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Abstract: Numerical simulation applied to agriculture or wastewater treatment (WWT) is a comple-
mentary tool to understand, a priori, the impact of meteorological parameters on productivity under
limiting environmental conditions or even to guide investments towards other more relevant circular
economic objectives. This work proposes a new methodology to calculate Typical Meteorological
Sequences (TMS) that could be used as input data to simulate the growth and productivity of pho-
tosynthetic organisms in different biological systems, such as a High-Rate Algae Pond (HRAP) for
WWT or in agriculture for crops. The TMS was established by applying Finkelstein-Schafer statistics
and represents the most likely meteorological sequence in the long term for each meteorological
season. In our case study, 18 locations in the Madrid (Spain) region are estimated depending on
climate conditions represented by solar irradiance and temperature. The parameters selected for
generating TMS were photosynthetically active radiation, solar day length, maximum, minimum,
mean, and temperature range. The selection of potential sequences according to the growth period of
the organism is performed by resampling the available meteorological data, which, in this case study,
increases the number of candidate sequences by 700%.

Keywords: typical meteorological sequence; typical meteorological week; wastewater treatment;
high-rate algae pond; solar irradiance; Finkelstein-Schafer statistics

1. Introduction

The increase and change in the consumption pattern in the population is generating
serious energy problems, which affect, among other things, food production and wastewa-
ter treatment (WWT). Simulations play an important role in the previous implementation
of systems that contribute to controlling these issues, since they represent a long-term
approximation of the technical economic viability, contributing to deciding the appropriate
configuration for its implementation in reality. Furthermore, efficiency in the use of water
and energy in agriculture is an increasingly important issue due to the growing scarcity of
the former and the increasing costs of the latter [1]. Both constrain crop irrigation in many
areas of the world, conditioning productivity. However, the need for WWT constitutes a
challenge in any population and economic activity, especially in rural areas and developing
countries, where the use of activated sludge treatment systems can produce high capital and
operating costs. For that reason, nature-based technologies have been proposed in small
populations [2]. One of these technologies is a High-Rate Algae Pond (HRAP), which con-
sists of the use of microbial populations present in wastewater and inoculated microalgae
in the medium to obtain a metabolic coupling that produces WWT [3]. Microalgae-based
processes are much simpler, impose low CAPEX (capital expenditure), and maintenance
costs are also easier than in conventional systems due to the less machinery required and

Appl. Sci. 2023, 13, 4826. https://doi.org/10.3390/app13084826 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6572-5358
https://orcid.org/0000-0003-4522-6815
https://orcid.org/0000-0002-1729-1946
https://orcid.org/0000-0002-1333-1760
https://doi.org/10.3390/app13084826
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084826?type=check_update&version=1


Appl. Sci. 2023, 13, 4826 2 of 16

less energy consumption [4]. Furthermore, the HRAP performance can be accurately de-
scribed using only two variables: pH and dissolved oxygen [5]. However, microalgae are
very sensitive to variations in climatic parameters, such as temperature and irradiance [6,7],
particularly photosynthetically active radiation (PAR).

Therefore, to manage these biological systems, it is important to use climatic data and
their long-term estimates to adopt adequate irrigation strategies in areas with water scarcity
to optimize crop productivity or for WWT with HRAP systems. In this case, it is possible to
estimate, with appropriate simulation programs, not only the microalgal productivity in
the process and estimate the energy generation by means of biogas and its use as an energy
source in the plant itself but also the efficiency of the WWT system.

On the other hand, a Typical Meteorological Year (TMY) [8] developed by Sandia
National Laboratories is a time sequence widely used to describe the most likely meteo-
rological conditions (including solar radiation, temperature, humidity, and others) in an
arbitrary location. It is made up of 12 months statistically selected and concatenated from a
series of years to generate a complete year [9], which offers a representative climatology at
a location in the long term [10]. The variability of the meteorological series generated by
this methodology is greater than that of a series of variables consisting of climatic averages.
However, a TMY is not necessarily a good indicator of the climatic conditions of a specific
year in the future or extreme meteorological events. TMYs have been used in the simula-
tion and estimation of energy produced for different renewable energy technologies and
energy efficiencies, such as SAM (https://sam.nrel.gov/) (accessed on 6 September 2022),
PVSyst (https://www.pvsyst.com/) (accessed on 6 September 2022), ESP-r (https://
www.strath.ac.uk/research/energysystemsresearchunit/applications/esp-r/) (accessed
on 6 September 2022), DOE-2 (https://www.doe2.com/) (accessed on 6 September 2022),
TRNSYS (http://www.trnsys.com/) (accessed on 6 September 2022), EnergyPlus (https:
//energyplus.net/) (accessed on 6 September 2022), and others.

As has been said before, variability due to changes in climatology has a great impact
on crop productivity. In this way, agricultural production models would require a long-
term description of the climatology of the location to obtain estimates of the crop yield.
In this context, TMY has been used in studies on greenhouse designs [11–13], as well as
for the development of an optimal irrigation scheme for different crops under external
conditions [1,9,14]. Furthermore, it could be used in the hypothetical simulation of hybrid
energy systems based on the use of semitransparent photovoltaic energy in microalgae
production greenhouses [15] or to study the appropriate material for the greenhouse to
reduce its energy consumption as much as possible [16].

As far as has been possible to review, the Typical Meteorological Sequence (TMS)
concept has not been applied to study the behavior of a WWT in a HRAP, considering a
representative typical meteorological series corresponding to the hydraulic retention time
necessary for WWT. A TMS made up of seven consecutive days, then called a Typical
Meteorological Week (TMW), could be analyzed as a period comparable to the water
retention time to be treated in the HRAP (our case study), although the typical period can
vary, depending on its application. Therefore, it may be useful in the long term to know
in which seasons of the year the system can be in operation and when it can be stopped,
depending on the climate of the location. It may also be useful in the identification of
optimal sites for the implementation of this system, since it is expected that the process
should not be stopped due to excess or a lack of solar irradiance or temperature.

The main objective of this paper is the development of a methodology to generate a
Typical Meteorological Sequence, a week for our case study, representative of each meteo-
rological season. For this, the work is divided into the following sections: (1) description
of the Sandia methodology, (2) case study, with an indication of the locations where the
TMW are generated in the Madrid region, (3) application of the TMW methodology for
each season of the year, and finally, the (4) results and discussion.

https://sam.nrel.gov/
https://www.pvsyst.com/
https://www.strath.ac.uk/research/energysystemsresearchunit/applications/esp-r/
https://www.strath.ac.uk/research/energysystemsresearchunit/applications/esp-r/
https://www.doe2.com/
http://www.trnsys.com/
https://energyplus.net/
https://energyplus.net/
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2. Methodology

Since the 1980s, a considerable number of studies have been presented for the gen-
eration of TMY using equations from Finkelstein-Schafer (FS) statistics according to the
methodology proposed by Sandia National Laboratories. These studies are mostly estab-
lished with different climatic indices, weighting coefficients, and persistence criteria in
the final process of selecting the appropriate sequences. In this work, to determine the
importance of meteorological parameters in the growing period of microalgae in HRAP
for WWT or plants in agriculture for crops, the Sandia methodology was used considering
different scenarios of weighting coefficients and dividing the dataset into intervals to define
the FS statistic.

2.1. Sandia National Laboratories Methodology

The Sandia methodology is widely present in the literature and turns out to be one of
the most common methods for calculating a TMY [8,17–20]. The TMY is obtained from mul-
tiannual historical series, for instance, 30 years (climate cycle), of different meteorological
parameters: among others, temperature (mean, maximum, minimum, and range) and solar
irradiance (global horizontal irradiance). At first, these parameters were data measured at
the study site (26 SOLMET stations) for 23 years beginning in 1953 and extending through
1975 [8]. From the available daily time series, the Sandia methodology selected 12 Typical
Meteorological Months (TMM) to establish information on the annual variability of the
parameters studied. Using the FS statistic, a TMM is chosen for each of the 12 calendar
months of all the years available in the time series. This was done by assigning a weighting
factor (wf) to the meteorological parameters considered, resulting in a reduction in the
amount of data, losing the least amount of information as possible [21,22]. The wf can vary,
depending on the importance of the variable [23]. The dataset achieved represents a typical
year of reliable data in the simulation of energy of renewable energy technologies [20].

In addition to using FS statistics for generating a TMY, some studies introduced other
approaches, such as the principal component analysis or genetic algorithms [24,25]. There
are other methodologies, different from those listed above, based on the availability of
meteorological data and the application of the generated sequence. Among them are the
Test Reference Year (TRY) [26,27], the Design Reference Year (DRY) [28], and the Short
Reference Years (SRY) [29]. To date, these methodologies have had remarkable results
compared to average long-term weather data from meteorological stations [19,21,30,31].

2.2. Case of Study

Crop simulation is important to know the morphological characteristics of the crop
according to the meteorological parameters and to anticipate in decision-making on agricul-
ture, food security, climate change, energy saving, etc. [32,33]. To address the importance
of meteorological influence, in this work, the application of a modified methodology to
generate a typical weather sequence is applied; in this case, a TMW is applied in order to
be used in the growth simulation of microalgae in a HRAP in the Madrid region. On the
other hand, studies have been done on microalgae productivity as a raw material in the
generation of high value-added products or as a source of energy. Therefore, some authors
have used estimates of climate variables (Cligen) to incorporate them into microbial growth
models to estimate microalgae production [34,35].

Microalgae are phototrophic microorganisms that grow rapidly and reproduce in
hours. Therefore, microalgae generate a large amount of biomass in a relatively short time
compared to other living species.

Biomass production and WWT are affected by uncontrollable meteorological parame-
ters that vary throughout the cultivation period. Among these parameters, the temperature
and solar irradiance between 400 and 700 nm (PAR) [36] are indispensable for microalgae
growth [37–41]. The work carried out in [37] shows that the observed reduction in the
mean daily PAR radiation entering the greenhouse affects the plant metabolism. The same
effect is observed when the temperature stress is applied to the crop [42].
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Therefore, due to the short hydraulic retention time for microalgae development, a
TMS per meteorological season is studied using the data for the Madrid region. The four
TMWs to be generated, one for each meteorological season, are based on the PAR and
temperature in 18 wastewater treatment plants (WWTP) that already exist in the Madrid
region, as shown in Figure 1.
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Due to the availability of simultaneous PAR and temperature data in these locations
of WWTPs, a 15-year set of PAR and daily mean, maximum, and minimum air temperature
values was used. PAR has been obtained from Kato bands, provided by the spectral
resolved irradiance (SRI) of the Satellite Application Facility on Climate Monitoring (CM-
SAF), which belongs to the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) [43]. The daily mean temperature was obtained from the European
Center for Medium-Range Weather Forecasts (ECMWF) [44]. The period used in the present
study was 1991 to 2005, with a spatial resolution of 0.125◦ × 0.125◦.

These four parameters are then grouped into a matrix in which two additional columns,
the temperature range and the solar day length, were added by calculations. The latter is
used to take into account the photoperiod; that is, the number of solar hours during which
microalgae are exposed to PAR and the maximum possible duration of the solar day [45].

Madrid is almost located in the center of the Iberian Peninsula (between 41.15◦ N and
39.88◦ N latitude and between 3.05◦ W and 4.57◦ W longitude) on the Central Plateau,
and the altitude ranges from 476 to 2428 m and the average is 678 m above sea level,
with a surface area of approximately 8000 km2. The orography of the Madrid region
is characterized by the presence of the Central Mountain Range in the north and west
of the territory, while the remaining areas are the plains and the Tajo River Valley. The
climate of the region is strongly influenced by its orography. Therefore, in the range
and its surroundings, there is a mountain climate (Dsc according to the Köppen-Geiger
classification) [46–48] and an oceanic-Mediterranean climate (Csb). On the other hand,
there is a typical Mediterranean climate (Csa) in the plains and a semi-arid climate (BSk)
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in the southern areas and around the Tajo River Valley. This variation in climate could be
estimated by generating TMS that reflect this variability in the growth of microalgae.

2.3. Applying the TMS Methodology

The growth and productivity of microalgae is challenged by multiple cultivation pa-
rameters, such as pH, nutrients, light, temperature, agitation, cultivation medium, etc. For
our case, only physical parameters, solar irradiance (PAR and solar day length), and tem-
peratures are considered in this scientific approach to study the effects of both parameters
on microalgae activity.

Therefore, the existence of values of these parameters at which the culture is at its
optimum level or not leads us to consider different weight factor cases for temperature
and irradiance. For this purpose, an approach based on TMY methodologies is used
to determine the importance of the meteorological parameters in the growth period of
microalgae. Moreover, as these two cultivation parameters change significantly between
two meteorological seasons, a seasonal approach is adopted. Each season is examined
separately, following a multistage process.

Firstly, the whole set of data available (15 years in our case study) has been distributed
in the four seasons (Ew = 1, 2, 3, 4): 1 = spring (March–May), 2 = summer (June–August),
3 = autumn (September–November), and 4 = winter (December–February) in that order.
These seasons are based on the annual temperature cycle and not on the astronomical
seasons, so there is a clear transition between them. For each location, there is a time
series corresponding to 14 seasons (Ay = 1, 2, . . . , 14) for each of these four weather seasons.
Thereafter, a period of time is identified as follows EwAy. For example, E1A4 represents the
spring season (E1) of 1994 (A4), which is the first spring of the 14 spring seasons that we
have between March 1991 and May 2004. Additionally, E4A14 represents the winter season
that starts in December 2004 and ends in February 2005.

Since it is intended to characterize one week (Sp) over a season, and a week is a set of
seven consecutive days (not necessarily beginning on Monday and ending on Sunday), the
proposal is based on an increase in the available data so that the number of candidate weeks
over the study period increases. In addition, for a given season, the weeks are constituted
in such a way that there is a discontinuity when passing from one year to the next. In other
words, in a sequence (week in our case), we cannot have days that come from two different
years. This procedure will generate p weeks from the q available days per meteorological
season (dq) in the following way:

EwAy =
{

d1, d2, . . . , dq
}

S1 = {d1, d2, . . . , d7}, S2 = {d2, d3, . . . , d8}, . . . Sp =
{

dq−6, dq−5, . . . , dq
}

where p = q − 6. This represents an increase of nearly 700% in the number of candidate
weeks for a season in each year (season) of the time series. The data obtained (all 7-day
packages) represent, for example, all candidate weeks for all spring seasons between
March 1991 and May 2004. The same has been done for the other meteorological seasons.
Therefore, this procedure generated a good number (q) of candidate weeks for each of these
four weather seasons: 1204 for spring, 1204 for summer, 1190 for autumn, and finally, 1184
for winter.

Thereafter, for the entire dataset corresponding to each season and for each week
(of each season), a Cumulative Distribution Function (CDF), Equation (1), is determined
for each one of the six selected meteorological parameters: PAR, solar day length, mean,
maximum, minimum, and temperature range.

The CDF of each meteorological parameter (x) was calculated by classifying the dataset
into equally sized intervals, often called lags, because the size of the long-term data is
different from that of short-term data. This is why it is interesting to use lags to perform
Equation (2). Thereafter, the number n of observations is equal to the number of lags (n).



Appl. Sci. 2023, 13, 4826 6 of 16

Finally, the observations are arranged in ascending order x1, x2, . . . , xn. The CDF of each
observation is given by a monotonically increasing step function defined by:

CDF(x) =


0 for x < x1

(k−0.5)
n for xk ≤ x ≤ xk+1

1 for x > xn

(1)

where k is the order number from 1 to n − 1.
Then, the FS statistics of each sequence (in our case one week) for each given parameter

(x) are obtained from the following Equation (2). In other words, the FS statistics for the
candidate week are obtained by calculating the differences between the CDF (defined in
Equation (1)) for this week (short-term) with the CDF for all the weeks contained in the
corresponding weather season (long term) for each parameter and location.

FS = 1
n

n
∑

i=1
δi

δi = |CDFlt(xi)−CDFst(xi)|
(2)

with CDFlt and CDFst as the long-term and short-term CDF of parameter x.
A weighted sum (WS) of the FS statistics corresponding to each parameter (FSj) of

each week is calculated by applying a weight factor (wfj), where m is the number of
meteorological parameters:

WS =
m

∑
j=1

wfj·FSj (3)

The weighting factor chosen will depend on the importance that each parameter has
on the growth of microalgae and must comply with:

m

∑
j=1

wfj = 1 (4)

Following the process, the ‘best’ candidate weeks (applying different options of wfs)
are chosen according to a proportion determining the impact on the growth of microalgae.
Thus, the proposal is to analyze the influence that these wfs have on the ranking of candidate
weeks for a TMW.

Indeed, the generation of TMYs was done using different climate parameters and
different weighting factors [10,17,25,45,49,50]. All these proposals are essentially similar;
the main differences are the climate parameters to be included (type and quantity) and
their corresponding weighting factors.

The studied parameters: temperature (mean, maximum, minimum, and range); PAR;
and solar day length play an important role in the development of a TMS. However, in
our case study, they do not have the same impact on microalgae productivity. Therefore,
some meteorological parameters may be more important than others. The most influential
parameters receive the highest weighting factor (wfj), which is considered representative of
their impact on microalgae growth.

In Table 1, nine scenarios with different wfs are proposed to test different options of
wfs. This will allow us to check the robustness of the methodology. The idea is to give equal
importance to the temperature parameters—maximum (Tmx), minimum (Tmn), mean
(Tme), range (Trg), solar irradiance, PAR, and solar day length (Nsol).

Finally, the most representative sequence—week, in our case—among the five best-
candidate weeks is obtained by determining the frequency of repetition of the candidate
weeks, taking into account their persistence according to the different lags and wfs. Fur-
thermore, the final decision on the choice of the TMW is also affected by its position in
the particular season period. This position is validated by calculating the difference in
Nsol between the day in the middle of the weather season and the fourth day of the candi-
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date week, Equation (5). This was done to avoid extreme values for a season that could
compromise expected results. The difference in Nsol is defined as follows:

∆Nsolwq =
∣∣∣Nsolwq/2 −Nsolw4

∣∣∣ (5)

where Nsolwq/2 represents the Nsol of the fourth day of the week in the middle of the
considered weather season (w = 1, 2, 3, and 4 for spring, summer, autumn, and winter).
Nsolw4 is Nsol of the fourth day of the given candidate week.

Table 1. Weighting factor (wf) options to obtain the weighted sum.

Parameters wf_1 wf_2 wf_3 wf_4 wf_5 wf_6 wf_7 wf_8 wf_9

Tmx 0.10 0.05 0.05 0.10 0.05 0.05 0.05 0.05 0.10
Tmn 0.10 0.05 0.05 0.10 0.05 0.05 0.05 0.05 0.10
Tme 0.30 0.40 0.30 0.25 0.25 0.45 0.40 0.40 0.20
Trg - - - 0.05 0.05 0.05 0.05 0.05 0.10

PAR 0.30 0.20 0.30 0.25 0.30 0.20 0.30 0.15 0.20
Nsol 0.20 0.30 0.30 0.25 0.30 0.20 0.15 0.30 0.30

3. Results and Discussion

Although microalgae growth is affected by several physicochemical parameters, such
as temperature, light, pH, salinity, nutrients, and others, the results and discussion pre-
sented in this paper are limited to the input of solar energy and temperature.

The five weeks with the lowest WS values were selected for each WWTP. The selected
TMW has a notable persistence and a low difference in ∆Nsolwq . The persistence of a week
corresponds to the number of times it appears in the selection for different weighting factors
and lag. By broadening the final choice criteria with more weighting factors and lags, a
sequence of new candidate weeks emerges that might be different from their predecessors.
In some cases, the same weeks are repeated but in a different order. Finally, the selected
TMW is supposed to present the long-term characteristic properties of the meteorological
data. The same process is adopted for each of the four meteorological seasons for each of
the 18 WWPTs.

To facilitate the presentation of the results, only the details of the long-term and
weekly statistics are presented in the following tables. The rest of the results are given
in Appendix A. Table 2 shows the seasonal quarterly statistics for the Colmenarejo Este
location during the period 1991 to 2005. It includes the mean and median of each of the
six parameters for the different seasons, as well as the standard deviation, which provides
information about the average dispersion of each of these. A standard deviation between
2.48 and 6.10 is observed for the temperature parameters. The PAR has a high standard
deviation with values distributed over a range between 16.35 and 28.99, while the Nsol
is about one for spring and autumn and less than one for summer and winter. The daily
or seasonal variability of these growth parameters significantly affects the production
of microalgae. Taking into account seasonal variations, it can be shown that winter has
unfavorable meteorological conditions with less light, very low temperatures, and an
inadequate photoperiod for microalgae growth. Summer offers the appropriate ranges of
values to maximize productivity, while spring and autumn are unfavorable for microalgae
metabolism. Extreme variations in these parameters can be observed throughout the year
and can have inhibiting effects on microalgae.

Due to the large number of weeks to evaluate nine wf options (Table 1), the WS of the
FS statistics for the different parameters are not presented in tabular form in this article.
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Table 2. Long-term daily statistics in Colmenarejo Este.

Spring

Temperature (◦C) Solar Irradiance (W/m2)
Tmx Tmn Tme Trg PAR Nsol

Mean 16.25 5.40 10.84 10.85 91.26 13.05
Median 16.05 5.11 10.45 10.98 92.99 13.13

Av. Std. Des 4.81 3.41 3.97 3.43 28.99 1.04

Summer

Temperature (◦C) Solar irradiance(W/m2)
Tmx Tmn Tme Trg PAR Nsol

Mean 28.46 15.54 22.29 12.91 126.57 14.35
Median 29.21 16.00 22.88 13.30 130.40 14.58

Av. Std. Des 4.41 3.26 3.80 2.48 20.52 0.57

Autumn

Temperature (◦C) Solar irradiance(W/m2)
Tmx Tmn Tme Trg PAR Nsol

Mean 17.27 8.00 12.39 9.27 61.25 10.91
Median 16.71 8.06 12.06 9.42 58.03 10.85

Av. Std. Des 6.10 4.54 5.18 3.35 26.51 1.02

Winter

Temperature (◦C) Solar irradiance(W/m2)
Tmx Tmn Tme Trg PAR Nsol

Mean 8.61 0.50 4.10 8.11 39.68 9.63
Median 8.54 0.12 4.12 8.00 41.24 9.39

Av. Std. Des 2.91 2.98 2.65 3.07 16.35 0.55

Table 3 shows the results obtained for the spring season in the Colmenarejo Este
location: each cell shows the number of the candidate week corresponding to a set of
weight factors (column) and a number of lags (rows). For each pair of ‘weighting factors
set and lag size’, we present the five best candidates ordered from top to bottom according
to the minimum WS value. In the case of Colmenarejo Este, the total number of weeks
analyzed is 1204, so that—for example—week number 235 represents the sequence of seven
days that begins on 2 May 1993.

The TMW for each season and each of the 18 locations are given in Table A2. In this
table, only the first day of the selected week is given. Although the years of the selected
weeks are not identical, it can be observed that there is a slight difference in the periods
(months and days) of the year for the sites studied. This difference could be due to the
variations of the average temperatures that decrease with the latitude. However, the
variations of the PAR between locations are very small and are due to the small differences
in latitude from one point to another. The latter may have little influence on the expected
results, especially since the RAP difference is very little between locations. Other factors
that also play a very important role in the generation of weeks are the wfs assigned to
the variables and the lag number (Table 3). If we focus on one column (wf value) from
Table 3, we can see that almost the same weeks come back with different positions when we
change the lag number. Likewise, when we look at a lag number, the trend of results also
changes each time we change the distribution of wfs and in the same sense as previously
mentioned, hence the interest in choosing several wf options that can compensate for the
lack of information of the meteorological parameter with the most important impact on the
growth of microalgae.
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Table 3. The candidate weeks of the spring season in Colmenarejo Este presented for different sets of
weighting factors and lag sizes.

lags
wf wf_1 wf_2 wf_3 wf_4 wf_5 wf_6 wf_7 wf_8 wf_9

lags = 10

1082 1082 642 641 642 235 642 235 235
641 235 235 235 235 641 235 641 641
642 641 641 642 641 642 641 642 642
235 642 1082 1082 1081 1081 1081 1082 378
507 1081 1081 378 507 1082 1082 1081 1082

lags = 20

642 642 642 642 642 642 642 642 642
1082 1081 1081 641 641 235 641 235 235
641 1082 641 235 235 1081 235 641 641
496 641 235 1082 1081 641 1081 1081 1082
235 235 507 496 507 1082 1082 1082 864

lags = 30

642 642 642 642 642 642 642 642 642
1082 1082 507 235 235 1081 235 235 235
496 1081 1081 641 641 235 1081 1081 641
641 641 641 1082 507 641 641 939 378
507 496 1082 496 1081 1082 507 641 1082

Table 4 shows the information for all generated candidate weeks for the spring season in
Colmenarejo Este that are represented in Table 3. In Table 4, the number of repetitions of these
generated candidate weeks is also shown, which are represented by their order number in
the sequence of 1204 spring weeks. Once a candidate week is selected, its sequence number
identifies the start of the week by giving the corresponding year, month, and day.

Table 4. Candidate weeks in the Colmenarejo Este location in the spring season.

Number of Week Frequency Year Month Day Nsolw
4 ∆Nsolw

q

235 24 1993 5 2 13.91 0.78
378 3 1995 4 3 12.64 0.49
496 5 1996 5 5 14.05 0.92
507 8 1996 5 16 14.41 1.28
641 27 1998 4 8 12.91 0.22
642 27 1998 4 9 12.96 0.18
864 1 2001 3 4 11.31 1.82
939 1 2001 5 18 14.44 1.31

1081 18 2003 4 18 13.35 0.21
1082 21 2003 4 19 13.39 0.26

The Nsol of the fourth day (Nsolw4 ) of each of these candidate weeks is also given in
this table, as well as the absolute value of the difference

(
∆Nsolwq

)
between the Nsol of the

fourth day of the week in the middle of the season
(

Nsolwq/2

)
and the Nsol of the candidate

week (Nsolw4 ). This difference allows us to appreciate the position of the week in relation to
the extremities of that season. As mentioned above, this avoids having a typical week with
weather conditions closer to the earlier or later season. Therefore, the selected TMW has
the highest frequency of occurrence. In the case event that this frequency of occurrence is
equal, then the typical weather week would be the one with the lowest value of

(
∆Nsolwq

)
.

For example, the Nsol on the fourth day of the week in the middle of the spring season in
the Colmenarejo Este location is 12.96 h.

According to the different weeks presented in Table 4, the frequency of occurrence
in week 641 is the same as in week 642. This coincidence in the number of occurrences
can be explained by the fact that these two weeks differ by one day: one starts on 8 April
1998 and the other on 9 April 1998. Therefore, the final choice of the representative week
of spring meteorological conditions in Colmenarejo Este is given by the week with the
lowest

(
∆Nsolwq

)
value. In the case of Colmenarejo Este, week 642 is the typical week that

represents the spring weather conditions for the period 1991 to 2005.
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The Madrid region is not very large, and consequently, a small difference of the
order of magnitude for both PAR and temperature is observed in a given season when
moving from one locality to another (Figures 2 and A1–A3). This can also be seen in
Tables 2 and A1 (Appendix A), in which the statistics of long-term meteorological data are
given for four locations.
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Figure 2. Daily variations of the daily mean values of temperature (mean, maximum, and minimum)
and PAR for the selected TMWs for each season in Colmenarejo Este from 1991 to 2005.

The daily mean values of the TMW parameters for each season were obtained, and the
variability of some parameters was plotted, which is illustrated in Figure 2, showing the
daily variation of the mean values of PAR and temperature indices for the different seasons.
Figures 2 and A1–A3 indicate that, for both meteorological parameters, there is inter-
seasonal variability. The highest PAR and temperature values are observed during summer,
and the lowest values are observed during winter. On the one hand, thermal oscillation is
greater between summer and winter. Since Madrid is located in the central peninsular area,
a possible explanation may come from the disappearance of the moderating effect of the
sea, which decreases as one moves away from the coast. Furthermore, Figures 2 and A1–A3
show that the temperature range is narrower in winter. The spring and autumn seasons
have approximately similar average daily temperatures. However, the daily average PAR
is lower in autumn compared to spring, and its variability is sometimes similar to that
of winter in certain localities. This can be explained by the predominance of cloudy and
probably rainy skies at this time of year. In fact, cloudiness reduces insolation by obstructing
solar radiation.

4. Conclusions

In this work, a methodology for the generation of TMS for the simulation of photosyn-
thetic organism growth and productivity for WWT or agriculture is proposed. The selection
of potential sequences according to the growth period of the organism is performed by re-
sampling the available meteorological data, which, in our case study, increases the number
of candidate sequences by 700%.

Prior knowledge of the impact of meteorological factors would allow the optimization
of crop productivity, rational use of water, and evaluate the appropriate period during the
year for WWT in a HRAP systems with microalgae. It is relevant to take into account the
long-term variability of physical parameters among the seasons to develop sustainable
systems. The advantage of TMS data is that they are suitable to overcome computational
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power limitations when multiple simulations are needed to have an overview of the
biological system behavior as a function of local climatic conditions.

The TMS approach has allowed to generate a typical sequence called TMW intended to
simulate the growth of microalgal biomass for biofuel production or sustainable wastewater
treatment in a HRAP. For the generation of the TMW in our case study, once the most
relevant climatic parameters were identified, a detailed exam of the different weight
factors for each of the variables considered was performed to ensure the robustness of
the methodology.
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Table A1. Long-term data statistics for four sites.

FRESNO-RIBATEJADA
Spring Summer Autumn Winter

Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.

Tmx 16.36 16.20 4.83 28.55 29.41 4.38 17.34 16.75 6.09 8.73 8.62 2.91
Tmn 5.55 5.25 3.43 15.67 16.13 3.29 8.11 8.22 4.54 0.68 0.27 2.97
Tme 10.95 10.52 4.00 22.41 23.01 3.78 12.46 12.17 5.16 4.25 4.29 2.63
Trg 10.81 10.94 3.45 12.88 13.30 2.46 9.24 9.45 3.37 8.05 7.96 3.10

PAR 93.53 94.58 28.07 126.61 130.02 19.44 62.46 59.39 26.16 40.31 41.47 16.22
NSol 13.05 13.13 1.04 14.35 14.59 0.58 10.91 10.85 1.02 9.62 9.39 0.55

RIOSEQUILLO
Spring Summer Autumn Winter

Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.

Tmx 15.21 14.99 4.76 27.06 27.75 4.44 16.23 15.69 6.02 7.80 7.73 2.95
Tmn 4.22 4.05 3.39 13.84 14.18 3.22 6.83 6.99 4.40 −0.24 −0.57 2.99
Tme 9.69 9.37 3.92 20.72 21.27 3.76 11.24 10.95 5.00 3.31 3.31 2.65
Trg 10.99 11.00 3.59 13.22 13.61 2.71 9.39 9.44 3.56 8.03 7.93 3.12

PAR 85.56 87.74 30.37 121.60 127.06 23.67 56.75 53.00 26.28 36.83 38.15 16.25
NSol 13.07 13.15 1.05 14.38 14.62 0.58 10.89 10.83 1.04 9.59 9.36 0.56

VALDELAGUNA
Spring Summer Autumn Winter

Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.

Tmx 17.36 17.14 4.93 29.82 30.67 4.35 18.24 17.70 6.16 9.49 9.36 2.90
Tmn 6.49 6.14 3.51 17.10 17.63 3.35 9.00 9.01 4.73 1.25 0.92 3.06
Tme 11.92 11.43 4.09 23.76 24.35 3.80 13.37 12.99 5.32 4.92 5.00 2.66
Trg 10.87 11.18 3.44 12.71 13.07 2.31 9.24 9.51 3.28 8.24 8.27 3.18

PAR 94.36 95.49 27.66 127.23 130.60 18.73 63.75 60.96 25.94 41.55 42.45 15.88
NSol 13.04 13.12 1.02 14.32 14.55 0.57 10.92 10.86 1.01 9.66 9.43 0.55

Table A2. First day of the Typical Meteorological Week of each season for each of the EDAR stations.

Site Season Year Month Day Site Season Year Month Day

ARANJUEZ

Spring 1994 03 20
ORUSCO DE

TAJUÑA

Spring 2003 04 20
Summer 1997 06 20 Summer 1995 06 19
Autumn 1993 11 06 Autumn 1996 11 20
Winter 1996 12 18 Winter 1992 12 18

BATRES

Spring 1993 05 02
PEZUELA DE
LAS TORRES

Spring 1993 05 02
Summer 1991 06 19 Summer 1997 06 15
Autumn 1996 10 19 Autumn 1996 09 08
Winter 1996 12 14 Winter 1994 12 16

COLMENAREJO
ESTE

Spring 1998 04 09

RIOSEQUILLO

Spring 2002 04 09
Summer 1994 06 16 Summer 1994 06 17
Autumn 1996 09 20 Autumn 1994 10 13
Winter 1996 12 18 Winter 2000 12 18

CONJUNTA DE
GASCONES

Spring 2003 04 19

ROBLEDO

Spring 1995 04 03
Summer 1991 06 19 Summer 1991 06 19
Autumn 1996 11 21 Autumn 1996 09 20
Winter 1995 12 14 Winter 1996 12 15

ESTREMERA

Spring 1993 03 17
ROZAS DE

PUERTO REAL

Spring 1996 03 27
Summer 1994 06 19 Summer 1998 06 19
Autumn 1996 11 20 Autumn 2001 09 27
Winter 1996 12 16 Winter 1996 12 15

FRESNO-
RIBATEJADA

Spring 2002 04 11
SAN MARTIN

NORESTE

Spring 2001 05 18
Summer 1991 06 19 Summer 2000 06 15
Autumn 1996 09 08 Autumn 1999 10 11
Winter 1995 12 14 Winter 1996 12 15

FUENTIDUEÑA

Spring 2003 04 20
SANTA Mª DE
LA ALAMEDA

Spring 1998 05 20
Summer 1995 06 19 Summer 1994 06 16
Autumn 1998 09 21 Autumn 1996 09 20
Winter 1996 12 16 Winter 1996 12 15
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Table A2. Cont.

Site Season Year Month Day Site Season Year Month Day

LOZOYUELA

Spring 2002 04 09
TALAMANCA
DEL JARAMA

Spring 2003 04 19
Summer 1997 06 20 Summer 1997 06 20
Autumn 1996 09 20 Autumn 1996 09 20
Winter 2000 12 18 Winter 1994 12 16

NAVALAFUENTE

Spring 2003 04 19

VALDELAGUNA

Spring 1993 05 02
Summer 1997 06 20 Summer 1997 06 20
Autumn 1994 10 13 Autumn 1998 09 21
Winter 1996 12 16 Winter 1992 12 18
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