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Abstract: Navigation systems are of interest for applications in both civilian and military vehicles.
Satellite navigation systems and inertial navigation systems are the most applied in this area. They
have complementary properties, which has led to a trend of integrating these systems. At present,
there are several approaches to GNSS/INS integration: loosely coupled, tightly coupled and deeply
coupled and many approaches to their modifications in dependence of application and arising
problems with measurements, such as lack of GNSS measurements or poor quality of GNSS and INS
measurements. This article presents an extensive review of the available modern approaches and
their modifications for integrating INS and GNSS measurements, arranging them and highlights the
main problems arising for the considered type of integration approach. The article includes a review
of various integration tools based on the Kalman filter and intelligent systems, INS mechanization
and features of development of an INS measurement error model that is necessary for integration, the
main problems of GNSS/INS integration and a comparative description of the solutions proposed
by the authors for solving these problems. The findings of this work are useful for further research
in the field of inertial and satellite navigation, as well as for engineers involved in the practical
implementation of integrated GNSS/INS systems.

Keywords: inertial and satellite navigation; GNSS/INS integration; tools and approaches to GNSS/INS
measurement integration

1. Introduction

The field of application of autonomously functioning navigation systems is growing
every day and includes applications in both civilian and military vehicles. Generally,
navigation systems can be divided into inertial navigation systems and satellite navigation
systems [1,2]. Inertial navigation systems determine the current position of an object based
on the measurement of the velocity and acceleration of the object. Satellite navigation
systems determine the position of an object based on measurements related to other objects,
in particular the moments of receiving a synchronized signal from navigation satellites that
is used for calculation of the ranges and pseudoranges of navigation satellites [1].

Satellite navigation systems (SNS) based on GNSS receiver subject to the availability of
measurements from four navigation satellites can provide an accuracy in determining the
position of an object up to 20 m, and accuracy improvement is possible through the use of
differential correction methods [3]. However, in cases when the satellite navigation system
consists of one navigation GNSS receiver with one antenna, it is impossible to estimate
the angular position of the object, which is a disadvantage in cases of application to flying
objects. In addition, satellite navigation systems are quite sensitive to external conditions:
the presence of obstacles in the form of vegetation and civil buildings, as well as blocking
the signals of navigation satellites [3,4].
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Inertial navigation systems (INS) are devices that are completely autonomous from
external conditions. They include sensors for measuring velocity and acceleration [5,6].
Modern inertial navigation systems are platform INS mechanically stabilized using a
special platform and strapdown INS (SINS) that are numerically stabilized using special
algorithms implemented in an additional computing device of the navigation system [6].
The raw output of the SINS is represented by the angular velocity and the specific force in
the associated coordinate system. The position and attitude of the object are determined by
integration using initial conditions. Thus, inertial navigation systems make it possible to
calculate the position of an object and its attitude. However, inertial navigation systems
with all their advantages have a significant drawback, which is that their accuracy decreases
over time. The presence of an error in the INS measurements leads to a large error in
determination of the object position when integrating the measurement data [6,7].

Thus, satellite and inertial navigation systems have complementary properties, which
has led to a trend of integrating these systems to obtain reliable autonomous navigation
systems. Currently, there are many techniques of SNS/INS integration. The simplest and
most obvious approach is to use the output data of the SNS on the position and velocity
of the object as initial conditions for the INS [7,8]. This technique is called INS with GPS
resetting. However, this technique has several disadvantages. In the most general case, a
GNSS with a single antenna provides only an estimation of the position and velocity of an
object, which will be used as initial conditions in the INS, while the initial conditions for the
angular velocity and attitude will be selected. An inaccurate choice of initial conditions for
the attitude for the INS will lead to an unlimited accumulation of errors. In addition, the
“correction” of the initial conditions for the INS is possible at those moments when the SNS
measurements are available. As is known, the operation of the SNS can be disrupted due
to intentional signal suppression or unintentional suppression associated with the presence
of obstacles. In this regard, using more advanced integration techniques is preferable.

Traditionally, more advanced integration techniques are based on the use of the
Kalman filter as a tool for estimating INS error based on the use of SNS measurements [8].
This approach is called complementary or GPS-aided INS.

The first technique based on the GPS-aided INS approach is called loosely coupled
integration technique. In a loosely coupled integration system, when obtaining measure-
ments of the SNS in the form of the velocity and position of the object, they are used to
construct a complementary vector of measurements of the Kalman filter, which estimates
the error of the INS. In the absence of SNS measurements, the estimated error of the INS is
equal to the predicted error of the INS in the Kalman filter. The resulting INS error estimate
is then subtracted from the INS measurements, thereby providing the output parameter of
the integrated system. In this case, the complementary measurement vector is the difference
between the measurements of the position of the object determined by the SNS and the
INS [7–12]. That is, the SNS has already implemented a solution to the navigation problem
of determining the position and velocity of an object in the presence of measurements from
four satellites. This integration scheme is the simplest but has obvious drawbacks. Namely,
if signals from four navigation satellites are unavailable, the SNS will not determine the
position of the object and then the integrated system works as INS, which, as is known,
accumulates an error over time [7]. Despite this, the loosely coupled scheme is the most
commonly implemented integration scheme, since, in fact, separate data of INS and SNS
are used to “correct” the error of the integrated SNS/INS system. This allows the use of
any commercially available SNS and INS. Currently, some modifications of the loosely
coupled integration system are known. For example, in [13], it is proposed to introduce a
model of fictitious navigation satellites having a certain position in space. It is proposed
to use satellites that are not currently in sight, as well as artificial (fictitious) navigation
satellites. In [14], a quasi tightly coupled integration technique based on a loosely coupled
scheme is proposed. In this case, the Kalman filter is also used to estimate the INS error.
Two processes are added to the integration scheme: calculation of the a priori position of
the GNSS receiver installed on the object based on the current position and the attitude
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determined by the INS. Further, the SNS makes a correction of the obtained a priori position.
In [15], it is proposed to use a multilayer perceptron neural network in combination with
the Kalman filter for predicting and estimating the position of GNSS satellites when they
are not available.

The second technique based on the GPS-aided INS approach is called the tightly
coupled integration technique. A tightly coupled integration system also uses a Kalman
filter to estimate the error of the INS. However, in contrast to the loosely coupled integration
system, the GNSS measurements are used here to estimate the pseudorange, carrier phase
or Doppler shift which are then used to construct a complementary measurement vector
in the Kalman filter [11,16–18]. Accordingly, the complementary measurement vector is
the difference between the pseudoranges, carrier phase or Doppler shift measurements
determined by the INS and GNSS [7,8]. This integration scheme is more difficult to
numerically implement than a loosely coupled scheme since it is necessary to implement the
calculation of ephemeris, the GNSS receiver clock model, etc., to determine the pseudorange,
carrier phase or Doppler shift. However, it allows to carry out a partial “correction” of
the INS error in the presence of limited GNSS measurements since the measurements in
the Kalman filter are updated even when measurements from one navigation satellite are
available [7,11].

The third basic technique is called the deeply (or ultra-tight) coupled integration
technique that is implemented at the hardware level. A deeply coupled system is an
extended version of a tightly connected integration system by supplementing the process
of SNS operation with INS functionality [7]. In particular, the integration of INS and SNS
measurements is performed at the level of combining GNSS RF samples with inertial
measurement samples [7,19].

In general, even in case of using the tightly coupled and deeply coupled integration
schemes, it cannot help reducing the accuracy of the integrated system when GNSS signals
are unavailable. To solve this problem, many developers offer several approaches. One
of the approaches is the use of the ZUPT (Zero Velocity Update) method, based on curve
approximation methods for estimating the error in determining the velocity and position
of an object using INS [20]. When implementing the proposed approach for moving
objects, it may be difficult to approximate curves due to the presence of many rapidly
changing parameters, such as time, acceleration and motion trajectory. In most cases,
this approach is applicable to objects that make many stops so that the algorithm can
work in static mode. For the most part, it is more applicable to the implementation of an
integrated INS/GNSS system for pedestrians. Approaches based on the use of additional
equipment, such as computer vision [21], odometer [22] or odometer and compass [23],
are also much applicable. In particular, in [22], a street return algorithm was proposed
that makes it possible to refine the position determined using the INS in the absence of
GNSS measurements. In [23], an upgrade and improvement of this algorithm using a
compass is proposed. Moreover, methods based on neural networks [24,25] are widely
used. In [24], it is proposed to use a neural network to predict INS errors in determining
the velocity and position of an object during restrictions on access to GNSS signals. The
authors of [24] propose to use a neural network for simulation of temporarily absent GNSS
signals. In connection with the effect of multipath of GNSS signal, as well as with the
effects of the ionosphere and troposphere [5,26], there is a problem associated with the
need to reduce the outliers, for example, for pseudorange, leading to a deterioration in the
positioning accuracy of an object [27]. To reduce the outliers, the authors of [27] propose a
method for estimating the measurement error, which involves the use of a nonlinear filter
in real time. In [28], an adaptive robust Kalman filter is proposed that makes it possible to
eliminate low-quality measurements and outliers and improve the accuracy of determining
the position and velocity of an object.

Approaches based on accurate modelling and estimation of INS stochastic errors are
also used to improve the accuracy of integrated INS/GNSS systems. Several methods
are proposed in open publications, in particular methods based on the use of an autore-
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gressive model, a Gauss–Markov model [29], Allan variance [30] and a combination of
the proposed approaches [31]. The paper [32] proposes an INS error model based on two
tools: a technique for modeling nonlinear errors called fast orthogonal search (FOS) and
the support vector machine (SVM) to estimate and eliminate the errors of the INS gyro
sensor without the need to use the output parameters of the Kalman filter to estimate the
error of the INS when GNSS measurements are unavailable. Other tools, such as the robust
Kalman filter [33], unscented Kalman filter [34,35] and complex algorithms based on neural
networks [36–38], are also used for improving the accuracy of the integrated SNS/INS
system.

The development of integrated INS/GNSS systems in relation to land vehicle is based
on the principles listed above. The Kalman filter [6,39,40], deeply coupled [40], loosely
coupled [41], and tightly coupled [42] integration schemes are used as the main tool for
integration. The main features of the application of integrated INS/GNSS systems to
vehicles are the limitations caused by the trajectory of motion within the urban space. In
particular, it is assumed that, when a ground vehicle moves, it does not slip off the trajectory
and does not bounce, that is, the motion occurs in a constant direction; the velocity of the
object in the direction perpendicular to the direction of its motion is equal to zero. Taking
into account the considered kinematic limitations and features of the vehicle dynamics
will improve its positioning accuracy. If we do not consider the proposed restrictions on
maintaining the direction of motion, a lever arm effect arises due to the fact that the INS
and GNSS are installed in different places on the vehicle, which leads to a difference in the
velocity measurements of the INS and GNSS [6]. These limitations can be considered in
the Kalman filter to obtain better positioning accuracy. As shown in [43], the constrained
Kalman filter provides better accuracy than the traditional filter. In [44], the error from
the lever arm effect is included in the INS error vector for estimation in the Kalman filter.
Further, in [45,46], the authors continued their work and assessed the influence of the lever
arm for the integrated SNS/INS system installed on a car driving along a given trajectory.
The research results showed that the estimation of the effect of the lever arm and the angular
position of the object are quite sensitive to the trajectory of the object and the nature of its
motion. In [47], a new way of specifying the lever arm in the form of spherical coordinates
in the Kalman filter was proposed to estimate its influence. In [48], it is proposed to use
“virtual” measurements of the lever arm for use in the Kalman filter, which estimates the
error of the INS.

The development of integrated INS/GNSS systems for air transport, in particular
unmanned aerial vehicles, also uses the main integration tools, such as the Kalman filter.
The main difference from ground transport is that the UAV has more complex dynamics
and, accordingly, a trajectory. In the works of the authors, both loosely coupled and
tightly coupled integration schemes are used. In particular, in [49], the implementation
of a loosely coupled navigation system for an agricultural UAV is considered. In [50],
both a loosely coupled and a tightly coupled system for a helicopter-type UAV under
various conditions imposed on the flight path, as well as under various conditions of
availability of GNSS signals, is considered. The problem of development of an integrated
system for helicopter-type UAVs in the presence of a magnetic sensor in addition to
the integrated INS/SNS system is considered in [51]. In [52], the problem of creating a
tightly coupled system for an UAV copter based on commercially available INS and GNSS
navigation sensors with multiple antennas is considered. The main advantage of this
work consists of using double differences instead of single difference. It helps to remove
the clock errors. Although [52] is out of the scope of this article, devoted to the use of
single-antenna GNSS receivers, it deserves attention as one of the interesting engineering
approaches to the design of integrated systems. In [53], a tightly coupled system based on
a broadband GNSS receiver and an INS is considered using the factor graph optimization
method as an integration tool, allowing you to reduce the problem of finding a navigation
solution to a non-linear least squares method, which improves the accuracy of the UAV
navigation system in indoor conditions, with a high probability of the influence of the
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multipath effect in the absence of direct radio visibility. The papers [54,55] consider budget
integrated SNS/INS systems for UAVs based on cheap commercially available INS with
a low accuracy included strapdown system. Works [56,57] are devoted to improving the
integrated INS/SNS system by developing an adaptive Kalman filter that is improved
using machine learning to classify GNSS errors. For air transport applications, where safety
is a concern, it is important to improve the reliability of measurements conditioned by the
integrity of the measurements. Integrity of GNSS measurements can be broken by various
factors, including environmental factors, atmospheric effects and interference. To provide
reliability and integrity of measurements, one can use augmentation systems, receiver
autonomous integrity monitoring (RAIM), redundancy, etc. [58,59].

Thus, the main problems faced by developers of integrated systems are as follows:

− unavailability of GNSS signals, leading to the accumulation of errors in determining
the position and velocity of the object due to the functioning of the integrated system
in the INS mode;

− the presence of outliers and violation of integrity of GNSS measurements (for example,
pseudorange) due to multipath effect, ionospheric and tropospheric effects, interfer-
ence, environmental factors, which can lead to instability of SNS measurements;

− the presence of errors and effects in INS measurements due to the characteristics of
the sensors, such as static and dynamic errors (bias) of the INS, the lever arm effect,
crosslinks, etc.

This paper considers the analysis of the current state in the field of available approaches
for INS/GNSS integration for accurate determination of the position and velocity of moving
objects. The focus will be on integrated systems designed for mobile land and aerial vehicles,
on the main factors affecting the accuracy and functionality of the integrated system and
on the issues for solving of related problems. The Section 2 discusses various approaches
to INS/GNSS integration based on filters and measurements. The Section 3 discusses
the functionality of GNSS and INS to determine the position and velocity of an object
and the features of development of an INS measurement error model that are necessary
for integration. The Section 4 considers the main problems of GNSS/INS integration, a
comparative description of the solutions for these problems proposed by the authors and
their analysis. The Section 5 contains conclusions and recommendations.

2. GNSS/INS Integration Techniques

In most cases, INS/SNS measurements are integrated using the filtering algorithm
in loosely coupled, tightly coupled and deeply coupled integration schemes. In loosely
coupled and tightly coupled integration schemes, the difference between INS and SNS
measurements is used to estimate the INS error, and then the INS navigation solution is
corrected with resulting INS error estimate [7,8] (Figures 1 and 2). In the case of a loosely
coupled scheme, the difference between the position and velocity measurements obtained
by GNSS and INS is used. In the case of a tightly coupled scheme, the difference between
the pseudorange, carrier phase or Doppler shift measurements obtained by GNSS and INS
is used.
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In the deep integration scheme, GNSS receiver and INS are not independent devices.
GNSS measurements are used to estimate INS errors and INS measurements are used
to aid GNSS receiver tracking loops (Figure 3). In [19], the deep integration approach
is considered that starts fusion of GPS and inertial data at the earliest processing stage
possible by combining radiofrequency GNSS samples with sampled INS measurements.
Obtained integrated signals are applied to estimate GNSS solution, including code phase,
carrier Doppler frequency shift and carrier phase. After that, these GNSS estimates are
used in Kalman filter to update INS error state.
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As can be noted, deep integration is performed at the level that requires the access to
the GNSS receiver source code, which is usually available only for receiver manufacturers.
For this reason, we have not considered this type of integration in this manuscript and
have studied in detail the loosely coupled and tightly coupled integration schemes that are
more available to implementation by most GNSS users.

From the review, the Kalman filter is the most used integration tool. The Kalman filter
is implemented according to the standard scheme. At the first stage, the estimate of the INS
error vector and the covariance matrix for the INS error are predicted based on the available
measurements of the INS and SNS. At the next stage, after receiving the measurements, the
predicted INS measurement error vector and the covariance matrix are corrected.

Since the INS and SNS operate at different frequencies, the integration in the Kalman
filter is performed at the moments tk = tGNSS when the GNSS measurements are obtained.
The Kalman filter algorithm is as follows:

(1) Predicting the estimate of the INS measurement error vector.

Since, after receiving each new SNS measurement, the INS measurements are corrected,
the best current estimate of the INS error is zero δx̂k/k = 0. Then, the predicted score at
tk+1 is:

δx̂k+1/k = 0 (1)
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The predicted value of the covariance matrix at tk+1 is determined based on
the expression:

Pk+1/k = ΦkPk/kΦk + Qk (2)

where Pk/k is the covariance matrix at the moment of time tk, Φk = I+ F∆t, Qk = GQGT∆t,
∆t = tk+1 − tk, matrices F and Q, respectively, depend on the INS measurement error
model and the type of the INS measurement error vector.

(2) Correction of the predicted INS measurement error vector.

To perform this step, it is necessary to update the measurements of the INS and SNS
and calculate their difference δẑk+1. After that, update the matrix Hk+1 and calculate the
coefficient matrix:

Kk+1/k+1 =
(

Pk+1/kHT
k+1

)(
Rk + Hk+1Pk+1/kHT

k+1

)−1
(3)

where the matrix Hk+1 depends on the type of SNS and INS measurements, Rk is the
covariance matrix built on the basis of knowledge of the measurement error of the SNS.

After that, it is possible to correct the estimation of the INS measurement error vector
and the covariance matrix:

δx̂k+1/k+1 = Kk+1/k+1δẑk+1 (4)

Pk+1/k+1 = [I−Kk+1/k+1Hk+1]Pk+1/k. (5)

The considered algorithm is common for most integration schemes. The vector of
the difference between the measurements of INS and SNS will differ. In particular, for a
loosely coupled integration scheme, the vector is formed based on the difference between
the position and velocity measurements obtained by GNSS and INS [8]:

δẑk+1 = δẑGNSS
k+1 − δẑINS

k+1 =

1 0 0
0 1 0
0 0 1

δn
δe
δd

+ η (6)

where δp = [δn, δe, δd] is the error vector of the object position in the local coordinate
system NED (North, East, Down) or ENU (East, Nort, Up), η is the noise.

In the case of a tightly coupled integration scheme, this vector has the form [8]:

δẑk+1 =


h1Ce

n, 1
h2Ce

n, 1
. . .

hmCe
n

1




δn
δe

δd
bu

 (7)

where hi is the vector in the direction from the satellite to the object (line of sight vector); bu
is the clock bias in GNSS measurements.

Accordingly, depending on the type of vector, δẑk+1 the matrix Hk+1 will differ.
The measurement error vector δx usually includes the error in determining the position

of the object δp = [δn, δe, δd] in the local coordinate system NED/ENU, the error in
determining the velocity of the object δv = [δvn, δve, δvd] in the local coordinate system
ENU, the error in determining the angular position of the object δe = [δφ, δθ, δψ], the static
bias of the accelerometer ba and the static bias of the gyro sensor bg. Accordingly, for a given
measurement error vector δx =

[
δp, δv, δe, ba, bg

]
, there is its own measurement error model

described by differential equations and the corresponding matrix F, for example, given in
equation 3.68 in [8], in equation 6.97 [10], in equation 12.28 in [60]. A similar model was
used in most of the available papers [2,4–6,11]. In [48], the error due to the lever arm effect is
included in the measurement error model for its subsequent evaluation in the Kalman filter.
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Some authors include additional parameters for evaluation in the Kalman filter; for example,
in [61,62], in addition to static bias for the accelerometer and gyro sensor, dynamic biases
σba, σbg are also introduced into the measurement error model, respectively; the state
vector of the Kalman filter takes the form δx =

[
δp, δv, δe, ba, bg, σba, σbg

]
. It contributes to

obtaining the most complete model but greatly complicates the algorithm.
To improve the reliability and performance of the integrated INS/SNS system, various

modifications of the integration algorithm based on the Kalman filter are used. For example,
the use of neural networks for learning to predict the motion of GNSS satellites during the
periods when their measurements are unavailable [15,24], the use of a robust Kalman filter
to eliminate outliers in the measurements of the position and velocity of GNSS satellites,
unscented Kalman filter [35,63,64]. The accuracy of various implementations of loosely
coupled and tightly coupled integrated systems in terms of mean error or root mean
square error (RMSE) characterizing the deviation of estimated data from reference data are
provided in Table 1 and Table 2, respectively.

Table 1. Comparative characteristics of loosely coupled integrated GNSS/INS systems in terms of
mean error or RMSE and methods used to improve the operation of integrated INS/SNS systems.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique

Improving
Method

Integrated INS/GPS
Navigation System [2]

RMSE
N = 2.379 m
E = 1.901 m
D = 3.438 m

-

RMSE
vN = 0.3067 m/s
vE = 0.1048 m/s
vD = 0.9269 m/s

- - 15-state KF Update rate
increasing

The Performance
Analysis of a Real-Time

Integrated INS/GPS
Vehicle Navigation

System with Abnormal
GPS Measurement

Elimination [5]

RMSE
N = 5.9 m
E = 6.0 m

D = 22.3 m

RMSE
23.8 m

RMSE
vN = 0.35 m/s
vE = 0.54 m/s
vD = 0.22 m/s

RMSE
0.68 m/s

RMSE
P = 0.26

◦

R = 0.15
◦

Y = 9.02
◦

15-state KF -

Performance analysis of
GNSS/INS loosely
coupled integration

systems under GNSS
signal blocking

environment [11]

RMSE
N = 0.01 m
E = 0.02 m

D = 0.011 m

-

RMSE
vN = 0.005 m/s
vE = 0.005 m/s
vD = 0.006 m/s

-

RMSE
P = 0.0096

◦

R = 0.007
◦

Y = 0.007
◦

15-state KF
Smoothing in

postprocessing
smoothing

Performance Evaluation
of GPS/INS Main

Integration Approach
[12]

RMSE
Lon = 0.000228

◦ -

RMSE
vN = 0.1013 m/s
vE = 0.227 m/s
vD = 0.0 m/s

- - 18-state KF -

A modified loosely
coupled approach [13] - Mean

6.41 m - Mean
2.26 m/s - 15-state KF DOP of real

GPS satellites

A modified loosely
coupled approach to
INS/GPS integration

[13]

- Mean
6.54 m - Mean

2.21 m/s - 15-state KF
DOP of

artificial GPS
satellites

Bridging GPS outages
using neural network

estimates of INS
position and velocity

errors [24]

RMSE
Lat = 4.7 m
Lon = 6.8 m
Alt = 3.6 m

- - - -

AI-base
segmented

forward
predictor

Radial basis
functions

neural
network

A new method of
seamless land

navigation for GPS/INS
integrated system [25]

- RMSE
6 m - - - 14-state KF

Neural
network,

magnetometer
in SINS,

wavelet multi-
resolution
analysis

GNSS/INS Integrated
Navigation System
Based on Adaptive

Robust Kalman Filter
Restraining Outliers

[28]

- RMSE
4.76 m - RMSE

0.0768 m/s - 17-state KF Robust
Kalman filter
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Table 1. Cont.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique

Improving
Method

Analysis of a robust
Kalman filter in loosely

coupled GPS/INS
navigation system [33]

RMSE
N = 1.78 m
E = 1.82 m
D = 2.17 m

- - - - 15-state KF

Norm
bounded

robust KF with
recursive form
by solving two

Riccatti
equations

A Novel KGP
Algorithm for

Improving INS/GPS
Integrated Navigation
Positioning Accuracy

[36]

- RMSE
2.63 m - - - Kalman filter

Gradient
Boosting

Decision Tree,
Particle
Swarm

Optimization

A new source difference
artificial neural network

for enhanced
positioning accuracy

[37]

RMSE
N = 0.38 m
Y = 1.60 m

- - - -
Artificial

neural
network

Source
difference
artificial
neural

network

Integration Using
Neural Networks for

Land Vehicular
Navigation

Applications [38]

- RMSE
15.85 m - - -

Artificial
neural

network

Artificial
neural

network

Land Vehicle
Navigation System

Based on the Integration
of Strap-Down INS and

GPS [39]

RMSE
N = 6.917 m
E = 10.297 m

-
RMSE

vN = 1.054 m/s
vE = 0.593 m/s

- - 15-State
Kalman filter

Error damping
of INS

Experimental Study on
the Estimation of Lever
Arm in GPS/INS [45]

- - - -

RMSE
P = 0.15

◦

R = 0.16
◦

Y = 0.23
◦

18-State
Kalman filter

Estimation of
lever arm

GNSS/INS Fusion with
Virtual Lever Arm
Measurements [48]

RMSE
N = 0.6 m
E = 0.6 m
D = 0.5 m

-

RMSE
vN = 0.3 m/s
vE = 0.3 m/s
vD = 0.2 m/s

-

RMSE
P = 0.2

◦

R = 0.2
◦

Y = 0.4
◦

18-State
Kalman filter

Virtual lever
arm

measurements

A GNSS/INS
Integrated Navigation
Algorithm Based on
Kalman Filter [49]

RMSE
N = 0.0043 m
E = 0.0062 m

-
RMSE

vN = 0.61 m/s
vE = 0.24 m/s

- - 15-State
Kalman filter -

Adaptive GNSS/INS
Integration Based on
Supervised Machine

Learning Approach [56]

- RMSE
3.9 m - - - 15-State

Kalman filter

Random forest
and fuzzy

logic adaptive
Kalman filter

An approach to
benchmarking of
loosely coupled

low-cost navigation
systems [61]

RMSE
Lat = 0.446 m
Lon = 0.357 m

Alt = 0.233

-

RMSE
vN = 0.337 m/s
vE = 0.6560 m/s
vD = 2.518 m/s

-

RMSE
P = 0.201

◦

R = 0.168
◦

Y = 0.021
◦

21-State
Kalman filter -

Application of
Unscented Kalman

Filter in GPS/INS [63]
- RMSE

1.4 m

RMSE
vN = 0.16 m/s
vE = 0.22 m/s
vD = 0.81 m/s

- -
15-State

Unscented
Kalman filter

GPS latency
compensation

Unscented Kalman filter
with process noise

covariance estimation
for vehicular INS/GPS
integration system [64]

RMSE
N = 3.83 m
E = 3.87 m

- vN = 0.052 m/s
vE = 0.054 m/s - -

15-State
Unscented

Kalman filter

Maximum-
likelihood-

based
adaptive UKF
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Table 2. Comparative characteristics of tightly coupled integrated GNSS/INS systems in terms of
mean error or RMSE and methods used to improve the operation of integrated INS/SNS systems.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique

Improving
Method

Integrated INS/GPS
Navigation System [2]

RMSE
N = 0.2547 m
E = 1.367 m
D = 2.322 m

-

RMSE
vN = 0.0558 m/s
vE = 0.4048 m/s
vD = 0.7974 m/s

- - 15-state KF Update rate
increasing

The Performance
Analysis of a Real-Time

Integrated INS/GPS
Vehicle Navigation

System with Abnormal
GPS Measurement

Elimination [5]

RMSE
N = 5.4 m
E = 3.9 m
D = 6.3 m

RMSE
9.2 m

RMSE
vN = 0.12 m/s
vE = 0.35 m/s
vD = 3.05 m/s

RMSE
0.28 m/s

RMSE
P = 0.22

◦

R = 0.16
◦

Y = 0.39
◦

15-state KF -

Performance Evaluation
of GPS/INS Main

Integration Approach
[12]

RMSE
Lon = 0.000085

◦ -
RMSE

vN = 0.2614 m/s
vE = 0.3282 m/s

- - 18-state KF -

The Modeling and
Analysis for
Autonomous

Navigation System
Based on Tightly

Coupled GPS/INS [17]

- Mean
1.24 m - - - 17-State KF -

Implementation of
tightly coupled

GPSI/INS navigation
algorithm on DSP [18]

RMSE
N = 0.947 m
E = 1.719 m
D = 1.435 m

-

RMSE
vN = 0.00643 m/s
vE = 0.0229 m/s
vD = 0.0380 m/s

- - 17-State KF

UD covariance
factorization

with sequence
processing
algorithm

A derivative UKF for
tightly coupled

INS/GPS integrated
navigation [34]

RMSE
Lat = 1.803 m
Lon = 1.789 m
Alt = 3.411 m

-

RMSE
vN = 0.0012 m/s
vE = 0.00115 m/s
vD = 0.00314 m/s

- - 15-state U KF Derivative UKF

Tightly Coupled
GNSS/INS Integration
with Robust Sequential

Kalman Filter for
Accurate Vehicular

Navigation [42]

- RMSE
3.966 m - RMSE

0.107 m - 15-state U KF

Robust
sequential KF for

accurate
vehicular

navigation

Low-Cost INS/GPS
Data Fusion with

Extended Kalman Filter
for Airborne

Applications [50]

- RMSE
1.36 m - RMSE

0.116 m - 27-state KF

INS/GPS+Galileo
system, User
Equivalent

Range Error

Tightly coupled
integrated navigation

system via factor graph
for UAV indoor
localization [53]

RMSE
N = 0.21 m
E = 0.21 m
D = 0.09 m

- - - - Factor graph
optimization Ultra wideband

As can be seen from Tables 1 and 2, the integration techniques based on the Kalman
filter or intelligent algorithms are quite complex and cumbersome. The state vector usu-
ally includes a minimum of 15 terms and more, including both an estimate of the error
in determining the position, attitude, velocity and angular velocity of the object as well
as various static and dynamic errors of the INS sensors. To use the above integration
techniques, it is necessary to introduce measurement error models, which greatly com-
plicates the integration algorithms. On this basis, the researchers came up with the idea
of transforming integration techniques, with a slight increase in the complexity and cost
of the final product, suggesting to rely more on the properties of INS sensors. It became
possible by introducing additional sensors into the integrated system, namely magnetic
sensors [51], thereby forming an attitude heading reference system (AHRS) and separating
the processes of estimating the attitude and position of the object. In [65], it is proposed to
use a nonlinear complementary filter to estimate the gyro sensor bias and the attitude of
the object. The position, velocity and the accelerometer bias are proposed to be estimated
by EKF. The nonlinear complementary filter [66] evaluates the affine transformation matrix,
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on the basis of which the attitude of the object and gyro sensor static bias are subsequently
calculated. In [67], the Kalman filter is used integrate the AHRS and GNSS measurements.
It estimates the attitude described by the quaternion and the gyro sensor static bias, and
GNSS measurements are used to correct the acceleration determined by the accelerometer.

3. GNSS Solution. Strapdown INS Approach. Strapdown INS Mechanization. Inertial
Error Propagation

Extended KF is commonly used to process GNSS receiver measurements in integrated
systems. For this purpose, it is necessary to compose the equations of the state of the
object, which are integrated to predict the state vector of the object. It is also necessary to
construct a measurement model to determine the pseudorange prediction. After receiving
the measurements, the deviations between the real measurements and the measurement
model are calculated. These deviations are then used in EKF to correct the state vector
of the object and obtain its estimate. At the next stage, the obtained estimate of the state
vector of the object is used as initial data to obtain a predictive estimate of the state vector.
Thus, the complexity and scale of the algorithm depend on the model of the state vector
of the object, namely on the dynamics of the object. Several types of models of the state
vector of an object are distinguished in the literature, in particular a model of an object at
rest when the velocity is zero (P model), a model of an object with weak dynamics when
the velocity is described by a random walk model (PV model) and a model of an object
with accelerated motion when the state vector contains not only coordinates and velocities
but also accelerations, which are modeled as Markov processes (PVA model) [8]. In most
cases, the PV model is sufficient, but the PVA model is considered the most appropriate for
air transport applications. This model was applied in [41,68,69]. In view of the peculiarities
of the functioning of the GNSS receiver together with the model of the state vector of the
object, the clock bias model, which is the integral of the receiver clock frequency error,
is used.

As mentioned above, INS are usually gyroscopically stabilized using mechanical
devices, which are a special platform on which the integrated system is installed. INS
rigidly attached directly to the body of the object; the so-called strapdown INS (SINS) have
recently been used to simplify the structure. This imposes certain conditions on the sensors
and computing devices of SINS. They must be able to measure high speeds of turns and
perform computational operations to handle coordinate systems and calculate the position,
velocity, attitude and angular velocity of an object in the required coordinate system based
on measurements of INS sensors.

As is known, a classical INS includes a gyro sensor that measures the angular velocity
of an object relative to the inertial coordinate system and an accelerometer that measures
the acceleration of the object due to the influence of gravity relative to the inertial coordinate
system. This value measured by an accelerometer is often called the specific force [60]. The
basic equation of inertial navigation, as is known, has the form [60]:

d2r
dt2 = f + g (8)

where r is the position of the object in the inertial coordinate system, g is the gravitational
acceleration and f is the specific force.

Equation (8) can be resolved in different coordinate systems; in other words, the INS
can operate in different coordinate systems. There are many possible implementations
of Equation (8) called mechanization equations in coordinate systems associated with
the Earth. Typically, these equations contain additional forces that are functions of the
parameters of motion associated with the SINS coordinate system relative to the inertial
coordinate system, for example, Coriolis forces. In particular, if the navigation system is
implemented relative to the inertial coordinate system (ECI) associated with the Earth, then
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the mechanization equations for determining the velocity of an object relative to the Earth
have the form [60]:

dve

dt
= Ci

bfb −ωie × ve −ωie × [ωie × r] + g (9)

where ve is the velocity of the object in the inertial coordinate system, Ci
b is the matrix of

the affine transformation between the ECI and the body coordinate system (BCS), fb is
the specific force measured in the BCS, ωie is the rotation velocity of the Earth in the ECI,
ωie × ve is the Coriolis acceleration due to the Earth’s rotation and ωie × [ωie × r] is the
centripetal acceleration.

If the navigation system is implemented relative to the fixed coordinate system associ-
ated with the Earth (ECEF), then the velocity is determined from the following mechaniza-
tion equations [60]:

dve

dt
= Ce

bfb − 2ωie × ve −ωie × [ωie × r] + g (10)

where ve is the velocity of the object in ECEF, Ce
b is the affine transformation matrix between

BCS and ECEF, ωie is the velocity of the Earth’s rotation in ECEF.
In the case of using the local geographic coordinate system NED, the velocity is

determined from the following equations [8,60]:

dve

dt
= Cn

b fb − [2ωie + ωen]× ve −ωie × [ωie × r] + g (11)

where ve is the velocity of the object in ECI, ωen is the angular velocity of rotation of local
NED coordinate system relative ECI, ωie is the rotational velocity of the Earth in NED and
Cn

b is the matrix of the affine transformation between NED and BCS.
The SINS computing device operates in the following sequence: at the first stage, the

attitude of the object is determined based on the measurements of the angular velocity
of the object with gyro sensors and the angular velocity of the INS coordinate system by
applying the appropriate mechanization equations. Based on the obtained angular position,
a transformation matrix is formed for the specific force measured by the accelerometers and
used in the SINS equations provided above: (9), (10) or (11). At the same time it is necessary
to consider the choice of the coordinate system for the INS and the parameters for attitude
representation: Euler angles, direction cosine matrix or quaternion. The local geographic
coordinate system and quaternions are used to determine the attitude of an object in most
of the works in this review. The main algorithms of INS operation for determining the
position and velocity of an object are detailed in [60].

As noted above, in order to form the Kalman filter algorithm that evaluates the INS
error in the integrated INS/GNSS systems, an INS error prediction model considering
all possible sources of errors or only a part of them depending on the complexity of the
algorithm is obviously needed.

Alignment errors, biases and computation errors are usually the sources of INS er-
ror [60]. In the most basic case, the measurement error vector δx usually includes the error
in determining the position of the object δp = [δn, δe, δd] in the local coordinate system
(NED/ENU), the error in determining the velocity of the object δv = [δvn, δve, δvd] in the
local coordinate system (NED/ENU) and the error in determining the attitude of the object
δe = [δφ, δθ, δψ]. Each SINS developer can formulate distinct model for SINS error.

The attitude error model can be obtained based on the fact that there is a relationship
between the attitude of the object calculated on the basis of measurements in the INS
coordinate system C̃

n
b and the true attitude of the object Cn

b :

C̃
n
b = BCn

b (12)
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where B = (I− δC) is the error matrix for determining the attitude, I is the identity matrix,
the matrix δC is determined as follows:

δC =

 0 −δψ δθ
δψ 0 −δφ
−δθ δφ 0

 (13)

Differentiating (12) with respect to time and expressing dδC
dt from there, we obtain an

INS attitude error model.
The velocity error model can be obtained on the basis of the following statements. Let

the model for predicting the true velocity of an object be determined by one of the Equations
(9)–(11) depending on the coordinate system of INS. The model for predicting the velocity
of the object using INS is also based on one of the Equations (9–11), where all components
are estimates of the object motion parameters and the matrix C̃

n
b is determined based on

Expression (12). The difference between the obtained velocity prediction equations can be
used as the basis for determining the velocity error model. A more detailed derivation of
the equations for the INS measurement error models can be found in [60]. As a result of all
operations, we obtain the equation of the INS measurement error model in the state space:

δ
.
x = F δx + Gu (14)

where δx = [δφ, δθ, δψ, δvn, δve, δvd, δn, δe, δd], u =
[
δωx, δωy, δωz, δ fx, δ fy, δ fz

]
, δωx, δωy,

δωz are the errors of determining the angular velocity by the gyro sensor, δ fx, δ fy, δ fz are
the errors of determining the specific force by the accelerometer.

The inclusion of INS errors in the state vector of the Kalman filter leads to the need of
development a model for predicting the errors of the gyro sensor and the accelerometer. All
types of accelerometers and gyro sensors are subject to bias, crosslinks errors and random
noise [70].

Bias is a constant error exhibited by all accelerometers and gyro sensors. It does
not depend on the specific force and angular velocity. Since this is a constant value, its
prediction model for gyro sensors and accelerometers has the form:

.
ba = 0,

.
bg = 0. (15)

where ba is the constant bias of the accelerometer, bg is the constant bias of the gyro sensor.
Cross-coupling errors occur due to misalignment of the sensitive axes of the sensors

and the axes of the BCS due to manufacturing defects. However, these errors are minor.
Random noise or dynamic errors can come from various sources. In most works, the

dynamic errors of the accelerometer σba and gyro sensor σbg are modeled as Gauss–Markov
scalar processes [70,71]:

σ
.
ba = −

1
τa

σba + Gaw, σ
.
bg = − 1

τg
σbg + Ggw (16)

where τa, τg is the correlation time and w is white noise.

4. Main Problems of GNSS/INS Integration and Their Solutions

The review identified several key challenges faced by developers of integrated INS/
GNSS systems:

− unavailability of GNSS signals, leading to the accumulation of errors in determining
the position and velocity of the object due to the functioning of the integrated system
in the INS mode;

− the presence of outliers and violation of integrity of GNSS measurements due to
multipath effect, ionospheric and tropospheric effects, interference and environmental
factors, which can lead to instability of INS measurements;
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− the presence of errors and effects due to the characteristics of the sensors used in
the integrated system, such as static and dynamic bias of the INS, lever arm effect,
crosslinks, etc.

Table 3 provides a comparative description of various approaches to the implemen-
tation of integrated INS/GNSS systems with complete or partial unavailability of GNSS
signals. In the considered publications, the capabilities of integrated INS/GNSS systems
were studied with up to four available navigation satellites and the absence of a navigation
signal up to 1200 s.

The neural networks are used to restore a temporarily absent GNSS signal in most of
the works considered. Positioning accuracy of these systems reaches 4 m. Definitely, the
characteristics and quality of GNSS receivers and INS sensors are of great importance as
the integrated system actually operates in the INS mode in the periods of absence of GNSS
signal. This increases the requirements for the accuracy and reliability of INS sensors. In
particular, the accuracy of the integrated system is up to 5× 10−7 degrees in longitude and
latitude in [15], where the gyro sensor with a constant bias < 0.01◦/h, an accelerometer
with a constant bias < 50 µg and NovAtel FlexPark6 dual-frequency GNSS receiver were
used. In [24], an accuracy in longitude and latitude of up to 25 m was achieved using
two NovATel OEM-4 GNSS receivers, a gyro sensor with a constant bias 1◦/h and an
accelerometer with a constant bias 0.3 µg. Two Novatel OEM-4 GNSS receivers, the INS
Honeywell HG 1700 with gyro sensor bias 1◦/h and accelerometer bias 1 µg, were used
in [37], which made it possible to achieve an accuracy of 18 m in a northerly direction
and 80 m in an easterly direction. The best accuracy of 8.33 m in the north direction and
2.94 m in the east direction in the considered publications using neural networks was
obtained in [38] using the NovATel OEM-4 GNSS receiver, CIMU INS with gyro sensor bias
0.0022◦/h and accelerometer bias 25 µg. The listed results of the work are more applicable
to ground equipment. Some researchers offer interesting solutions with magnetometers for
air vehicles, for example in [50] or [51].

Good accuracy results were also obtained using tightly coupled systems and robust
filters. In particular, a tightly coupled system was developed in [42] using pseudoranges.
Doppler shift and carrier frequency and a robust Kalman filter using measurements of the
Novatel OEMV-3 receiver, INS STIM300 with a gyro sensor bias 0.0022◦/h and accelerome-
ter bias 0.75 µg resulted in a positioning accuracy up to 4 m.

As can be seen from the research above, the use of neural networks provides relatively
good results in terms of accuracy when used in integrated GNSS/INS systems. However,
the implementation of neural networks in comparison with standard approaches can
significantly increase the computation time even when using high-performance digital
devices. The use of tightly coupled integration systems, as well as navigation receivers
that work with several navigation systems (GPS, Beidou, GLONASS), is a more reliable
approach to solve the problem of temporary unavailability of GNSS measurements.

Table 4 provides a comparative description of various approaches to the implementa-
tion of integrated INS/GNSS systems in the presence of outliers and violation of integrity.
The multipath effect of the GNSS signal due to the reflection of the direct signal from
volumetric objects is the most common reason in the reviewed studies. The ionospheric
and tropospheric effects due to signal delays in the ionosphere and troposphere are less
common reasons.

Several approaches have been explored by authors to reduce the effect of outliers.
It is proposed to use a robust Kalman filter with an equivalent weighted matrix in the
measurement model [6], which makes it possible to suppress the effect of measurements
with large errors. The use of a robust Kalman filter for an integrated system with INS
NovAtel IMU-FSAS with a frequency of 100 Hz, which has a gyro sensor bias < 0.75◦/h and
an accelerometer bias 1.0 µg, and a GPS receiver with a frequency of 1 Hz, makes it possible
to achieve a positioning accuracy in the northern direction of up to 2.2 m. Simulation
modeling of integrated system with a positioning accuracy of the GNSS receiver up to 5 m
with non-specific fluctuation of the carrier frequency contour, causing the presence of non-
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specific low-quality GNSS measurements, was carried out in [28]. A method for reducing
the influence of poor-quality measurements using a weighted matrix of coefficients (gain
matrix) is presented in [72]. This method made it possible to obtain a positioning accuracy
of up to 5 m with a loosely coupled and tightly coupled integration scheme based on the
use of a GNSS receiver Novatel OEMV-3 and INS STIM-300 with gyro sensor bias < 250◦/h
and accelerometer bias 0.75 µg.

Table 3. Comparative characteristics of various approaches to the implementation of integrated
INS/GNSS systems with complete or partial unavailability of GNSS signals.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique,

Integration Tool,
Improving

Method

Number of
Satellites in

LOS,
Period of

Unavailability
of the SNS

Performance
analysis of

GNSS/INS loosely
coupled integration

systems under
GNSS signal

blocking
environment [11]

RMSE
N = 0.010 m
E = 0.020 m
D = 0.011 m

-

RMSE
vN = 0.009 m/s
vE = 0.007 m/s
vD = 0.007 m/s

-

RMSE
P = 0.005

◦

R = 0.005
◦

Y = 0.006
◦

LC, 15-state KF,
Smoothing in

postprocessing
0, 60 s

A modified loosely
coupled approach

[13]
- Mean

82.2 m - Mean
10.4 m -

LC, 15-state KF,
Dilution of

Precision with
artificial GPS

satellites

1, 30 s

A modified loosely
coupled approach

to INS/GPS
integration [13]

- Mean
23.1 - Mean

4.41 m -

LC, 15-state KF,
Dilution of

Precision with
artificial GPS

satellites, height
and velocity
constraints

1, 30 s

A hybrid fusion
algorithm for

GPS/INS
integration during
GPS outages [15]

RMSE
Lat = 5.5× 10−7◦

Lon = 4.6× 10−7◦
- - - -

LC, 15-state KF,
Multi-Layer
Perceptron

network

0, 300 s

Bridging GPS
outages using

neural network
estimates of INS

position and
velocity errors [24]

RMSE
Lat = 19 m
Lon = 24 m
Alt = 16 m

- - - -

LC, AI-base
segmented

forward
predictor, Radial
basis functions
neural network

0, 100 s

A new method of
seamless land
navigation for

GPS/INS
integrated system

[25]

- Mean
7 m - - -

LC, 14-state KF,
Neural network,
magnetometer +
SINS, wavelet

multi-resolution
analysis

0, 97 s

A Novel KGP
Algorithm for

Improving
INS/GPS
Integrated
Navigation
Positioning

Accuracy [36]

- RMSE
2.63 m - - -

LC, Kalman
filter, Gradient

Boosting
Decision Tree,

Particle Swarm
Optimization

0, 60 s

A new source
difference artificial
neural network for

enhanced
positioning

accuracy [37]

RMSE
N = 18.23 m
E = 80.64 m

- - - -

LC, Artificial
neural network,

Position and
velocity update

architecture
utilizing source
difference ANN

method

0, 90 s
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Table 3. Cont.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique,

Integration Tool,
Improving

Method

Number of
Satellites in

LOS,
Period of

Unavailability
of the SNS

Integration Using
Neural Networks

for Land Vehicular
Navigation

Applications [38]

RMSE
N = 8.33 m
E = 2.94 m

-
RMSE

vN = 0.17 m/s
vE = 0.18 m/s

- -

LC, Artificial
neural network,
Position update

architecture
utilizing

multi-layer
feed-forward

NN

0, 1200 s

Land Vehicle
Navigation System

Based on the
Integration of

Strap-Down INS
and GPS [39]

RMSE
N = 6.917 m
E = 10.279 m

-
RMSE

vN = 1.054 m/s
vE = 0.593 m/s

- -
LC, 15-state KF,
Error damping

of INS
0, 20 s

Tightly Coupled
GNSS/INS

Integration with
Robust Sequential
Kalman Filter for

Accurate Vehicular
Navigation [42]

- RMSE
3.966 m - RMSE

0.092 m/s -

TC, 15-state KF,
Robust

sequential KF for
accurate
vehicular

navigation

0, 60 s

Factor graph optimization (FGO) method is gaining some popularity to ensure the
integration of GNSS and INS measurements. Previously, this method was mostly used
in robotics and is similar to the well-known SLAM approach in robotics. This method
is presented as a probabilistic graphical model containing various nodes associated with
system states and factors representing measurements. Unlike traditional EKF-based in-
tegration, the FGO method takes into account both the entire set of measurements and
system updates to optimize the entire state vector. After all measurements and states are
encoded in the factorial graph, the integration problem is iteratively solved through opti-
mization using the Gauss–Newton method. FGO also processes the delayed measurements
as they are simply additional sources of factors that are added to the factor graph as they
arrive [73]. In [53], this technique was applied to determine the position of an object inside
a premises where outliers appear due to reflection. According to the results of the work,
the obtained positioning accuracy of the object in the plane of motion is 0.21 m, and 0.09 m
in the vertical direction when using the high-precision SNS system LinkTrack UWB and
INS Xsens Mti-10. The authors of [74] developed an integration system with the detection
of low-quality pseudorange measurements based on the factor graph and tested it on a
simulation model. The authors of [73,75] also applied the factor graph optimization for
tightly coupled integration of INS/GNSS measurements, which made it possible to obtain
an average position error of up to 4 m based on measurements of the Xsens Ti-10 INS and
the Ublox M8T GNSS receiver working with both the GPS system and the Beidou system.
In the process of research, it was also determined that scaling measurements that are not
included in the direct field of view of the GNSS receiver will reduce the effect of outliers.

Machine learning and neural network technologies are also used in the development of
adaptive integration techniques in the presence outliers. For example, in [56], a classification
model based on machine learning that predicts various changes in the properties of the
GNSS signal depending on the reason of outliers was used to develop an integration
method based on the Kalman filter. The integration algorithm makes it possible to weight
GNSS and INS measurements in different situations. The use of this approach in [56] made
it possible to obtain a position determination accuracy of 3.9 m based on the measurements
of the Ublox NEO-M8N GNSS receiver and the Pixhawk 2 autopilot with a built-in INS.
The idea of measurement classification is also implemented in [76] by using the K-means
method, which will divide all incoming raw GNSS receiver data into two main classes:
line-of-sight (LOS) or non-line-of-sight (NLOS) signals obtained as a result of multiple
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reflections. Verification of the technique was carried out on an experimental setup based
on the GNSS receiver NovAtel ProPak6 and INS with gyro sensor bias < 0.5◦/h and
accelerometer bias 1250 µg. As a result, the accuracy of positioning in the northern and
eastern directions was up to 0.5 m and 1.66 m along the vertical direction.

Factor graph optimization is one of the most interesting and effective methods of
delivering good positioning accuracy of three common approaches considered for reducing
the outliers. However, the need to accumulate and use a set of measurements for the entire
period of use of the system in this method will lead to a significant computational load and
a possible increase in the response of the system. High positioning accuracy in the presence
of outliers is also provided by methods based on neural networks that allow classifying and
excluding low-quality measurements. However, the time and computational costs of this
operation can significantly exceed similar costs when using a standard EKF with a weighted
matrix of coefficients that allows ranking and suppressing low-quality measurements.

To provide the integrity of GNSS measurements, the augmentation systems, such
as ground-based augmentation system, satellite-based augmentation system and aircraft-
based augmentation system, are usually used. Another approach consists of using receiver
autonomous integrity monitoring methods (RAIM) [58]. For integrated GNSS/INS systems,
one can develop the fault detection and exclusion method by using INS as adding device
for fault detection of GNSS receiver. In particular, in [58], the novel integrity monitoring
algorithm for the detection of step and ramp errors based on the autonomous integrity
monitored extrapolation (AIME) method is represented. In [59], the RTK/GNSS integrated
with INS, odometer and Doppler observations is considered. In this work, a new model
for computation of protection level that should bound the true position error at a certain
probability of risk is presented.

Table 4. Comparative characteristics of various approaches to the implementation of integrated
INS/GNSS systems in the presence of outliers and violation of integrity.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique,

Integration Tool,
Improving

Method

Reason of
Outliers

The Performance
Analysis of a

Real-Time Integrated
INS/GPS Vehicle

Navigation System
with Abnormal GPS

Measurement
Elimination [5]

RMSE
N = 3.9 m
E = 5.4 m
D = 6.3 m

RMSE
9.2 m

RMSE
vN = 0.28 m/s
vE = 0.22 m/s
vD = 0.16 m/s

RMSE
0.39 m/s

RMSE
P = 0.12

◦

R = 0.35
◦

Y = 3.05
◦

LC, 21-state KF,
Detection and
elimination of
abnormal GPS
measurements

Ionospheric
delay,

tropospheric
delay, the

multipath effect

GPS/IMU Integrated
System for Land

Vehicle Navigation
based on MEMS [6]

RMSE
N = 2.2 m - - - -

LC, 15-state KF,
Robust KF with

equivalent
weight matrix

Random outliers

GNSS/INS
Integrated

Navigation System
Based on Adaptive

Robust Kalman Filter
Restraining Outliers

[28]

- RMSE
4.76 m - RMSE

0.0768 m/s - LC, 17-state KF,
Robust KF

Abnor-mal
vibration of code

tracking loop
and carrier

tracking

Tightly coupled
integrated navigation

system via factor
graph for UAV indoor

localization [53]

RMSE
N = 0.21 m
E = 0.21 m
D = 0.09 m

- - - -

TC, Factory
graph

optimization,
Ultra wideband

Multipath effect

Adaptive GNSS/INS
Integration Based on
Supervised Machine
Learning Approach

[56]

- RMSE
3.9 m - - -

LC, 15-state KF,
Machine
learning

Multipath effect
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Table 4. Cont.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique,

Integration Tool,
Improving

Method

Reason of
Outliers

Fault Detection of
Resilient Navigation

System Based on
GNSS Pseudorange
Measurement [74]

RMSE
Lat = 4.7 m
Lon = 3.1 m
Alt = 5.5 m

-

RMSE
vN = 0.08 m/s
vE = 0.18 m/s
vD = 0.14 m/s

- -

Factor graph
method, Fault
detection and

isolation method

Vibration
interference,

multipath effect

Multipath/NLOS
Detection Based on
K-Means Clustering

for GNSS/INS
Tightly Coupled
System in Urban

Areas [76]

RMSE
Lat = 0.53 m
Lon = 0.25 m
Alt = 1.66 m

- - - -

15-state EKF,
GNSS multi-
path/NLOS
observation

detection
algorithm based

on K-means
clustering

Multipath/NLOS

Tightly Coupled
GNSS/INS

Integration Via Factor
Graph and Aided by
Fish-eye Camera [75]

- RMSE
3.96 m - - - TC, Factor graph

method

Multipath effects
and NLOS
reception

Multipath Detection
with 3D Digital Maps

for Robust
Multi-Constellation
GNSS/INS Vehicle

Localization in Urban
Areas [77]

- RMSE
5.2 m - - -

LC, Bayes filter,
UKF, multipath
prediction and

detection model
using raytracing

model and
built-in 3D

environmental
map,

simultaneous
use of GPS and

GLONASS

Multipath effects

Constrained
MEMS-based

GNSS/INS tightly
coupled system with
robust Kalman filter

for accurate land
vehicular navigation

[72]

- RMSE
4.56 m - RMSE

0.13 m/s -

LC, 15-state
Robust KF,

Nonholonomic
virtual velocity

constraint

Outliers due to
urban area

Factor graph
optimization for

GNSS/INS
integration: A

comparison with the
extended Kalman

filter [73]

- Mean,
3.64 m - - - TC, Factor graph

optimization
Multipath effect,

urban area

GNSS/INS
integration with

integrity monitoring
for UAV no-fly zone

management [58]

RMSE
N = 2.007 m
E = 0.557 m

- - - - TC, 23-state KF

Integrity
violation, fault
detection and

exclusion

A new Approach for
Positioning Integrity

Monitoring of
Intelligent Transport

Systems Using
Integrated

RTK/GNSS, IMU and
Vehicle Odometer

[59]

- RMSE
0.077 m - - - TC, Kalman filter

Integrity
violation,

computation of
the protection

level

Table 5 provides a comparative description of various approaches to the implemen-
tation of integrated INS/GNSS systems in the presence of errors and effects due to the
characteristics of the sensors: INS drift, INS sensor alignment error with respect to the
GNSS receiver and resulting lever arm effect, etc. Reducing of INS sensor errors is necessary
to a large extent since the integrated system actually operates as an INS system when the
GNSS signals are unavailable or inaccurate.
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Mainly, the approaches based on the exact construction of models and estimation of
stochastic errors of INS are used in the considered works to deal with these errors. In
particular, a method based on the use of an autoregressive model instead of the Gauss–
Markov model, which is often used in INS systems [29,31,78], is proposed. In this case, the
measurement error model is a linear combination of previous measurements. In [29,31,78],
an autoregressive INS error model was used in conjunction with additional noise filtering
based on the wavelet analysis technique. A NovAtel OEM4 GNSS receiver and Honeywell
HG1700 IMU INS were used in this research that made it possible to obtain an average
positioning accuracy of up to 1.5 m in the absence of a GNSS signal from 70 to 180 s. In [78],
an average positioning accuracy of 4.12 m was achieved using the 3DM-GX3-25 INS and
the Ublox LEA-5X GNSS receiver.

The authors of [30,78,79] proposed a method based on the Allan variance technique
that makes it possible to consider long-term noise in the measurement error model. In [30],
the error covariance of INS sensors was estimated based on the Allan variance analysis for
INS MI-GA3350. The resulting sensor error model was further used in the Kalman filter
with a state vector of dimension 24. In the course of verification, the authors obtained an
average positioning error up to 4 m. In [78], an average positioning accuracy of 2.71 m
was achieved using the 3DM-GX3-25 INS and the Ublox LEA-5X GNSS receiver in case of
GNSS signal outage for the period of 60 sec. Stochastic error modelling using the Allan
variance technique and the evaluation of error covariance of INS sensors MP-POS 830
(Wuhan MP Space–Time technology Company) was performed in [79]. Further, integrating
the measurements of the INS with those of a GNSS receiver developed on the basis of
the NovAtel receiver OEMV-3 and HX-BS581A (Harxon) in the Kalman filter, an average
positioning accuracy of 4.23 was obtained in the absence of a GNSS signal for 60 s.

The next three works are devoted tomethods for compensating errors in INS sensors.
The paper [32] proposes an INS error model based on two tools. One of the tools is the fast
orthogonal search (FOS)—a technique for nonlinear errors modeling. The second one is
the support vector machine (SVM) method to estimate and eliminate the errors of the INS
gyro sensor without the need to use the output parameters of the Kalman filter to estimate
the error of the INS in the periods of unavailability of GNSS measurements. An approach
for compensating INS errors based on the integration of the Kalman filter and Gradient
Boosting Decision Tree is proposed in [36] for the periods of absence of GNSS signals.
In [39], a method for compensating of INS errors by introducing damping coefficients is
proposed.

Many works are devoted to the study of the lever arm effect on the quality of measure-
ments of an integrated system. The lever arm represents the position of the GPS antenna
in relation to the INS system. The presence of this relative distance can lead to the fact
that the velocity of the object determined on the basis of GNSS measurements will differ
from the velocity determined on the basis of the INS when the direction of motion of the
object changes in the plane of its motion. The resulting error is called the lever arm effect.
The error from the lever arm effect on large vehicles can significantly exceed the GNSS
positioning error. To consider the influence of the lever arm effect, it can be taken into
account when compiling the GNSS measurement vector. However, in practice, this distance
is much more difficult to measure and consider in the integration algorithm, which can
lead to error accumulation after a while. In this regard, the researchers carried out the
work on assessing the influence of the lever arm effect and proposed to take it into account
in the Kalman filter to estimate the INS error. In particular, the error due to the lever
arm effect was included in the INS error vector for estimation in the Kalman filter in [44].
Further, in [45,46], the authors continued their work and assessed the influence of the lever
arm effect for the integrated GNSS/SNS system installed on a car driving along a given
trajectory. The results of the research showed that the lever arm effect is quite sensitive to
the trajectory of the object and the nature of its motion. In [47], a new way of specifying the
lever arm in the form of spherical coordinates in the Kalman filter was proposed. In [48], it
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was proposed to use “virtual” measurements of the lever arm for use in the Kalman filter
that estimates the INS error.

From the analysis of publications on the influence of INS errors on the accuracy of
the integrated INS/GNSS system, it is obvious that a long absence of data from the SNS
can lead to a significant decrease in the accuracy of the integrated INS/GNSS system even
when using the most accurate models of INS errors. The proposed approaches to the
elimination of INS errors based on the exact construction of models and estimation of INS
stochastic errors, for example, the autoregressive model or the Allan variance, provide
almost the same accuracy of the integrated system. The choice between one or another
approach is determined by the computational capabilities of the designed system and the
characteristics of the INS sensors. As to the lever arm effect, it makes sense to take it into
account when used on objects with a complex trajectory.

Table 5. Comparative characteristics of various approaches to the implementation of integrated
INS/GNSS systems in the presence of INS sensor errors.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique,

Integration Tool,
Improving

Method

Reason of
Outliers

Accurate INS/DGPS
positioning using INS
data de-noising and
autoregressive (AR)
modeling of inertial

sensor errors [29]

Mean
1.16 m - - -

LC, Kalman filter,
AR modeling of

INS errors

Accelerometer
and gyro sensor

biases

Performance
Improvement of GPS/INS
Integrated System Using
Allan Variance Analysis

[30]

- Mean
4.08 m - - -

LC, 24-state KF,
Allan variance

analysis method
for modeling the

inertial sensor
noise

Random bias,
random walk

Combined Algorithm of
Improving INS Error
Modeling and Sensor

Measurements for
Accurate INS/GPS

Navigation, GPS Solutions
[31]

- Mean
0.80 m - - -

LC, Kalman
filter, AR

modeling of INS
errors, wavelet

de-nosing

Accelerometer
and gyro sensor

biases

A hybrid error modeling
for MEMS IMU in

integrated GPS/INS
navigation system [32]

- RMSE
3.8 m - - -

LC, 9-state KF,
Nonlinear error

modeling
techniques (fast

orthogonal
search)

Accelerometer
and gyro sensor

noises

A Novel KGP Algorithm
for Improving INS/GPS
Integrated Navigation

Positioning Accuracy [36]

- RMSE
2.63 m - - -

LC, Kalman
filter, Gradient

Boosting
Decision Tree,

Particle Swarm
Optimization

Accelerometer
and gyro sensor

noises

Land Vehicle Navigation
System Based on the

Integration of Strap-Down
INS and GPS [39]

RMSE
N = 6.917 m
E = 10.279 m

-
RMSE

vN = 1.054 m/s
vE =0.593 m/s

- -
LC, 15-state KF,
Error damping

of INS

Accelerometer
biases, slow

varying
components of

gyro drifts

GNSS antenna lever arm
compensation aided
inertial navigation of

UAVs [47]

- - - -

RMSE
P = 2.57

◦

R = 2.33
◦

Y = 12.4
◦

LC, 20-state KF,
Estimation of

lever arm

Lever arm effect,
accelerometer

and gyro sensor
biases

GNSS/INS Fusion with
Virtual Lever Arm
Measurements [48]

RMSE
N = 0.6 m
E = 0.6 m
D = 0.5 m

- - - -
LC, 18-state KF,

Virtual lever arm
measurements

Lever arm effect,
accelerometer

and gyro sensor
biases

A Comparison between
Different Error Modeling

of MEMS Applied to
GPS/INS Integrated

Systems [78]

- Mean
4.12 m - - -

LC, KF,
Autoregressive

modeling of INS
errors

Accelerometer
and gyro sensor

bias
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Table 5. Cont.

Publication
RMSE/Mean

Position [NED]/
[Lat,Lon,Alt]

RMSE/
Mean Position

3D

RMSE/Mean
Velocity

[vN, vE, vD]

RMSE/
Mean

Velocity 3D

RMSE/
Mean

Attitude
[P,R,Y]

Integration
Technique,

Integration Tool,
Improving

Method

Reason of
Outliers

A Comparison between
Different Error Modeling

of MEMS Applied to
GPS/INS Integrated

Systems [78]

- Mean
2.71 m - - - LC, KF, Allan

variance analysis

Accelerometer
and gyro sensor

bias

Using Allan variance to
improve stochastic

modeling for accurate
GNSS/INS integrated

navigation [79]

- RMSE
4.23 m - RMSE

0.10 m -

Adaptive KF,
Allan-variance-

based error
modeling

Accelerometer
and gyro sensor

bias

This manuscript mainly addresses the issues of positioning of land and air vehicles.
There is another important problem for autonomous driving vehicles that is not covered
here. This problem is tracking of moving autonomous vehicles. To solve this problem,
simultaneous localization and mapping (SLAM) method using various sets of sensors, such
as camera, LIDAR, INS, GNSS receiver and radar, depending on the application and desired
level of accuracy, can be implemented. In [80], an integrated GNSS/INS/monocular vision
camera system is proposed for autonomous land vehicle tracking. The authors of this work
established the accurate dynamics model of the vehicle, proposed a prior height model for
pose initialization and optimized the process of multisensory fusion by using factor graph
optimization. This combination allowed the authors to achieve the absolute trajectory error
of 0.03 m.

5. Conclusions and Future Directions

In this paper, an analysis of the current state in the field of available approaches of
INS/GNSS integration for determination of the position of mobile objects representing
land or air vehicles is carried out.

The main integration approaches are considered. Loosely coupled and tightly coupled
integration systems are of the greatest interest in this review. The main integration tech-
niques based on the extended Kalman filter and its modifications, for example, unscented
Kalman filter, are considered. However, in this case, for loosely coupled and tightly coupled
systems, it is necessary to consider all the static and dynamic errors of the INS sensors in the
state vector of the Kalman filter, the dimension of which can reach 21 elements. For these
errors, accordingly, sensor error models should be introduced, which greatly complicates
and burdens the algorithm. In this regard, for more practical benefit, it is convenient to
introduce simplifications. Some authors have proposed ideas for separating the processes
of estimating the attitude and position of an object with separate algorithms of estimation.
By introducing magnetic sensors into an integrated system, they obtain an AHRS system
(attitude heading reference system) that can estimate the attitude of the object and the gyro
sensor error by using a certain algorithm, while the position and velocity of the object, as
well as the accelerometer bias, are determined in another filter. This approach to integration
can be of great practical use due to its relative simplicity.

The main factors affecting the accuracy and functionality of the system, in particular
the temporary unavailability of GNSS signals, outliers and integrity violation and INS
errors, are identified.

According to the results of the analysis, the use of neural networks for simulation
of GNSS signals that are not in the field of view provides a relatively good result in
terms of accuracy when used in integrated GNSS/INS systems. However, the time and
computational costs for their implementation can significantly exceed similar costs when
using the standard EKF. In this regard, in many cases, the use of approaches to integration
based on the Kalman filter is most preferable. A more reliable approach to solve the
problem of temporary unavailability of GNSS measurements is the use of tightly coupled
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integration systems, as well as GNSS receivers that work with several navigation systems:
GPS, Beidou, GLONASS. Machine learning and neural network technologies are also
used in the development of adaptive integration techniques in the presence of outliers.
However, for the reason described above, their use may not be beneficial in terms of
computing resources. An EKF with a weighted coefficient matrix to rank and suppress
poor measurements can solve the problem with outliers just as well.

INS sensors have many static and dynamic errors. Reducing INS sensor errors is
necessary to a large extent as the integrated system actually operates as an INS system in
the periods of absence of GNSS signals or their quality deterioration. The approaches to the
elimination of INS errors considered in various works are based on the exact construction
of models and estimation of INS stochastic errors. For example, the autoregressive model
or the Allan variance provide almost the same accuracy of the integrated system. The
choice between one or another approach is determined by the computational capabilities of
the designed system and the characteristics of the INS sensors. The lever arm effect makes
sense to consider when an integrated system is used on objects with a complex trajectory.
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