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Abstract: The aerothermoelastic behavior of a conical shell in supersonic flow is studied in the paper.
According to Love’s first approximation shell theory, the kinetic energy and strain energy of the
conical shell are expressed and the aerodynamic model is established by using the linear piston
theory with a curvature correction term. By taking the characteristic orthogonal polynomial series
as the admissible functions, the mode function of conical shell under different boundary conditions
can be obtained using the Rayleigh–Ritz method. Then, the dynamic model of the conical shell is
derived by using the Lagrange equation. Based on the model, variations in the natural frequencies
with respect to temperature and free-stream static pressure are analyzed. Additionally, the effects of
the length-to-radius ratio, the thickness-to-radius ratio, and semi-vertex angle, as well as the thermal
and aerodynamic loads on the aerothermoelastic stability of the structure are investigated in detail.

Keywords: aerothermoelasticity; flutter; conical shell; general constraint

1. Introduction

Due to its beneficial aerodynamic shape and mechanical properties, the conical shell
is widely used in the structural component of supersonic vehicles, such as the nose cones
of supersonic missiles and aircraft radomes. During high-speed flight, these components,
which are subjected to aerodynamic loads and aerodynamic heating, may experience
aerothermoelastic instability, which can damage the structure. Therefore, it is necessary to
investigate the aerothermoelastic behavior of the conical shell in supersonic flow.

Many scholars have studied the vibration characteristics of shell of revolution, consid-
ering aerodynamic load and aerodynamic heating. Among them, the supersonic flutter and
aerothermoelastic behavior of cylindrical shells has been studied extensively and carefully.
Based on Donnell’s nonlinear shell theory and Galerkin’s solution procedure, Amabili
and Pellicano [1,2] analyzed both the linear and nonlinear aeroelastic stability of circular
cylindrical shells under supersonic airflow. Haddadpour [3] analyzed the supersonic flutter
of a composite cylindrical shell under simply supported boundaries at both ends. The
influence of temperature change on aeroelastic stability was explored with varied values
of the power-law index. The aerothermoelastic characteristics of a composite cylindrical
shell were studied by Shin et al. [4], wherein the theory of the layer-wise displacement
field was used for various damping treatments, and the post-buckling behaviors and aeroe-
lastic characteristics were investigated with various damping treatments. Based on the
frequency–domain and time–domain methods, Song and Li [5] conducted a study of the
aerothermoelastic characteristics of a cylindrical shell made from laminated composite
material. The effect of the direction of fiber laying on the flutter performance and buckling
under heating conditions was studied. By combining the Sanders shell theory with a classi-
cal finite element method, Sabri and Lakis [6] proposed a hybrid finite element method to
investigate the aerothermoelasticity of a functionally graded cylindrical shell, and analyzed
the effects of internal pressure and temperature change on the aeroelastic stability. Ac-
cording to the virtual displacement principle, Bochkarev et al. [7] explored the aeroelastic
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behavior of a heated cylindrical shell made from composite material under the combined
action of internal and external air flows with clamped–clamped boundaries. The effects of
material properties, aerodynamic loads and thermal loads on the flutter boundary were
analyzed. Asadi [8] explored for the first time the aerothermoelastic stability of a cylindrical
shell made from functionally graded carbon nanotube-reinforced composite material. The
influence of various influential factors on the aerothermoelastic stability was investigated
in detail. Additionally, taking a functionally graded carbon nanotube-reinforced composite
cylindrical shell as the research object, Zhang et al. [9] analyzed the aerothermoelastic
behavior of a cylindrical shell based on the frequency–domain method. In addition, the
effect of varied control methods on active flutter control was also studied. Chai et al. [10]
adopted Hamilton’s principle to establish a dynamic model of a composite laminated
cylindrical shell. Based on the equation of motion, the aerothermoelastic behavior of the
cylindrical shell with the elastic boundaries was studied. The effects of different directions
of spring constant on thermal buckling and aeroelasticity stability were investigated in
detail. Lin et al. [11] explored the vibration behavior and flutter stability of a composite
cylindrical shell under varied boundary conditions by using the same method as mentioned
above. Bochkarev [12] decided to study the aerothermoelastic characteristics of a loaded
functionally graded circular cylindrical shell under the action of supersonic airflow. The
influence of the different combination of mechanical, thermal and aerodynamic loads on
the stability of the structure was analyzed. By using the improved differential quadrature
method, which is a numerical approximation method, Fazilati et al. [13] explored the
aerothermo-elastic characteristics of functionally graded cylindrical curved panels under
high supersonic airflow. The impact of temperature change, Mach number and other
environmental factors on structure flutter response was emphasized. Mahmoudkhani [14]
used the Newton–Raphson method to study the aerothermoelastic stability of a composite
cylindrical shell in a thermal environment. The effects of axisymmetric and asymmetric
geometrical defects on aerothermoelastic stability were considered. Based on the first-order
piston theory and the quasi-steady-state thermal stress theory, Guo et al. [15] explored the
post-buckling and flutter behavior of composite cylindrical panels in supersonic airflow
in a thermal field, based on the least-square Ritz method. According to the literature
review above, piston theory is an effective theory for calculating aerodynamic models in
supersonic airflow. The scope and limitation of its application are studied in [16–19].

For conical shells, numerous articles reported the vibration characteristics considering
thermal load [20–23] and aerodynamic load [24–32], individually. Bhangale et al. [20]
explored the thermal buckling of conical shells composed of advanced composite material
by using a semi-analytic finite element method under the clamped–clamped boundary
conditions. The influence of material performance and geometric parameters on thermal
buckling behavior was studied. Naj et al. [21] mainly investigated the thermal buckling
characteristics of composite conical shells with simply supported boundaries at both
ends. Talebitooti [22] explored the effect of thermal load on the vibration behavior of a
ring-stiffened rotating conical shell composed of functionally graded material under a
clamped–clamped boundary conditions. Based on the generalized differential quadrature
method, Shakouri [23] studied the vibration behavior of rotating conical shells in a thermal
environment. Utilizing Donnell’s shell theory, Dixon and Hudson [24] investigated the
flutter, vibration and buckling of a conical shell using the generalized Galerkin method.
In the modeling process, the in-plane inertias and structural damping were neglected,
and the aerodynamic loading was established by inviscid two-dimensional quasi-steady
approximation. Bismarcknasr and Costasavio [25] first used the finite-element method
to analyze the supersonic flutter of conical shells. According to a new formulation for
calculating aerodynamic loads, considering quasi-static pressure and including the terms
of added mass, rotational inertia and the forces in the midplane, Vasil’ev [26] analyzed
the flutter problem of the conical shell and discussed the effect degree of the terms on the
critical Mach number. Sabri and Lakis [27] established an aeroelastic model of a conical
shell according to the hybrid finite element method, and analyzed the flutter stability
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of the structure with different boundary conditions and a semi-vertex angle. With the
differential quadrature method, the effects of the geometric parameters of conical shells,
aerodynamic damping and the piston curvature correction term on the flutter stability of a
conical shell were investigated by Zhang et al. [28]. Mehri et al. [29] mainly investigated
the aeroelasticity of conical shells under yaw supersonic flow. The effects of material
properties, geometric parameters, and aerodynamic loads on flutter boundaries have been
explored in detail. Bakhtiari et al. [30] investigated the linear and nonlinear flutter stability
of truncated conical shells under the influence of supersonic airflow. With Hamilton’s
principle, the effects of the mass fraction, agglomeration parameters and distribution
pattern of the agglomerated carbon nanotubes on aeroelastic stability were investigated by
Afshari et al. [31]. Rahmanian and Javadi [32] studied the aeroelasticity of a conical shell
under yaw supersonic flow.

However, there is little literature on aerothermoelastic analysis of conical shells. Mah-
moudkhani et al. [33] investigated the aerothermoelastic stability of a composite truncated
conical shell under simply supported boundary conditions in supersonic airflow. Accord-
ing to the displacements given by double trigonometric series, Hao et al. [34] analyzed the
nonlinear vibration of a conical shell which was subjected to aerodynamic load and thermal
load under simply supported boundaries. During the modeling process, the displacement
components were approximate, and the governing equations of motion ignored the effect
of in-plane inertia. For conical shells with simply supported boundary conditions, the
double trigonometric function can be used as the trial function, and the results obtained
are acceptable. However, obtaining simple trial functions for more general constraints is
challenging, which limits further study of the vibration characteristics of conical shells.

It can be noted from the above review that at present, the aerothermoelastic analysis
of conical shells is mainly focused on conical shells with simply supported boundaries, and
there is a lack of aerothermoelastic research on conical shells with more general constraints.
Therefore, in the present paper, the aerothermoelastic characteristics of a functionally
graded conical shell with classical boundary conditions in supersonic flow are investigated.
Based on Love’s shell theory, the kinetic energy and potential energy of the conical shell
are obtained. According to the linearized first-order potential theory and the temperature
assumption along the thickness direction, the aerodynamic loads and thermal loads are
calculated. By taking the characteristic orthogonal polynomial series which are constructed
using a Gram–Schmidt procedure as the admissible functions, the mode function of the
conical shell is obtained using the Rayleigh–Ritz method. The dynamical equation of the
functionally graded conical shell is established by a Lagrange equation. Taking conical
shells under free–clamped boundaries as the research object, the effects of thermal and
aerodynamic loads on natural vibration characteristics are analyzed. Then, on this basis, the
effects of length-to-radius ratio, thickness-to-radius ratio, semi-vertex angle, aerodynamic
load and thermal load on the aerothermoelastic stability of conical shells are investigated.

2. Dynamic Model
2.1. Model Description

As shown in Figure 1, a conical shell composed of functionally graded material in
supersonic airflow is considered. The semi-vertex angle, length, thickness, and radius at
both ends of the conical shell are, respectively, represented by α, L, h, r and R. An orthogonal
curvilinear coordinate system (x, θ, z) is located at the mid-surface of the conical shell,
and the displacements in meridional (x), circumferential (θ), and radial (z) directions are
represented by u, v and w, respectively. The airflow direction is along the x-axis.
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Figure 1. Schematic diagram of conical shell in supersonic flow.

The functionally graded conical shell is made from two materials; the inner layer of the
conical shell is a ceramic material, and the outer layer of the conical shell is a metal material.
The volume fractions of ceramic and metal are represented by Vc and Vm, respectively, and
they can be written as follows:

Vm =

(
2z + h

2h

)p
, Vc = 1−Vm = 1−

(
2z + h

h

)p
, (1)

where p is the index of the volume fraction, which is a positive number. Functionally
graded material properties are temperature-dependent functions that can be given by

P(T) = P0(P−1T−1 + 1 + P1T + P2T2 + P3T3), (2)

where T is the temperature in the environment, and P(T) is the material performance,
including Young’s modulus E, Poisson’s ratio µ, density ρ, thermal expansion coefficient
β and heat conduction coefficient k. P0, P−1, P1, P2 and P3 are temperature-dependent
coefficients of the material properties. The effective properties of composite materials in a
specific temperature can be given by

P(z, T) = PcVc + PmVm, (3)

Then,

E(z, T) = Ec + (Em − Em)
(

2z+h
h

)p
, µ(z, T) = µc + (µm − µm)

(
2z+h

h

)p
,

ρ(z, T) = ρc + (ρm − ρm)
(

2z+h
h

)p
, β(z, T) = βc + (βm − βm)

(
2z+h

h

)p
,

k(z, T) = kc + (km − km)
(

2z+h
h

)p
.

(4)

2.2. Constrained Mode

According to Love’s first approximation theory, the strain field on an arbitrary point
of a conical shell is described as follows:

εx
εθ

εxθ

 =


εx,0
εθ,0
εxθ,0

+ z


kx,0
kθ,0
kxθ,0

, (5)
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where
{

εx,0 εθ,0 εxθ,0
}T and

{
kx,0 kθ,0 kxθ,0

}T are the mid-surface strains and surface
curvature changes of the conical, respectively. They are stated as below:

εx,0 = ∂u
∂x

εθ,0 = 1
r(x)

∂v
∂θ + sin α

r(x) u + cos α
r(x) w

εxθ,0 = ∂v
∂x + 1

r(x)
∂u
∂θ −

sin α
r(x) v

kx,0 = − ∂2w
∂x2

kθ,0 = − sin α
r(x)

∂w
∂x −

1
r2(x)

∂2w
∂θ2 + cos α

r2(x)
∂v
∂θ

kxθ,0 = 2
(

sin α
r2(x)

∂w
∂θ −

1
r(x)

∂2w
∂x∂θ +

cos α
r(x)

∂v
∂x −

sin 2α
2r2(x)v

)
,

(6)

where r(x) = r + x sin α.
Based on Hook’s law, the components of stress in terms of strains of a functionally

graded conical shell when thermal strain is considered can be expressed as
σx
σθ

σxθ

 =


Q11 Q12 0
Q21 Q22 0

0 0 Q66





εx
εθ

εxθ

−


βx
βθ

βxθ

∆T(z)

, (7)

where ∆T(z) = T − T0, βx = βθ = β(z, T), βxθ = 0, T0 = 300 K.β(z, T) is the thermal
expansion coefficient. The stiffness coefficients Qij (i, j = 1, 2, 6) are expressed as

Q11 = Q22 =
E(z, T)

1− µ2(z, T)
, Q12 = Q21 =

µ(z, T)E(z, T)
1− µ2(z, T)

, Q66 =
E(z, T)

2(1 + µ(z, T))
. (8)

The kinetic energy of the functionally graded conical shell is expressed as

Ts =
1
2

∫ h/2

−h/2

∫ 2π

0

∫ L

0
ρ(

.
u2

+
.
v2

+
.

w2
) · r(x)dxdθdz. (9)

The strain energy of the stretching and bending of the functionally graded conical
shell can be given by

Uε =
1
2

∫ L

0

∫ 2π

0

∫ h
2

− h
2

(σxεx + σθεθ + σxθεxθ)r(x)dxdθdz. (10)

The potential energy due to the thermal stresses is described as [22]

U∆T =
1
2

∫ L

0

∫ 2π

0
NT

x

(
∂w
∂x

)2
r(x)dθdη, (11)

where NT
x is expressed as

NT
x =

∫ h
2

− h
2

[Q11(z, T) + Q12(z, T)]β(z, T)∆T(z)dz. (12)

Considering that the temperature only changes along the thickness direction, the
equation of heat conduction can be stated as below:

− d
dz

[
k(z, T)

dT
dz

]
= 0, (13)

The thermal boundaries of the conical shell can be given by

T = Tm, z = h/2 ; T = Tc, z = −h/2 . (14)
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The solution of the equation, by means of polynomial series, can be written as [35]

T(z) = Tc + ∆T · η(z), ∆T = Tm − Tc. (15)

where

η(z) = 1
C

[(
2z+h

2h

)
− kmc

(p+1)kc

(
2z+h

2h

)p+1
+ k2

mc
(2p+1)k2

c

(
2z+h

2h

)2p+1

− k3
mc

(3p+1)k3
c

(
2z+h

2h

)3p+1
+ k4

mc
(4p+1)k4

c

(
2z+h

2h

)4p+1
− k5

mc
(5p+1)k5

c

(
2z+h

2h

)5p+1
]

,

C = 1− kmc
(p+1)kc

+ k2
mc

(2p+1)k2
c
− k3

mc
(3p+1)k3

c
+ k4

mc
(4p+1)k4

c
− k5

mc
(5p+1)k5

c
,

(16)

where kmc = km − kc. For thin conical shells, the temperature distribution can be consid-
ered linear:

η(z) =
(

2z + h
2h

)
. (17)

The constrained modes of the composite conical shell are obtained using the Rayleigh–
Ritz method. The displacement function of the structure is expressed as

u(x, θ, t) = Un(x) cos(nθ) sin ωt =
N
∑

J=1
aJn ϕu,J(x) cos(nθ) sin ωt

v(x, θ, t) = Vn(x) sin(nθ) sin ωt =
N
∑

J=1
bJn ϕv,J(x) sin(nθ) sin ωt

w(x, θ, t) = Wn(x) cos(nθ) sin ωt =
N
∑

J=1
cJn ϕw,J(x) cos(nθ) sin ωt

, (18)

where n is circumferential wave number, and ω is natural frequency. Un(x), Vn(x) and
Wn(x) are the meridional modal functions used to described the vibrational mode in the
longitudinal direction, which can be approximated using the characteristic orthogonal
polynomials satisfying the boundary conditions. N is the number of truncated terms used
in practical calculation,aJn, bJn and cJn are the unknown coefficients, and ϕJ,u(x), ϕJ,v(x)
and ϕJ,w(x) are the characteristic orthogonal polynomials which can be generated using
the Gram–Schmidt procedure according to the boundary conditions. More details about
the characteristic orthogonal polynomials are provided in the literature [36].

The Rayleigh quotient is given by

ω2 =
(Uε + U∆T)max

(Ts)max
, (19)

and
∂ω2

∂aJn
= 0,

∂ω2

∂bJn
= 0,

∂ω2

∂cJn
= 0, J = 1, 2, 3 · · ·N. (20)

Substituting expression (9)–(11) and (18) into the above equation, the eigenvalue
equation of the conical shell is obtained:

[
ω2MR −KRε −KR∆T

]
a
b
c

 = 0. (21)

Then, the frequency equation of conical shell is described by∣∣∣ω2MR −KRε −KR∆T

∣∣∣ = 0 (22)

where MR is 3N × 3N mass matrix of the conical shell, KRε is 3N × 3N stiffness matrix of
the conical shell, and KR∆T is 3N × 3N thermal stiffness matrix of the conical shell. The
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unknown vector of coefficients a, b and c in the mode function of the conical shell under
classical conditions can be calculated from Equation (21). Then, the displacement function
of the functionally graded conical shell at a specific temperature can be determined.

2.3. Dynamic Equation

Based on the mode function of the functionally graded conical shell obtained using
the Rayleigh–Ritz method, the displacement components of the conical shell are stated
as below: 

u(x, θ, t) =
m
∑

i=1

n
∑

j=1
Uij(x, θ)qu

ij(t) = Uqu(t)

v(x, θ, t) =
m
∑

i=1

n
∑

j=1
Vij(x, θ)qv

ij(t) = Vqv(t)

w(x, θ, t) =
m
∑

i=1

n
∑

j=1
Wij(x, θ)qw

ij (t) = Wqw(t)

, (23)

where m is the modal truncation number. U, V and W are the mode functions in meridional,
circumferential and radial directions, respectively. qu, qv and qw are the generalized coordinates.

According to the linear piston theory with a curvature correction term, the aerody-
namic pressure generated by supersonic flowing through the outer surface of the function-
ally graded conical shell is given by [2,32]:

∆p =
γp∞ M2

∞

(M2
∞ − 1)1/2

[
M2

∞ − 2
M2

∞ − 1
1

α∞ M∞

∂w
∂t

+
∂w
∂x
− w

2r(x)(M2
∞ − 1)1/2

]
, (24)

where, p∞, γ, M∞ and α∞ are the free-stream static pressure, air-specific heat ratio, Mach
number and speed of sound, respectively. It should be noted that the linearized first-order
potential theory is valid for

√
2 < M∞ < 5. Moreover, since the flow over a shell behind the

attached shock wave is nonuniform, the constant Mach number is effective for a sufficiently
short shell [19].

The virtual work caused by the aerodynamic load is written as

δW = −
∫ L

0

∫ 2π

0
(∆pδw) · r(x)dxdθ = Qpδqw, (25)

where the expression of generalized force Qp is

Qp = γp∞ M2
∞

(M2
∞−1)1/2

∫ L
0

∫ 2π
0

[
W ∂WT

∂x r(x)− 1
2(M2

∞−1)1/2 WWT
]

dxdθqw

+
∫ L

0

∫ 2π
0

[
M2

∞−2
M2

∞−1
r(x)

α∞ M∞
WWT

]
dxdθ

.
qw.

(26)

Substituting expressions (9)–(11), (23) and (26) into Lagrange equations,

d
dt

(
∂L
∂

.
qp

)
− ∂L

∂qp
= Qp, (27)

where L = T−Uε −U∆T , p = u, v, w. The dynamic equation of the functionally graded
conical shell can be described by the following equation:

M
..
X + C∆P

.
X + (Kε + K∆T + K∆p)X = 0, (28)

where X = [qT
u , qT

v , qT
w]

T . Kε and M are, respectively, the stiffness matrix and mass matrix
of the functionally graded conical shell. K∆P and C∆P are, respectively, the stiffness matrix
and damping matrix related to aerodynamic load, and K∆T is the stiffness matrix related to
thermal load.
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The frequency equation of the system can be described by∣∣∣MΩ2 + C∆PΩ + (Kε + K∆T + K∆p)
∣∣∣ = 0. (29)

The complex eigenvalue Ωmn of the structure can be obtained from the above equation
(29), and the corresponding frequency ωmn of the conical shell can be expressed by the
imaginary part of the eigenvalue:

ωmn =

√
[Im(Ωmn)]

2. (30)

As the free-stream static pressure p∞ increases gradually, the two adjacent natural
frequencies of the structure converge, which can cause flutter [10]. Additionally, the
corresponding free-stream static pressure is known as critical free-stream static pressure.

3. Comparison and Convergence Studies

To verify the effectiveness of the present solution procedure, comparison and con-
vergence studies have been carried out. First, the natural frequencies of a functionally
graded conical shell under clamped–clamped boundaries at both ends are obtained and
compared with the previous literature. The comparison results are shown in Table 1. It can
be observed from Table 1 that with the increase in the terms of the orthogonal polynomials
truncated, the dimensionless frequency parameters converge, and when N = 10, the present
result and those from the literature [23] are in good agreement.

Table 1. Dimensionless frequency parameters (ω = ωR
√

ρ(1− µ2)/E) of a functionally graded
conical shell under clamped–clamped boundary conditions (m = 1, n = 1, h/r = 0.01, p = 1).

α Shakouri [23]
Present Results

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

L/r = 1
30◦ 0.85746 0.87708 0.86008 0.85790 0.85765 0.85740 0.85740
60◦ 0.44767 0.45785 0.44823 0.44817 0.44769 0.44766 0.44766

L/r = 5
30◦ 0.30770 0.31969 0.31730 0.30935 0.30914 0.30796 0.30794
60◦ 0.14467 0.16803 0.15799 0.14986 0.14682 0.14511 0.14493

Second, the correctness of the flutter stabilities derived in the present investigations are
verified. The critical dynamic pressure parameter λ(λ = 12(1− µ2)γp∞M2

∞r3/Eh3
√

M2
∞ − 1)

of the simply supported conical shell investigated in the literature [32] is counted, and its
convergence is analyzed. It can be found from Figure 2 that the natural frequencies and dynamic
pressure parameter have gradually converged with the increase in the modal truncation
numbers m. In addition, it can be seen that the critical dynamic pressure parameter calculated
here is λcr = 556, which is in agreement with the previous result of λcr = 566.4 [32].
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4. Numerical Results and Discussions

The aerothermoelastic characteristics of a conical shell with free–clamped boundaries
are investigated in the section. The inner and outer layers’ materials are Si3N4 and SUS304,
respectively, and the material coefficients of the functionally graded conical shell studied in
the paper are shown in Table 2. The free-stream parameters are γ = 1.4, α∞ = 213.6 m/s,
M∞ = 3. The physical parameters for the conical shell are as below: α = 30◦, L/r = 1,
h/r = 0.01.

Table 2. Material properties of a functionally graded conical shell.

Property P−1 P0 P1 P2 P3

E (pa) SUS304 0 201.04 × 109 3.079 × 10−4 −6.534 × 10−7 0
Si3N4 0 348.43 × 109 −3.070 × 10−4 2.130 × 10−7 −8.946 × 10−11

µ SUS304 0 0.31 0 0 0
Si3N4 0 0.24 0 0 0

ρ (kg/m3) SUS304 0 8166 0 0 0
Si3N4 0 2370 0 0 0

β (1/K) SUS304 0 12.330 × 10−6 8.086 × 10−4 0 0
Si3N4 0 5.8723 × 10−6 9.095 × 10−4 0 0

k (W/m◦K) SUS304 0 15.379 0 0 0
Si3N4 0 13.723 0 0 0

4.1. Natural Vibration Characteristics Analysis

In this section, the effects of temperature change and free-stream static pressure on
the fundamental frequency of the composite conical shell are analyzed. As shown in
Figure 3, the influence of temperature change on the natural frequency of a conical shell
under different volume fraction indices is studied. It can be observed from the figure that
in a thermal environment, the natural frequency solved based on the linear temperature
hypothesis is basically consistent with the natural frequency calculated based on the
polynomial series representation of the temperature distribution. It can be concluded that
the linear temperature distribution is reasonable for thin-walled conical shells. Additionally,
as the temperature difference between the upper and lower surfaces increases, the natural
frequency of the conical shell first decreases slowly, then rapidly, and finally becomes
zero. The temperature change corresponding to the zero natural frequency is the critical
buckling temperature change of the structure, represented by ∆Tcr. In addition, it can be
also found that the fundamental frequency of the conical shell increases as the volume
fraction increases, and the critical buckling temperature change is proportional to the index
of volume fraction.
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The influence of free-stream static pressure on the natural frequency of the conical shell
is studied in Figure 4. As is shown in the figure, for the conical shell under free–clamped
boundary conditions, with the increase in p∞, the natural frequencies of the first mode decrease
gradually and finally become zero, the natural frequencies of second mode decrease gradually
but remain basically stable, the natural frequencies of third order increase gradually, and the
natural frequencies of fourth order decrease gradually. When the free-stream static pressure
p∞ is further increased, the natural frequencies of the third and fourth modes merge into a
single mode. When two adjacent natural frequencies converge with the increase in p∞, the
conical shell loses stability and flutters.
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4.2. Aerothermoelastic Stability Analysis

The influence of the structural parameters of a conical shell, such as the ratio of
length to radius, ratio of thickness to radius, the semi-vertex angle, as well as thermal and
aerodynamic loads, on its aerothermoelastic stability is carried out.

Figure 5 depicts the influence of the ratio of length to radius of the conical shell on
the thermal buckling stability at different volume fraction indices. As is shown in Figure 5,
the critical buckling temperature change ∆Tcr of the structure slightly increases with the
increase in the ratio of length to radius.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17 
 

0

1

3

5

p

p

p

p

=

=

=

=

 

Figure 5. Influence of the length-to-radius ratio of the conical shell on critical buckling temperature 

change. 

0

1

3

5

p

p

p

p

=

=

=

=

 

Figure 6. Influence of the thickness-to-radius ratio of the conical shell on critical buckling tempera-

ture change. 

0

1

3

5

p

p

p

p

=

=

=

=

 

Figure 5. Influence of the length-to-radius ratio of the conical shell on critical buckling tempera-
ture change.

Variations in the critical buckling temperature change with the ratio of thickness to
radius under different volume fraction indices are shown in Figure 6. It can be found
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that with the increase in the thickness-to-radius ratio of conical shell, the critical buckling
temperature change of the structure will gradually increase, and the structure is less prone
to thermal buckling. As can be observed from the comparison between Figures 5 and 6, the
ratio of thickness to radius has a more significant influence on thermal buckling stability
than the ratio of length to radius. In addition, it can be found from Figures 5 and 6 that
the ∆Tcr of the conical shell is proportional to the volume fraction of the functionally
graded material.
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ture change.

As shown in Figure 7, the variation of ∆Tcr is analyzed when the semi-vertex angle α
increases from 10◦ to 60◦. It can be clearly observed that when the semi-vertex angle of the
structure is small (α ≤ 15◦), the critical buckling temperature change is little affected by
the semi-vertex angle; when the semi-vertex angle is large (α ≥ 15◦), the critical buckling
temperature change will gradually decrease with the increase in the semi-vertex angle. It
can be shown that the smaller the semi-vertex angle of the structure, the better the thermal
buckling stability of the conical shell.
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According to the analysis in Figure 4, for a conical shell under free–clamped bound-
aries, the free-stream static pressure when the natural frequencies of third and fourth order
converge is the critical free-stream static pressure. Based on the above conclusions, the
effects of various factors on the flutter stability of conical shell are studied in Figures 8–12.
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Figure 8 analyzes the effect of the length-to-radius ratio of the conical shell on the
critical free-stream static pressure. From the figure, it can be found that the increase in
the length-to-radius ratio leads to a decrease in the critical flutter pressure. In addition,
with the increase in the length-to-radius ratio, the natural frequencies of the conical shell
decrease. Figure 9 describes the effect of the thickness-to-radius ratio of the conical shell
on the critical free-stream static pressure. It can be found from the figure that the critical
free-stream static pressure and the natural frequencies increase as the ratio of radius to
thickness increases. The influence of the semi-vertex angle of the conical shell on the critical
free-stream static pressure is given in Figure 10. It can be observed that with the increase
in the semi-vertex angle, the critical free-stream static pressure decreases accordingly.
Furthermore, the natural frequency is inversely proportional to the semi-vertex angle.

Figure 11 describes the variation of the critical free-stream static pressure of conical
shell with Mach number. It can be observed from Figure 11 that as the Mach number
increases, the critical free-stream static pressure decreases. The variations in the critical
free-stream static pressure of the conical shell with different temperature change ∆T are
studied. As shown in Figure 12, the flutter stability of the composite conical shell under
the four temperature conditions of ∆T = 0, ∆T = 0.2∆Tcr, ∆T = 0.4∆Tcr and ∆T = 0.6∆Tcr
is analyzed, respectively. It is found that as the temperature change increases, the critical
free-stream static pressure gradually decreases.

5. Conclusions

In the paper, a study of the aerothermoelastic characteristics of a conical shell in super-
sonic airflow has been carried out. According to the Love’s first approximation shell theory,
a linear piston theory with a curvature correction term and linear temperature assumption,
the dynamics model of the conical shell is established by a Lagrange equation. It is worth
noting that the constrained modes of the structure are obtained using the Rayleigh–Ritz
method by taking the characteristic orthogonal polynomial series as the admissible func-
tions. According to the influence of temperature change and free-stream static pressure on
the natural frequency of the functionally graded conical shell, the influence of temperature
change and free-stream static pressure on the fundamental frequencies of the functionally
graded conical shell is studied. The conclusions can be summarized as follows:

(1) For thin-walled conical shells, the linear temperature assumption is reasonable.
(2) With an increase in temperature change, the fundamental frequency of the conical shell

decreases gradually, and finally drops to zero. As the static pressure of the free-stream
increases, two adjacent natural frequencies converge, which can cause flutter.

(3) The natural frequencies of the conical shell are proportional to the ratio of thickness to
radius, and inversely proportional to the ratio of length to radius and semi-vertex angle.

(4) With an increase in the length-to-radius ratio, the critical buckling temperature change
increases slightly, and the critical free-stream static pressure decreases obviously; the
critical buckling temperature change and the critical free-stream static pressure are
enhanced by raising the thickness-to-radius ratio; the critical buckling temperature
change and the critical free-stream static pressure decrease when the semi-vertex
angle is enhanced.

(5) The critical flutter pressure of conical shell is intensified with a decrease in the Mach
number and temperature.
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