
hot research issue [11,12].
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Figure 1. Example of precipitation image.

This paper proposes a rainfall similarity research method based on deep learning by
using precipitation images. The novelty of this article lies in that the regional precipitation,
precipitation distribution, and precipitation center are extracted as the characters of the
precipitation image, and then appropriate distance measures for each feature are defined
to better characterize the similarity between images. After that, an ensemble weighting
method of normalized depreciation cumulative gain-improved particle swarm optimization
(NDCG-IPSO) is proposed to weight and fuse the distance measures of three extracted
features as the similarity measure for daily precipitation image similarity search.

The remaining part of this paper is organized as follows: Section 2 presents the related
work to this area of research. Section 3 presents the brief of NDCG-IPSO. Several experiments
with the proposed method using real-world precipitation images are reported in Section 4.
Finally, Section 5 gives conclusions and suggestions for further research.
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2. Related Studies
2.1. Image Feature Extraction

Feature extraction (FE) is an important and necessary step in many processes related
to image retrieval [13], image encryption [14], and pattern recognition [15], which was used
to extract the most distinct and useful information presented in an image dataset, to form a
low-dimensional feature space to represent and describe the images for the next searching,
browsing, or retrieving. Generally, color, shape, and texture are common characteristics
extracted for image retrieval [16].

As shown in Figure 1, the precipitation image has similar shape and texture features.
Therefore, only the color features are extracted to characterize the different precipitation
images. In this paper, the global color histogram is used to extract the color features of
the precipitation image, and the regional precipitation of the basin is calculated according
to the practical significance of each color. Moreover, the image is divided into m*n grids,
and the block color histogram is used to extract more detailed information, such as spatial
distribution and rainfall center, for a better description of the precipitation image.

2.2. Similarity Search

Similarity search (also known as the nearest neighbor search) is the problem of search-
ing the data items that are nearest to a query item under some distance measure from a
search (reference) dataset, which is the foundation for data mining tasks such as clustering
and classification and has been applied to time series prediction in image retrieval. Gen-
erally, a similarity search relies on a distance measurement that quantifies how close two
elements are in the feature space. The closer the elements are, the higher the similarity
between them. Currently, there are many distance measurements, such as Minkowski
distance [17], Dynamic Time Warping Distance (DTW) [18], and editing distance [19].

Minkowski distance is also known as Lp distance. If two time series Q = {q1, q2, . . . , qn}
and C = {c1, c2, . . . , cn}, then the Minkowski distance D(Q, C) between Q and C is calculated
as the following equation.

Lp = D(Q, C) =
(
∑n

i=1|qi − ci|p
) 1

p (1)

The value of p is a positive integer. Minkowski distance is defined differently according
to different values of p. If p = 1, L1 is called the Manhattan distance; if p = 2, L2 is called
the Euclidean distance, which is the most widely used measure in time series similarity
research; If p = ∞, L∞ is the Chebyshev distance.

2.3. Deep Learning

Deep learning refers to a class of machine learning techniques which attempts to mimic
the human brain, which is organized with a deep architecture and processes information
through multiple stages of transformation and representation [20]. Deep learning methods
allow a system to learn complex functions that directly map raw sensory input data to the
output without relying on human-crafted features using domain knowledge [21]. Over the
past several years, a rich family of deep learning techniques has been proposed and exten-
sively applied to a variety of applications, including speech recognition, object recognition,
and natural language processing, among others [22,23].

Particle Swarm Optimization (PSO) is a stochastic swarm-based deep learning opti-
mization algorithm inspired by simulating a simplified social system of a flock of birds
that fly towards their unknown destination (fitness function) in search of the locations of
food resources [24]. The PSO algorithm is initialized with random particles (birds) with
a specific position and velocity for the purpose of computing the objective function of an
optimization problem. The best personal and global fitness positions are computed over
each iteration of running the PSO algorithm. The position and velocity of each bird are
updated according to the calculated fitness functions until the optimal solution is obtained.
Assuming that in D-dimensional space, the location of the particle and the flight speed is
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expressed as the vector xi = [xi1, xi2, . . . , xiD] and vi= [vi1, vi2, . . . , viD], respectively. The
position of the particle is updated as follows:

xt+1
i = xt

i + vt+1
i (2)

The speed of the ith particle is updated as follows from iteration number to iteration
number +1:

vt+1
i = wvt

i + c1r1
(

pt
ibest − xt

i
)
+ c2r2

(
pt

gbest − xt
i

)
(3)

where w is the inertia weight, which represents the retention degree of the particle to the
last velocity; c1 is the individual learning factor, which represents the learning ability of the
particle to the individual optimal solution. c2 is the social learning factor, which represents
the learning ability of the particle to the current optimal solution of the population. pt

ibest
is the individual optimal solution found by pi at time t; pt

gbest is the population optimal
solution found by the whole population particle at time t. In addition, the algorithm also
has a parameter to represent the population size, that is, the number of particles, and a
parameter to represent the maximum number of iterations of the algorithm.

3. Rainfall Similarity Search Based on NDCG-IPSO

The performance of the image search system crucially depends on the feature rep-
resentation and similarity measurement. Therefore, the process of precipitation image
similarity search mainly consists of two steps. Firstly, three features, namely the regional
precipitation, the precipitation distribution, and the precipitation center, are extracted from
the historical precipitation images and stored in the historical database. Then, the above
three features are extracted from the precipitation image to be queried, and the images with
higher similarity values are retrieved from the historical images as the similarity query
results. The process flow of precipitation image matching is shown in Figure 2.
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Figure 2. The process flow of precipitation image searching.

3.1. Feature Extraction
3.1.1. Regional Precipitation

Regional precipitation usually represents the total amount of precipitation within
a given area at a specific time. In the precipitation image, each color corresponds to a
range of precipitation amount. Hence, the regional precipitation feature can be obtained
by weighting the color histogram, which can record the frequency of each color in the
precipitation image.
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Let the color histogram corresponding to the precipitation image contain K colors,
namely C1, C2, . . . , CK, the occurrence number of each color in the image is num(Ci)
(1 ≤ i ≤ K), and the precipitation amount corresponding to each color is pm(Ci), then the
regional precipitation within a given area can be calculated as follows:

P =
K
∑

i=1
num(Ci)pm(Ci) (4)

Moreover, let P1 and P2 be the regional precipitation feature of the two precipitation
images. The defined Manhattan distance Dp to measure the similarity between the regional
precipitation features of the two images can be calculated as follows:

DP = |P1 − P2| (5)

3.1.2. Precipitation Distribution

Regional precipitation can roughly represent the total amount of regional precipitation
within a given area, but it is difficult to reflect the spatial distribution characteristics of
precipitation. Therefore, the block-based color histogram is used to divide the watershed
image into rectangular blocks with m rows and n columns after truncating redundant
annotation. That is, the precipitation image is divided into m*n small grids. Additionally,
the regional precipitation for each small grid can be calculated according to formula (4),
respectively. Let P(i, j) be the regional precipitation for the grid located at the ith row and the
jth column. The precipitation distribution matrix, denoted as R, is defined to characterize
the spatial distribution feature for the precipitation image, which can be calculated as
follows:

R =


P(1,1), P(1,2), . . . , P(1,n)
P(2,1), P(2,2), . . . , P(2,n)

· · ·
P(m,1), P(m,2), . . . , P(m,n)

 (6)

Figure 3 shows the precipitation distribution matrix after blocking operation for the
precipitation image.
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Let R(a, b) be one of the blocks around R(i, j) in image B, where a ∈ {i− 1, i, i + 1}, b ∈ {j− 1,
j, j + 1}. Let DAB(i, j) be the distance between elements in the ith row and the jth column of
precipitation distribution matrix RA and RB, which can be calculated using the method
shown in Figure 4. If the distance between RA(i, j) and RB(i, j), denoted as D1, is smaller than
that between RA(i, j) and RB(a, b) (a ∈ {i− 1, i, i + 1}, b ∈ {j− 1, j, j + 1}), denoted as D2, DAB(i, j)
can be represented by D1, else DAB(i, j) is represented by the mean of D1 and D2.
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Thus, the distance of the precipitation distributions of two precipitation images, de-
fined as DR, can be calculated as follows:

DR = ∑m
i=1 ∑n

j=1 DAB(i,j) (7)

3.1.3. Precipitation Center

Flood processes are largely influenced by the precipitation center. When the precipita-
tion center is located upstream of the watershed, the long distance to the watershed section
leads to a long lag time for the flood peak and presents a short and plump flood process.
Meanwhile, when the precipitation center is located downstream, the short distance to
the watershed section will make it a short lag time for the flood peak and form a sharp
and thin flood hydrograph. Hence, it is important to take the precipitation center as a
major feature in the precipitation image similarity research. Combined with the actual
precipitation situation and image similarity retrieval requirements, take the block with the
maximum precipitation in the precipitation image after being divided into blocks as the
precipitation center.

Let P(i, j) be the maximum precipitation of the blocks in the precipitation image, then
the precipitation center C(i, j) could be the block at the ith row and the jth column. Let
C(i1, j1) and C(i2, j2) be the precipitation centers of two precipitation images. The Euclidean
distance Dc is defined as the difference between the two precipitation centers, which can be
calculated as follows:

DC =
√
(i1 − i2)2 + (j1 − j2)

2 (8)

3.2. Image Similarity Search Based on NDCG-IPSO

The precipitation image has different features. Hence, it may lose other feature in-
formation and reduce the accuracy of similarity retrieval if it applies a single feature to
represent and measure the similarity of the precipitation image. Therefore, how to fuse the
distances of the multiple features to represent the comprehensive distance between two
precipitation images is becoming a necessary and urgent task. Given two precipitation im-
ages A and B, let DP, DR, and DC represent the regional precipitation distance, precipitation
distribution distance, and precipitation center distance between two images, respectively,
the fusion distance D between two images A and B can be calculated as follows:

D = γ1DP + γ2DR + γ3DC (9)

where γ1, γ2, and γ3 are undetermined coefficient weights for the distance of regional
precipitation, precipitation distribution, and precipitation center.

There are three kinds of methods namely the subjective weight method, objective
weight method, and subjective-objective comprehensive weight method, to determine the
undetermined coefficient. Subjective weighting relies on expert’s experiential knowledge,
leading to subjectivity and variability. Objective weighting depends on the problem domain
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and sample data, but its results are poorly interpretable with low persuasiveness. Integra-
tion weighting methods can combine subjective and objective features, compensating for
the shortcomings of both approaches [25].

The NDCG-IPSO is a new subjective–objective comprehensive weight method pro-
posed to improve the efficiency of precipitation image similarity searches, which uses
IPSO to adjust the weight of multiple indicators to make the evaluation results close to the
evaluation results by experts based on subjective experience, and then applies the NDCG as
indicators to evaluate the image search results weighted by multiple features. The process
of the NDCG-IPSO is shown in Figure 5. The method combines the advantages of the
objective weighting method and the subjective weighting method and makes the weighting
result meet the requirements in the way of fitting and approximation.
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3.2.1. Evaluation Metrics

NDCG is used as the metric to evaluate the image search results weighted by multiple
features, representing the normalized value of the discounted cumulative gain [26]. Sup-
pose a batch similarity search task is for E1, E2, . . . , En. The search result for E1 is ei1, ei2,
. . . , eik. Each eij in the results is another entity that the search system considers to be similar
to the entity Ei, which has a real score of similarity degree with Ei. The cumulative gain of
the K term before the search result of entity Ei is defined as CGi@K, which can be calculated
as follows:

CGi@K =
K
∑

j=1
relij (10)

DCG discounts the gain of the lower-ranked items to have a significant influence on
the gain for the top-ranked items in the search result list. The cumulative loss gain of K
term before entity Ei search result DCG@K is calculated as follows:

DCGi@K =
K
∑

j=1

relij
log2(j+1) (11)
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The normalized correlation coefficient is the DCG@K value of the ideal search result,
denoted as IDCG@K, and the calculation formula of NDCG@K is as follows:

NDCGi@K = DCGi@K
IDCGi@K (12)

3.2.2. Parameter Optimization

The IPSO is proposed to change the inertia weight w, and learning factors c1 and c2 in
the original PSO algorithm to adjust the coefficient weights γ1, γ2, and γ3 in Formula (9) to
find the optimal weights for precipitation image retrieval. IPSO changes the above three
parameters adaptively with the increase in the number of iterations to avoid the algorithm
falling into the partial optimal solution. The major improvements in IPSO include:

• Inertia weight w;

Parameter w represents the degree of retention of the particle to the speed of the last
iteration, which can adjust the global and local search capabilities of the algorithm. The
larger w takes at the early stage of the iteration, the stronger the particle global search
ability is. The smaller w takes at the later stage of the iteration, the stronger the particle
local search ability is. Therefore, IPSO takes the strategy of decreasing the number of
iterations k linearly to balance the global and local search capabilities of particles, where
the relationship between w and the number of iterations k is represented as follows:

w(k) = wmax − (wmax − wmin) ∗ kmax−k
kmax

(13)

where wmax is the initial maximum inertia weight, wmin is the minimum inertia weight
when iterating to the maximum algebra, kmax is the maximum number of iterations, and
w(k) is the inertia weight value when iterating for k times.

• Learning ratio c1 and c2;

Parameters c1 and c2 represent the ability of a particle to learn from the individual
and the group optimal solution, respectively, and usually take the same value between 0
and 4 based on experience. Moreover, if c1 takes a large value and c2 takes a small value
in the early stages of the iteration it can enhance the global search ability of the particles.
Meanwhile, if c1 takes a small value and c2 takes a large value in the later stages of the
iteration, it can improve the local search ability of particles. Therefore, IPSO improves
parameters c1 and c2 with the symmetric linear strategy [27] to optimize the learning
ability of individual optimal solutions and group optimal solutions for particles. The
improvements in c1 and c2 are presented as follows:

c1.begin = c2.end = cmid + ∆c (14)

c2.begin = c1.end = cmid − ∆c (15)

c1(k) = c1.begin − k
kmax

(
c1.begin − c1.end

)
= cmid + ∆c

(
1− 2 k

kmax

)
(16)

c2(k) = c2.begin − k
kmax

(
c2.end − c2.begin

)
= cmid − ∆c

(
1− 2 k

kmax

)
(17)

where c1.begin and c1.end represent the initial and termination values of c1, so do c2.begin and
c2.end. ∆c represents the maximum variable length of c1 and c2; cmid is the middle value of
c1 and c2.

4. Experiment and Result Analysis
4.1. Study Area and Data Preprocessing

The Jialing River is the largest branch of the Yangtze River, which is about 1120 km
long and covers an area of approximately 160,000 square kilometers within a geographical
range of 29◦17′30′′ N–34◦28′11′′ N and 102◦35′36′′ E–109◦01′08′′ E (Figure 6). It belongs to
the humid monsoon climate region, with an average annual precipitation of 931 mm. In
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normal years, the floods caused by rainfall in the basin are mostly concentrated in July and
August with the characteristics of rapid fluctuation, short duration, fast flow rate, and high
flood peak, which pose a great threat to the life and property of the residents along the
river.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 14 
 

2. 1.begin end midc c c c= = −  (15) 

( ) ( )1 1. 1. 1. 1 2begin begin end mid
max max

k kc k c c c c c
k k

 
= − − = + − 

 


 
(16) 

( ) ( )2 2. 2. 2. 1 2begin end begin mid
max max

k kc k c c c c c
k k

 
= − − = − − 

 


 
(17) 

where c1.begin and c1.end represent the initial and termination values of c1, so do c2.begin and 
c2.end. ∆c represents the maximum variable length of c1 and c2; cmid is the middle value of c1 
and c2.  

4. Experiment and Result Analysis 
4.1. Study Area and Data Preprocessing 

The Jialing River is the largest branch of the Yangtze River, which is about 1120 km 
long and covers an area of approximately 160,000 square kilometers within a geographical 
range of 29°17′30″ N-34°28′11″ N and 102°35’36” E-109°01′08″ E (Figure 6). It belongs to 
the humid monsoon climate region, with an average annual precipitation of 931 mm. In 
normal years, the floods caused by rainfall in the basin are mostly concentrated in July 
and August with the characteristics of rapid fluctuation, short duration, fast flow rate, and 
high flood peak, which pose a great threat to the life and property of the residents along 
the river. 

 
Figure 6. Location of the Jialing Basin. 

To verify the NDCG-IPSO method for image similarity search, daily precipitation 
images from Jialing Basin from 1 January 2010, to 12 December 2019, were used for train-
ing and validation. Therefore, the experiment chose 30 precipitation images with different 
rainfall grades (6 images of light rain, 9 images of moderate rain, and 15 images of heavy 
rain) as the query samples and 10 matching samples for each query sample from the his-
torical precipitation image. Additionally, each matching sample was assigned a similarity 
score from 0 (totally dissimilar) to 2 (very similar) according to expert experience to meas-
ure how similar the query sample and the matched sample were. In the experiment, the 
query samples were divided into the training sample set and test sample set according to 
the ratio of 2:1. 

  

Figure 6. Location of the Jialing Basin.

To verify the NDCG-IPSO method for image similarity search, daily precipitation
images from Jialing Basin from 1 January 2010, to 12 December 2019, were used for training
and validation. Therefore, the experiment chose 30 precipitation images with different rain-
fall grades (6 images of light rain, 9 images of moderate rain, and 15 images of heavy rain)
as the query samples and 10 matching samples for each query sample from the historical
precipitation image. Additionally, each matching sample was assigned a similarity score
from 0 (totally dissimilar) to 2 (very similar) according to expert experience to measure
how similar the query sample and the matched sample were. In the experiment, the query
samples were divided into the training sample set and test sample set according to the ratio
of 2:1.

4.2. Results Analysis

The NDCG-IPSO was used to conduct image similarity search experiments on the daily
precipitation images of the Jialing Basin. γ1, γ2, and γ3 were initialized randomly, and their
sum was guaranteed to be 1. The inertia weight w was set to 0.9, which linearly decreases to
0.4 as the number of iterations increases according to the Formula (13). Individual learning
factors c1 and social learning factors c2 were set at 2.5 and 1.25. The particle number and
the iteration number of the IPSO were set to 30 and 80 to obtain the optimal parameters of
multi-feature distances for the precipitation image, which was shown in Table 1.

Table 1. Optimal weights of the three feature distances for precipitation image.

Feature Distance γ1 γ2 γ3

coefficient 0.46 0.12 0.42

Therefore, we adopted γ1= 0.46, γ2= 0.12, and γ3 = 0.42 to calculate the comprehensive
distance between precipitation images in subsequent experiments. The experimental results
using indicators NDCG@5 and NDCG@10 were shown in Table 2.
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Table 2. Optimal weights of the three feature distances for precipitation image.

Images
Accuracy NDCG@5 NDCG@10

Training sample 0.984 0.978
Test sample 0.978 0.964

As seen in Table 2, the NDCG-IPSO can obtain higher index values on both training
and test samples. Particularly, the average accuracy of NDCG@5 and NDCG@10 of the
method on the test samples were 0.978 and 0.964, respectively, which were very close to
1. The experimental results prove the following two points: On the one hand, the three
features extracted in this paper can well represent the spatial and temporal characteristics
of the precipitation image and meet the needs of the precipitation image analysis, which can
be used as indicators for image similarity of daily precipitation images. On the other hand,
the NDCG-IPSO has a good effect on fusing feature distances defined in this paper into
the comprehensive distance and thus quickly retrieves similar images from precipitation
images.

Figure 7 shows the similarity search results of the precipitation image based on the
NDCG-IPSO. For the precipitation image to be queried in the first line shown in Figure 7,
lines 2 and 3 display the top 10 images that are very similar in terms of regional precipitation,
precipitation distribution, and precipitation center, which can prove the effectiveness of this
method and provide technical support for the analysis of similar hydrological processes.
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4.3. Comparative Analysis

To further verify the applicability and robustness of NDCG-IPSO, this experiment
compared the image search results of our method with color histogram (CH) [28,29],
BORDA [30], principal component analysis (PCA) [31], and the NDCG-PSO under the
same conditions. Table 3 shows the image search results of the five methods on the same
dataset.
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Table 3. Comparative analysis of image search results based on different methods.

Method
Accuracy NDCG@5 NDCG@10

NDCG-IPSO 0.978 0.964
Global CH [28] 0.721 0.662
Block CH [29] 0.834 0.803
BORDA [30] 0.836 0.796

PCA [31] 0.702 0.623
NDCG-PSO 0.959 0.923

A color histogram is widely used in many image retrieval systems, which search
similar images by extracting color histograms in images and calculating the distance
between the histograms. Considering that precipitation images mainly adopt color features
to represent different precipitation information, the color histogram is perhaps the most
suitable method for precipitation image similarity searches. The global CH [28] and the
block CH [29] with 3 × 3 blocks are used to search similar precipitation images. The results
shown in Table 3 indicate that though global CH it can well characterize the color features
of precipitation images, it ignores the spatial information of color features and results in
low accuracy of similarity retrieval. The block CH considers part of the spatial information,
and its searching accuracy is better than that of the global CH. However, block CH does
not consider the physical meaning of the different colors on the precipitation image, which
leads to worse searching accuracy than that of NDCG-IPSO.

The PCA and BORDA are two commonly used multi-index comprehensive evaluation
methods, which are also widely used in the mining of multivariate hydrological similarity.
The PCA conducts principal component analysis on all three feature distances and takes
the feature with cumulative variance contribution rates greater than 85% as the principal
component, and then weighs the features according to their variance contribution rates
to obtain the search results after sorting. The BORDA sorts the feature distance once and
synthesizes the similarity search results of those feature distances by BORDA to obtain the
final query result. Although PCA, BORDA and NDCG-IPSO extract precipitation spatial
distribution, precipitation center, and regional precipitation and comprehensively consider
three distances to search similar images, NDCG-IPSO uses machine learning algorithms to
optimize ensemble weighing method parameters and thus achieves better results than that
of PCA and BORDA.

The only difference between NDCG-PSO and NDCG-IPSO is that the latter adopts the
inertia weight and two learning factors in the PSO algorithm with an increase in the number
of iterations. This adaptive adjustment improves the search performance and accuracy
of the NDCG-IPSO. Figure 8 shows the fitness function value, namely NDCG@5, varying
with the number of iterations in the NDCG-PSO and NDCG-IPSO. It can be seen from
Figure 8 that NDCG-IPSO obtains the optimal particle fitness of 0.984 after 18 iterations;
while NDCG-PSO gets stuck in a local optimum of 0.959 after 27 iterations. This indicates
that IPSO can improve the search accuracy and optimization speed of image similar search
and thus provides support for improving similar precipitation image retrieval.
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5. Conclusions

This paper proposes a rainfall similarity research method based on deep learning by
using precipitation images. Firstly, the regional precipitation, precipitation distribution,
and precipitation center are extracted from the precipitation images, and the similarity
measurement for each feature is calculated separately.

Additionally, an ensemble weighting method of normalized depreciation cumulative
gain-improved particle swarm optimization (NDCG-IPSO) is proposed to weigh and fuse
the three extracted features as the similarity measure of the precipitation image. Finally, the
comparing experiment of our method with CH, PCA, BORDA, and NDCG-PSO on the daily
precipitation images in the Jialing River Basin illustrates that the methods proposed in this
paper can better characterize the spatiotemporal characteristics of the precipitation image
and discover similar rainfall processes, which will provide a new idea for hydrological
forecasting.

Although some achievements have been made, many problems must still be solved.
One problem is that it only considers the daily precipitation images similarity searching.
However, a rainfall process may be composed of multiple single-day precipitation images.

Hence, how to conduct the rainfall process similarity search based on the similarity
measurement method of NDCG-PSO and thus build a rainfall-flood similarity pattern
repository to provide guidance and technical support for hydrological forecasting and
water resource utilization is the direction of our future work.
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