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Abstract: Image dehazing has always been one of the main areas of research in image processing.
The traditional dark channel prior algorithm (DCP) has some shortcomings, such as incomplete
fog removal and excessively dark images. In order to obtain haze-free images with high quality, a
hybrid dark channel prior (HDCP) algorithm is proposed in this paper. HDCP first employs Retinex
to remove the interference of the illumination component. The variant genetic algorithm (VGA) is
then used to obtain the guidance image required by the guided filter to optimize the atmospheric
transmittance. Finally, the modified dark channel prior algorithm is used to obtain the dehazed image.
Compared with three other modified DCP algorithms, HDCP has the best subjective visual effects of
haze removal and color fidelity. HDCP also shows superior objective indexes in the mean square
error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and information
entropy (E) for different haze degrees.

Keywords: image dehazing; hybrid dark channel prior (HDCP); variant genetic algorithm (VGA); Retinex

1. Introduction

In recent years, with the increased demands of photography, transportation, military,
aerospace and other fields, image dehazing has gradually become a popular area of research
in image processing.

Researchers generally deal with haze from the perspectives of image enhancement
and image restoration. The former focuses on enhancing low-level features of images, such
as contrast, sharpness, edges, low-light stretch, histogram equalization, and homomorphic
filtering [1–5]. In the research on the physical degradation model of foggy images, the latter
method enriches image information lost in the fogging process by optimally estimating
the haze-free images [6–8]. However, the estimation of parameters in the degradation
model is a challenging task, as it is an ill-conditioned problem based on the unique given
condition of one hazy image. Therefore, some image restoration methods require additional
information or assumptions [9–11].

Dong [12] used a haziness flag to measure the degree of haziness, which obtains the
adaptive initial transmission value by establishing the relationship between the image
contrast and the haziness flag. The method has superior haze removal and color balancing
capabilities for images with different haze densities. In addition, Fattal [13] estimated the
irradiance of the scene and deduced the transmittance image based on the assumption
that the transmittance of the light and shadow of the object surface in the scene were
locally irrelevant. To deal with outdoor images in sand-dust environments, Park [14] used
successive color balance with a coincident chromatic histogram to adjust the pixels of
each color component based on the statistical characteristics of the green component. Yan
et al. [15] improved the dark channel prior theory and applied the contrast-limited adaptive
histogram equalization (CLAHE) method to enhance the optimized transmittance image.
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This method has made significant improvements over the original DCP method and can be
applied to the defogging of infrared dense fog images.

Han [16] presented the reason for underwater image degradation. The state-of-the-art
intelligence algorithms, such as deep learning in underwater image dehazing and restora-
tion, were surveyed, demonstrating the performance of underwater image dehazing and
color restoration with different methods. The paper introduced an underwater image color
evaluation metric and provided an overview of the major underwater image applications.
This provides great convenience for follow-up research. Zhang et al. [17] designed a fully
end-to-end dehazing network for single image dehazing named the dense residual and
dilated dehazing network (DRDDN). A dilated, densely connected block was designed to
fully exploit multi-scale features through an adaptive learning process. The deep residual
was used to propagate the low-level features to high-level layers. Li et al. [18] used an
adversarial game between a pair of neural networks to accomplish end-to-end photoreal-
istic dehazing. The generator learned to simultaneously restore the haze-free image and
capture the non-uniformity of haze to avoid uniform contrast enhancement. A task-driven
training strategy was proposed to optimize the object detection of dehazed images without
updating the parameters of the object detector. Qin et al. [19] proposed an end-to-end
feature fusion attention network (FFA-Net) to directly restore the haze-free image. The
network was composed of three parts: (1) a novel feature attention (FA) module, (2) a
basic block consisting of local residual learning and feature attention, and (3) an attention-
based different-level feature fusion structure. The feature weights were adaptively learned
from the FA module, giving more weight to important features. The experimental results
demonstrated strong progress in both indoor and outdoor defogging fields.

All of the above deep learning-based defogging methods have good defogging effects.
However, they also have certain drawbacks. These models may perform badly under
certain lighting conditions, such as strong sunlight and shadows. The models require a
large amount of training data, and the decreased size of training data may lead to overfitting
and poor generalization ability. Meanwhile, due to the large amount of computing resources
and data required to train these models, the costs for deployment can be high. The most
undesired part is the incompleteness of fog removal with varied haze densities for the
deep-learning-based demisting methods, especially for situations with high haze density,
which will be specifically stated in Chapter 3. The traditional defogging algorithm does not
have such problems.

The dark channel prior (DCP) method proposed by He et al. [20] is one of the most
famous single-image dehazing methods. DCP imposes the assumption that there exists an
extremely dark pixel in a local non-sky patch for every color channel of the image [21]. Due
to the computationally expensive drawback of implementing DCP with the soft-matting
method [22], some studies [23–25] have employed guided filtering, bilateral filtering, and
edge substitution to replace the soft-matting process. This significantly improved the
efficiency of DCP. Salazar-Colores [26] proposed a novel methodology based on depth ap-
proximations through DCP, local Shannon entropy, and fast guided filter to reduce artifacts
and improve image recovery on sky regions with a significant decrease in calculation time.
Peng [27] used the depth-dependent color variation, scene ambient light difference, and
adaptive color-corrected image formation model (IFM) to better restore degraded images.
This method produces satisfying restored and enhanced results. Therefore, the approach
has been approved to unify and generalize a wide variety of all DCP-based methods for
underwater, nighttime, haze, and sandstorm images. Singh [28] proposed a new haze
removal technique according to DCP, which integrates the dark channel prior with CLAHE
to remove the haze from color images. A bilateral filter was used to reduce the noise in
images, and it showed quite effective results in noise reduction and correcting uneven
illumination.

In this paper, in order to overcome the problems of deep, dark pictures and incomplete
defogging by the inaccurate estimation of atmospheric transmittance, the hybrid dark
channel prior (HDCP) is proposed. In HDCP, Retinex [29] is first utilized to remove the
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interference of the illumination component and improve the brightness of the image. The
atmospheric light intensity is further refined iteratively. Then, a tolerance-improved DCP
is introduced to obtain the dehazed image. In the algorithm, a variant genetic algorithm
(VGA) [30] is proposed to enhance the grayscale of the original image, which is used as
a guided filtering image to optimize the transmittance. In order to verify the algorithm,
the public datasets of O-HAZE [31] and NYU2 [32] are used as the experimental images.
Compared with other DCP-based algorithms, the average MSE by the proposed method
decreases by 26.98%. The average SSIM increases by 10.298%. The average entropy
increases by 7.780%. Compared with the conventional DCP, the result of the proposed
algorithm has higher brightness and a more complete degree of fog removal. There are no
serious image or color distortions.

2. Materials and Methods

Images with haze are characterized by uneven illumination, low visibility, and low
contrast. The atmospheric scattering model describes the degradation process of foggy
images [33] and is expressed as:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) represents the original image, and x represents the pixels. J(x) is the clear
image restored by dehazing. A is the atmospheric luminance intensity, and t(x) is the
transmittance.

The unknowns A and t(x), the keys to obtaining a clear image J(x), are generally
estimated in algorithms such as DCP.

DCP is designed based on a basic assumption, which is that, in most non-sky local
areas, there are some pixels with very low values in at least one color channel, approaching
0. Therefore, the relevant parameters are estimated as follows.

The atmospheric luminance intensity A is normally estimated from the pixels with the
highest fog concentration and highest brightness in the image [34]. The calculation of the
transmittance t(x) is as below [20]:

t(x) = 1−ω min
c∈{R,G,B}

(
min

y∈Ω(x)

(
Ic(y)

A

))
(2)

where Ω(x) is a local patch centered at x, Ic is a color channel of I, and ω = 0.95, which is a
constant to ensure the true image perception. It represents retaining a small amount of fog
in the resulting image to pursue the authenticity of the image, especially for distant objects.
In fact, the dual min function obtains the dark channel of the normalized haze image. It
directly provides the estimation of the transmission.

DCP has good defogging effects for landscape photos. However, the disadvantage of
DCP is color distortion in bright areas or areas with massive gray and white colors, which
results in dark dehazed images [35].

In order to solve the above problems, this paper proposes a hybrid dark channel prior
(HDCP) algorithm.

In Figure 1, Retinex is used in the preprocessing to remove the interference of the
illumination component. In the modified DCP, the atmospheric light intensity Ai of each of
the RGB channels is estimated iteratively after the dark channel is determined. Then, the
transmittance t(x) is optimized by guided filtering. The grayscale image of R(x) enhanced
by the variant genetic algorithm (VGA) is the guided image in the filter. Finally, the fog-free
image J(x) is obtained according to the atmospheric scattering model.
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2.1. Retinex Algorithm

Based on Retinex, the original image I is expressed as:

I(x) = R(x) · L(x) (3)

where I(x) is the original image, R(x) is the reflectance component, and L(x) is the illumina-
tion component.

The purpose of image enhancement based on Retinex is to estimate L(x) from I(x) and
thereby decompose R(x). In the meantime, the effect of uneven brightness is eliminated,
and the visual effect of the image improves.

Conventional Retinex has halo effects in areas with large brightness differences. In
this paper, McCann’s Retinex [29] is employed, as it is suitable for image enhancement for
images with shallow shading or uneven illumination. The reflectance component for the
center pixel in the window is expressed as:

Rc = R0 +
m

∑
i=1

Ic − Im−i+1(x)
2i (4)

where Rc is the final reflectance component estimation of the center pixel, and R0 is the
largest pixel value. Ic and Im are the logarithmic values of the center point and selected
point, respectively. i represents the indexes of different points. m is the total number of
selected pixels.

2.2. Modified DCP

The solution of the dark channel needs to first calculate the minimum of the RGB
components for each pixel and save it in a grayscale image with the same size as the original
image. Then the grayscale image is processed by the minimum filter.

In order to improve the estimation accuracy of atmospheric light intensity A, an
iterative method is introduced to distinguish the RGB channels. The scheme of the Ai is
shown in Figure 2.
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Ai is specified as:

An+1
i=R,G,B =

1
2
(An

i + R(xn+1)) x ∈ R̃ (5)

where R̃ is the top 0.2% points of the brightness value in the dark channel of R(x) in
descending order. The value of Ai is obtained by comparing and updating the average of
the corresponding pixel points in R̃ multiple times. Therefore, each iteration needs to be
compared with it. Through iteration, the points where the dark channel brightness is not
very prominent are taken into account.

Through the above method, the atmospheric light intensity Ai corresponding to the
RGB channels can be obtained.

In the optimization of transmittance by the soft-matting method [22], the grayscale
image of the original image is first employed as the guidance image. The transmittance
matrix is secondly employed as the guidance image of the guided filter to filter the trans-
mittance itself to preserve the edges. The fog-free image J(x) is finally obtained according
to Equation (1).

2.3. Variant Genetic Algorithm (VGA)

The accuracy of the grayscale image as a guidance image affects the transmittance
optimization. In this paper, a variant genetic algorithm (VGA) is used to obtain the transfer
function. The role of the transfer function is to map the original image to its corresponding
high-contrast image. The guidance image Rg(x) for guided filtering is thus obtained. The
scheme of the VGA is shown in Figure 3.
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The illumination components from Retinex are firstly converted into grayscale image,
which will be used as the guidance image. VGA is used to update the transfer function by
varying the parameter set. The feedback function will also be updated every turn for the



Appl. Sci. 2023, 13, 4825 6 of 14

subsequent update of the transfer function. The fitness function is used to verify the quality
of the current transfer function. A new parameter set is generated through crossover and
mutation to obtain a new transfer function.

The low-contrast image (pixel values range from Iin-min to Iin-max) is converted into
a high-contrast image (0~255) by mapping the transfer function. The generated transfer
function should remain monotonically increasing. All the points less than Iin-min are set to
0, and the points greater than Iin-max are set to 255. The generation of the transfer function
is derived from the exploration point from the lower left (Iin-min,0) point to the upper right
(Iin-max,255) point. Additionally, there are three selection directions of the exploration point
(upper, right, and upper right). The whole process seems to draw a curve from the bottom
left to the top right. The selection of the next derived point is based on the roulette wheel
technique, and the selection probability P(i) is calculated according to neighborhood points
as:

P(i) =
(1 + τi)α ×

((
1 +

(
ki
γ

)10
)
× ηi

)β

∑i∈G(i) (1 + τi)α ×
((

1 +
(

ki
γ

)10
)
× ηi

)β
i = 1, 2, 3 (6)

where G(i) is the set of neighborhood points around the exploration point. i, with the
values of 1, 2, 3, represents the upper, right, and upper-right domains, respectively. Ti is
the magnitude of the feedback function, which is determined by the last iteration. It is used
to control the corresponding probability. The larger the feedback function is, the greater
the probability in this direction becomes. Hi is the heuristic value. Ki represents the current
exploration point, which is used to record the distance traveled by the exploration point
in the horizontal and vertical directions. γ, α, and β are constants that can be changed by
VGA. Among these, α and β control the weight of the feedback function and the heuristic
value. Additionally, the combination of γ and ki can control the probabilities of moving up
or right.

The purpose of the heuristic value is to obtain a monotonically increasing transfer
function. The specific settings of ηi are η1 = Cup, η2 = Cright, η3 = 1, with the values for the
rest of the areas being 0. The specific settings of ki are k1 = Iin-Iin-min, k2 = Iout, k3 = constant,
and it is set to 0 for any other neighbor. Therefore, for P(1) in the upper direction, k1 shows
the distance that the exploration point has moved to the right. Similarly, for P(2) in the
right direction, the value of k2 represents the distance that the exploration point has moved
upward. The parameters α, β, γ, Cup, and Cright are determined by the variant genetic
algorithm.

After selecting 20 exploration points for updating the transfer function, the feedback
function is updated as below:

τij(t + 1) = (1 + ρ)× τij(t) +
20

∑
l=1

∆τl
ij(t) (7)

where ρ is the reduction rate of the feedback function, set to 0.4. ∆τl
ij is the magnitude of

the feedback function updated by the l-th exploration point between points i and j, which
equals F/(30 × BF). F is the fitness value of the l-th exploration point. BF is the best fitness
value used to normalize the feedback function. The definition of F is as below:

F = 3
√

STD× ENTROPY× SOBEL (8)

where STD and ENTROPY are the global standard deviation and information entropy of
the grayscale image enhanced by the transfer function, respectively. The specific expression
is as follows:
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STD =

√√√√ 1
mn

m−1
∑

i=0

n−0
∑

j=0

[
Rg(i, j)− Rg

]2
ENTROPY = −

255
∑

i=0
pi · log2 pi

(9)

where Rg is the average value of Rg for pixels. Pi refers to the number of pixels whose gray
value is i in the image. Additionally, SOBEL is the average intensity of the grayscale image
obtained by applying the vertical and horizontal Sobel operators, respectively [36]. SOBEL
is defined as:

SOBEL = mean(|sobelv|+ |sobelh|) (10)

where sobelv and sobelh are the images obtained by applying the vertical and horizontal
Sobel operators, respectively. The mean(.) operator denotes averaging.

In VGA, the reproduction stage is carried out by crossover and mutation. The pop-
ulation size is set to 20. The reproduction transfers the parent parameter set (i.e., α, β,
γ, Cup and Cright) into a sequence by binary code (also called chromosomes). This paper
adopts a uniform crossing method with a probability of 85%. Mutations change the code
for perturbations with a probability of 0.05. In this algorithm, the mutation only changes
one of the 5 parameters in the set and is limited to 10% of the original values.

VGA controls the generation process of the transfer function. In the initial stage, VGA
needs crossovers and mutations in each iteration to achieve fast optimization. However,
in the subsequent iterations, the numbers of crossover and mutation need to be reduced.
Through the experiment, it is most appropriate to set the number of VGA iterations to 10,
considering the final effect and processing speed. At the same time, GA participated in
iterations 1, 2, 4, 6, and 9.

After the transfer function is obtained, the grayscale image of R(x) can be enhanced to
obtain the guidance image Rg(x), and guided filtering can be used to optimize t(x).

The problem of image color distortion is often caused by inaccurate estimation of
t(x) [37]. In this paper, the tolerance K is divided by the difference between the pixel value
Ri(x) and the atmospheric light intensity Ai to further ensure that the color of the restoration
result is not distorted:

Ji(x) =
I(x)− Ai

min(1, t(x) ∗max(K/ |Ri(x)− Ai|, 1))
+ Ai i = R, G, B (11)

The tolerance K is a constant whose value is between 0 and 1. Ri(x) and Ai are
normalized values; K/|Ri(x)− Ai| is used to multiply the transmittance t(x) to amplify
t(x).

3. Experimental Results and Analysis

In order to verify the effectiveness of the proposed algorithm, the public dataset
of O-HAZE with varied hazy densities is selected for comparison. In O-HAZE, the fog
is a real haze generated by a professional haze machine. The same visual contents are
recorded in both the hazy and dehazed conditions under the same light conditions. The
dehazing methods of Salazar [26], Peng [27], Yan [15], and Qin [19] are cited as comparisons.
The results are shown in Figure 4. DCP is the conventional dark channel prior dehazing
algorithm. FDCP is the method of Salazar [26]. GDCP is the method of Peng [27]. MDCP is
the method of Yan [15]. FFA is the method of Qin [19]. HDCP is the proposed method.
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Figure 4. Comparison of example pictures in the O-HAZE dataset. The processing results are,
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Group (a) has abundant colors. The results are entirely distinct. The restored pictures
of DCP and FDCP are too dark. The restored picture of GDCP has too much exposure,
which leads to the loss of the original color. Meanwhile, the fog in the distant woods in
the upper left of the picture is not completely removed. In order to show the line and
color details of the restored image, enlarged contrasts in group (a) are added at the bottom
of the figure, which focuses on enlarging the color cards placed in the figure. From the
results, it can be seen that the processed pictures of DCP and FDCP are too dark, and the
color contrast is low, which does not achieve the ideal situation. The results of GDCP are
seriously blurred, and the details are markedly lost. The results of MDCP have been greatly
improved, but the fog has not been completely removed. The FFA results are relatively
complete overall, but the image is a bit dark. The quality of the image restored by the
proposed method is significantly improved. The colors are richer and more realistic. The
contrast and clarity are better. The texture details are clear.

In group (b), the white of the chairs and the grey of the ground occupy a large part of
the picture. The fog concentration of the original picture is relatively high, which makes the
implementation of the dehazing algorithms more difficult. Additionally, the whole picture
is blurred, and the textures are notably missing. The result of DCP directly suffers from
severe color distortion. The result of FDCP has been improved, but the problems of dark
picture brightness and insufficient texture details still exist. The results of GDCP still have
the same problem. The brightness is too high, and the fog removal is incomplete. The result
of MDCP is more realistic, but the problem of incomplete mist removal still exists. The
result of FFA is generally grayish so that the entire photo appears unnatural. The results
of the proposed algorithm are better. The fog removal is more complete. The contrast is
higher. The picture is more realistic, where the contrast color card on the chair is more
clearly visible.

Group (c) mixes chairs, columns, and woods with more texture details behind them.
The colors of the columns and chairs are not uniform, and the details of the woods are
missing. The results of DCP are still dark and distorted. The overall appearance is bluish,
especially for the pillars on both sides. The results of FDCP are similar to DCP. However, the
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color tone of the columns is more realistic and reasonable. GDCP still has high brightness
and incomplete edge details. The resulting color of MDCP is biased towards situations
similar to grayscale images, probably due to the modification of the prior theory of dark
channels. The images of FFA have been improved significantly, but the contrast is slightly
insufficient. The detailed information on the ground is incomplete. The result of the
proposed method is more similar to reality, with significantly improved contrast and clarity.
The colors of the columns and chairs are more uniform and similar to the original image.

In group (d), the concentration of the fog in the picture is not uniform. There is more
fog in the upper middle of the picture. Additionally, this group of pictures has the richest
texture details. The picture of DCP is still dull, and there are more black blocks in the
grass, such as where the red box shows. The result of FDCP has been improved to a certain
extent. However, the texture details in the grass are still insufficient. The result of GDCP
has been completely degraded, and no valid information can be obtained. MDCP improves
the darkening of the image, but the green and yellow parts of the bushes are missing, and
the overall color is lost. In the result of FFA, the fog removal is incomplete, but the texture
details are relatively complete. The result of HDCP is more in accord with the real situation.
The fog removal is more complete. The texture details are rich. Additionally, there are
fewer black blocks as interference.

It can be seen that the method proposed in this paper has a wide range of applicability,
and it can also play a good role in defogging in the case of complex environments and
uneven fog concentration.

In order to further verify the performance of the proposed algorithm and objectively
evaluate the enhanced image enhancement quality, this paper adopts the mean squared
error (MSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and information
entropy (E) of the image as evaluation criteria.

(1) Mean squared error (MSE):

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− J(i, j)]
2

(12)

where I(i,j) and J(i,j) are the original and restored images with sizes of m by n.
(2) Peak signal-to-noise ratio (PSNR):

PSNR = 10 · log10

(
MAX2

I
MSE

)
(13)

where MAXI is the maximum possible pixel value of the picture. Generally, for uint8 data,
the maximum pixel value is 255.

(3) Structural similarity index (SSIM):

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (14)

where x, y are the two images. µx and µy are the pixel means of x and y. σ2
x and σ2

y are the
variances of x and y. σxy is the covariance of x and y. c1 and c2 are two constants used to
maintain stability and avoid division by zero.

(4) Information entropy (E):

E = −
255

∑
i=0

255

∑
j=0

3

∑
k=1

pijk· log2 pijk (15)

where i, j, and k are the sizes of the image. pijk means the probability of occurrence of pij in
channel k.
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The comparison of different algorithms is compared as follows. The best-performing
indexes are shown in bold.

In Table 1, the proposed method in this paper has the smallest MSE, indicating that
the method does not alter the images much.

Table 1. MSE of different algorithms.

Group DCP FDCP GDCP MDCP FFA HDCP

a 253.79 251.86 254.90 211.89 118.87 102.52
b 255.00 254.94 255.00 202.09 167.91 147.05
c 254.92 254.74 254.98 204.36 195.47 155.55
d 254.50 254.54 229.28 196.64 196.83 195.81

In Table 2, there is no significant difference in the statistical sense as well as in numeral
values for DCP, FDCP, and GDCP. The results show that the normal DCP and the other two
improved DCP algorithms have almost the same PSNRs. The PSNRs of MDCP and FFA are
relatively close. The proposed HDCP has the biggest PSNR. This indicates that the image
distortion degree of the processing result in this paper is the least.

Table 2. PSNR of different algorithms.

Group DCP FDCP GDCP MDCP FFA HDCP

a 24.09 24.12 24.07 24.87 27.38 28.02
b 24.07 24.06 24.06 25.08 25.88 26.46
c 24.06 24.07 24.06 25.02 25.22 26.21
d 24.07 24.07 24.53 25.19 25.19 25.21

As shown in Table 3, in terms of SSIM, FFA has the best processing results, and the
gap between HDCP and FFA is not significant, indicating that the processed images are
more similar to the original images.

Table 3. SSIM of different algorithms.

Group DCP FDCP GDCP MDCP FFA HDCP

a 0.6208 0.6534 0.4957 0.6719 0.7780 0.6795
b 0.4630 0.5876 0.3354 0.5447 0.6065 0.5466
c 0.5331 0.5813 0.5442 0.5344 0.6781 0.5881
d 0.5662 0.5710 0.4399 0.5075 0.4675 0.4737

For the entropy in Table 4, the method in this paper still has an absolute advantage.
The larger the value is, the richer the information contained in the restored image.

Table 4. Entropy of different algorithms.

Group DCP FDCP GDCP MDCP FFA HDCP

a 6.7481 6.8539 7.6196 7.4707 7.0780 7.6467
b 7.3246 7.2725 6.8576 7.6142 6.9880 7.8542
c 6.8611 6.8523 7.0751 7.4678 7.0364 7.4951
d 7.1376 7.4918 6.8495 7.7187 7.3524 7.7435

For generality, this paper processed all the images in the O-Haze dataset, containing
45 groups of foggy and fog-free photos. The average MSE, PSNR, SSIM, and entropy are
listed in Table 5.
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Table 5. Comparison of the overall objective evaluation results of different algorithms on the en-
hancement of the O-HAZE dataset.

Average MSE Average PSNR Average SSIM Average Entropy

DCP 254.81 24.07 0.3508 7.1909
FDCP 252.95 24.10 0.4179 7.0646
GDCP 253.29 24.09 0.4920 7.2142
MDCP 187.34 25.41 0.4648 7.2110

FFA 178.79 25.61 0.4723 7.0621
HDCP 173.14 25.75 0.4758 7.7280

Table 5 shows that the average PSNRs of all 6 methods are relatively close. The average
SSIM of HDCP is also in second place, and the gap between the first two algorithms is not
huge. Compared with other DCP algorithms, the average MSE of the proposed method
decreases by 26.98%. The average SSIM increases by 10.298%. The average entropy increases
by 7.780%.

In order to show defogging abilities for different haze densities, the public dataset of
NYU2 was then selected as the experimental object. The results are as follows:

In Figure 5, the first row is the images with the continuously increased fog densities
compared to the original image. The next rows correspond to the different restored images.
In the results of FDCP, as the haze densities increase, the images show that the fog is not
removed cleanly. The results of GDCP are unstable. The results of MDCP have a certain
stability, except for the last image. FFA has the same results as FDCP. However, its objective
evaluation indicators have deteriorated seriously. The proposed method in this paper can
still completely remove the influence of fog. The processing results are basically stable even
with the increase in haze densities.
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For generality, all 1750 photos of the public dataset of NYU2 were processed. Among
them, there were 250 individual scenes with 7 levels of haze densities. The evaluation
criteria were calculated, and the statistics of the results are as follows.

Table 6 shows that the proposed method in this paper still has a great advantage even
with different haze densities. The performances of HDCP are all higher than the values
of the compared algorithms. Among them, the average MSE decreases by 49.29%. The
average information entropy increases by 3.029%.

Table 6. Comparison of the overall objective evaluation results of different algorithms on the en-
hancement of the NYU2 dataset.

Average MSE Average PSNR Average SSIM Average Entropy

DCP 234.36 24.43 0.7026 7.4116
FDCP 230.58 24.50 0.8503 7.4222
GDCP 152.22 26.31 0.6649 7.2812
MDCP 179.09 25.60 0.7251 7.5161

FFA 154.55 26.24 0.7845 7.4289
HDCP 96.43 28.29 0.7780 7.6365

In summary, the proposed algorithm in this paper has better performance when
improving the quality of hazy images, with improvements seen in contrast and sharpness.
The details are more abundant. Moreover, the colors of the image enhanced by this
algorithm are closer to the reality, and the color fidelity is higher. Finally, when faced
with images of different fog densities, the method presented in this article exhibits strong
stability both in terms of supervisor vision and objective evaluation indicators.

4. Conclusions

In order to improve the contrast, sharpness, color fidelity, and visual effect of images
under hazy weather conditions, this paper proposes a hybrid dark channel prior. (1) The
original image was first processed by Retinex in order to remove the interference of the
illumination component and make the enhanced image more natural. (2) In order to
improve the DCP, the iterative method was employed instead of the conventional method
to calculate the atmospheric light intensity. (3) The variant genetic algorithm was employed
to enhance the guidance image to optimize the transmittance. (4) Tolerance was introduced
to prevent color distortion during the process.

This paper conducts subjective analysis and objective evaluation of different fog im-
ages. From the subjective analysis, it can be seen that the new algorithm has improvements
in image enhancement and detail preservation. The sharpness and contrast are significantly
improved. The visual effect is excellent. In terms of the O-HAZE dataset, compared with
other DCP algorithms, the average MSE by the proposed method decreases by 26.98%. The
average SSIM increases by 10.298%. The average entropy increases by 7.780%. At the same
time, the color fidelity of the enhanced image is high and closer to reality. The proposed
algorithm can effectively enhance foggy images, improving the visual effect and visibility,
contrast, and clarity of the image. The image is more realistic and natural.
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