
Citation: Qian, J.; Zhang, P.; Zhu, H.;

Liu, M.; Wang, J.; Ma, X. LHDNN:

Maintaining High Precision and Low

Latency Inference of Deep Neural

Networks on Encrypted Data. Appl.

Sci. 2023, 13, 4815. https://doi.org/

10.3390/app13084815

Academic Editors: Konstantinos

Rantos, Konstantinos Demertzis

and George Drosatos

Received: 16 February 2023

Revised: 2 April 2023

Accepted: 6 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

LHDNN: Maintaining High Precision and Low Latency
Inference of Deep Neural Networks on Encrypted Data
Jiaming Qian 1, Ping Zhang 1,2,*, Haoyong Zhu 1, Muhua Liu 1 , Jiechang Wang 3 and Xuerui Ma 1

1 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China;
jmqian@stu.haust.edu.cn (J.Q.); 201410040135@stu.haust.edu.cn (H.Z.); lxk0379@126.com (M.L.);
201410050112@stu.haust.edu.cn (X.M.)

2 Intelligent System Science and Technology Innovation Center, Longmen Laboratory, Luoyang 471023, China
3 Sports Big Data Center, Department of Physical Education, Zhengzhou University, Zhengzhou 450001, China;

wangjiechang@126.com
* Correspondence: zping@haust.edu.cn

Abstract: The advancement of deep neural networks (DNNs) has prompted many cloud service
providers to offer deep learning as a service (DLaaS) to users across various application domains.
However, in current DLaaS prediction systems, users’ data are at risk of leakage. Homomorphic
encryption allows operations to be performed on ciphertext without decryption, which can be applied
to DLaaS to ensure users’ data privacy. However, mainstream homomorphic encryption schemes only
support homomorphic addition and multiplication, and do not support the ReLU activation function
commonly used in the activation layers of DNNs. Previous work used approximate polynomials
to replace the ReLU activation function, but the DNNs they implemented either had low inference
accuracy or high inference latency. In order to achieve low inference latency of DNNs on encrypted
data while ensuring inference accuracy, we propose a low-degree Hermite deep neural network
framework (called LHDNN), which uses a set of low-degree trainable Hermite polynomials (called
LotHps) as activation layers of DNNs. Additionally, LHDNN integrates a novel weight initialization
and regularization module into the LotHps activation layer, which makes the training process of
DNNs more stable and gives a stronger generalization ability. Additionally, to further improve the
model accuracy, we propose a variable-weighted difference training (VDT) strategy that uses ReLU-
based models to guide the training of LotHps-based models. Extensive experiments on multiple
benchmark datasets validate the superiority of LHDNN in terms of inference speed and accuracy on
encrypted data.

Keywords: DLaaS; homomorphic encryption; privacy protection; CKKS FHE scheme; deep neural
networks; hermite polynomials

1. Introduction

Deep neural networks (DNNs) have been widely used in various areas, such as
image classification, target detection, and natural language processing, due to their strong
predictive abilities [1]. However, DNNs require a large amount of complex computation,
and users may encounter limited computing power or lack the necessary expertise to
deploy these models. As a result, many users turn to cloud services to deploy their models,
giving rise to deep learning as a service (DLaaS), which allows users to access predictive
services on a pay-as-you-go basis. While DLaaS offers great convenience, it also poses a
potential security risk for sensitive data (e.g., medical and financial information) if cloud
servers are not trusted [2,3].

We focus on using homomorphic encryption [4] to address the problem of data pri-
vacy protection in cloud services. Homomorphic encryption allows for operations to be
performed directly on encrypted data, resulting in the same outcome as if the operations
were performed on the plaintext. In our solution (shown in Figure 1), users encrypt their

Appl. Sci. 2023, 13, 4815. https://doi.org/10.3390/app13084815 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084815
https://doi.org/10.3390/app13084815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4707-1354
https://doi.org/10.3390/app13084815
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084815?type=check_update&version=2

Appl. Sci. 2023, 13, 4815 2 of 19

data and upload it to the cloud server. The server then performs inference on the encrypted
data without knowing the original information, protecting the user’s data privacy [5]. Our
solution does not reveal any data information to other users in the cloud and can be consid-
ered to have zero communication consumption. The user simply uploads data to the cloud
and receives the results. Other secure multi-party computation (MPC)-based protocols
require two servers to be online at the same time, which means more communication
consumption [6–8].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 19

were performed on the plaintext. In our solution (shown in Figure 1), users encrypt their
data and upload it to the cloud server. The server then performs inference on the en-
crypted data without knowing the original information, protecting the user’s data privacy
[5]. Our solution does not reveal any data information to other users in the cloud and can be
considered to have zero communication consumption. The user simply uploads data to the
cloud and receives the results. Other secure multi-party computation (MPC)-based proto-
cols require two servers to be online at the same time, which means more communication
consumption [6–8].

Figure 1. DLaaS based on homomorphic Encryption (Taking the classification of Skin-cancer Im-
ages as an example).

However, current mainstream homomorphic encryption schemes only support addi-
tive and multiplicative operations, and cannot support nonlinear activation layers in neu-
ral networks. Dowlin et al. [9] proposed CryptoNets, the first convolutional neural net-
work (CNN) to perform privacy inference on ciphertexts of homomorphic encryption.
CryptoNets use squared functions instead of standard activation functions, but this results
in some accuracy degradation. Some subsequent work used polynomials obtained by ap-
proximating the standard activation function to achieve higher model accuracy, but this
approach is only applicable to shallow models [10–13]. Recently, Lee et al. [14] used min-
imax approximate polynomials [13] to achieve an accurate approximation of the ReLU
activation function, and implemented the first inference of the deep residual network Res-
Net-20 on encrypted data. However, its approximate polynomial degree is as high as 27,
which led to extremely high inference latency. Therefore, applying homomorphic encryp-
tion to deep neural networks while maintaining both high accuracy and low inference
latency has become an urgent problem.

In our paper, our goal is to reduce the inference latency of DNNs on homomorphic
encrypted data while maintaining their inference accuracy. To achieve this goal, we pro-
pose a low-degree Hermite deep neural network framework (called LHDNN). Unlike ex-
isting works that use fixed-coefficient polynomials to replace the ReLU function, LHDNN
uses a set of low-degree trainable Hermite polynomials (called LotHps) as the activation
layers in DNNs. The degree of LotHps is two, and its low degree property ensures low
inference latency for encrypted data. Specifically, LotHps are linear combinations of the
first three terms of Hermite polynomials, with three trainable weight parameters that can
be learned by the backpropagation algorithm during model training. Compared with the
fixed coefficient polynomial, the parameterized activation function LotHps has stronger
expressibility, which makes the upper limit of model accuracy higher. In addition,
LHDNN combines a new weight initialization and regularization module with LotHps to
ensure more stable model training and a stronger generalization ability. To further im-
prove the accuracy of LotHps-based models, we propose a variable-weighted difference
training (VDT) strategy, which uses an existing ReLU-based model to guide the training

Figure 1. DLaaS based on homomorphic Encryption (Taking the classification of Skin-cancer Images
as an example).

However, current mainstream homomorphic encryption schemes only support ad-
ditive and multiplicative operations, and cannot support nonlinear activation layers in
neural networks. Dowlin et al. [9] proposed CryptoNets, the first convolutional neural
network (CNN) to perform privacy inference on ciphertexts of homomorphic encryption.
CryptoNets use squared functions instead of standard activation functions, but this results
in some accuracy degradation. Some subsequent work used polynomials obtained by
approximating the standard activation function to achieve higher model accuracy, but
this approach is only applicable to shallow models [10–13]. Recently, Lee et al. [14] used
minimax approximate polynomials [13] to achieve an accurate approximation of the ReLU
activation function, and implemented the first inference of the deep residual network
ResNet-20 on encrypted data. However, its approximate polynomial degree is as high as
27, which led to extremely high inference latency. Therefore, applying homomorphic en-
cryption to deep neural networks while maintaining both high accuracy and low inference
latency has become an urgent problem.

In our paper, our goal is to reduce the inference latency of DNNs on homomorphic
encrypted data while maintaining their inference accuracy. To achieve this goal, we propose
a low-degree Hermite deep neural network framework (called LHDNN). Unlike existing
works that use fixed-coefficient polynomials to replace the ReLU function, LHDNN uses a
set of low-degree trainable Hermite polynomials (called LotHps) as the activation layers in
DNNs. The degree of LotHps is two, and its low degree property ensures low inference
latency for encrypted data. Specifically, LotHps are linear combinations of the first three
terms of Hermite polynomials, with three trainable weight parameters that can be learned
by the backpropagation algorithm during model training. Compared with the fixed coeffi-
cient polynomial, the parameterized activation function LotHps has stronger expressibility,
which makes the upper limit of model accuracy higher. In addition, LHDNN combines a
new weight initialization and regularization module with LotHps to ensure more stable
model training and a stronger generalization ability. To further improve the accuracy of
LotHps-based models, we propose a variable-weighted difference training (VDT) strategy,
which uses an existing ReLU-based model to guide the training of the LotHps-based model.
Specifically, the difference between the activation layer outputs of the LotHps-based model
and the ReLU-based model, as well as the difference between their final layer outputs, are

Appl. Sci. 2023, 13, 4815 3 of 19

added to the loss of the LotHps-based model, with a weight function p(x) to smoothly
transition between the two different terms. This strategy enables the LotHps-based model
to achieve higher accuracy in the early stages of training and prevents overfitting to the
ReLU-based activation layer outputs, leading to lower final accuracy.

In summary, our contributions are as follows:

• We propose a low-degree Hermite deep neural network framework (called LHDNN),
which employs a set of low-degree trainable Hermite polynomials (referred to as
LotHps) as activation layers in the DNNs. In addition, LHDNN integrates a novel
weight initialization and regularization module with LotHps, ensuring a more stable
training process and a stronger model generalization ability.

• We propose a variable-weighted difference training (VDT) strategy that uses the
original ReLU-based model to guide the training of the LotHps-based model, thereby
improving the accuracy of the LotHps-based model.

• Our extensive experiments on benchmark datasets MNIST, Skin-Cancer, and CIFAR-
10 validated the superiority of LHDNN in inference speed and accuracy on en-
crypted data.

In the rest of this paper, we discuss related work in Section 2. The knowledge related
to homomorphic encryption is introduced in Section 3. In Section 4, we present the
proposed LHDNN and the variable-weighted difference training (VDT) strategy. Relevant
experiments are conducted in Sections 5 and 6. Finally, we provide a summary of the entire
paper in Section 7.

2. Related Work

The solutions for applying homomorphic encryption to deep neural networks can be
divided into two categories depending on the homomorphic encryption scheme used, i.e.,
homomorphic encryption schemes based on the learning with errors (LWE) puzzle and
homomorphic encryption schemes based on the ring learning with errors (RLWE) puzzle.

Using the first class of homomorphic encryption solutions, nonlinear operations in
the activation function can be implemented using a lookup table. While this approach can
accurately evaluate the activation function in a short time, it does not support batch (SIMD)
operations, leading to inefficient operations in other steps (e.g., matrix multiplication in
the convolutional layer). FHE-DiNN [15] and TAPAS [16] use binarized weights and
sparsification techniques to achieve faster computation on complex models, but they have
a reduced inference accuracy of about 3–6.2%, even on small MNIST datasets. Lou and
Jiang [17] implemented privacy inference for the ResNet-18 model on the CIFAR-10 dataset
using a leveled version of the Torus homomorphic encryption (TFHE) scheme. Folkerts
et al. [18] used a ternary neural network to optimize privacy-preserving inference based on
TFHE. Compared to plaintext inference, it is slower by 1.7 to 2.7 orders of magnitude, but its
accuracy on the MNIST dataset is only 93.1%. DOREN [19] proposed a low-depth batched
neuron that can simultaneously evaluate multiple ReLU functions without approximation.
The amortized runtime is about 20 times faster than Lou and Jiang’s approach. Meftah
et al. [20] reexamined and improved the framework proposed by DOREN, achieving a
6–34 times speedup on some CNN architectures on the CIFAR10 dataset.

The second type of homomorphic encryption scheme supports SIMD operation, i.e.,
packing multiple plaintexts into one ciphertext, which can significantly improve the effi-
ciency of ciphertext operations, but their inability to support nonlinear activation functions
in neural networks becomes the biggest limitation of such solutions. Dowlin et al. [9] used
squared activation functions instead of standard ones to achieve inference on ciphertexts for
a model with only two activation layers, achieving 98.95% accuracy on the MNIST dataset.
Chabanne et al. [10] implemented a neural network with six nonlinear layers using the
Taylor expansion to approximate the Softplus activation function combined with a batch
normalization (BN) layer, achieving 99.30% accuracy on the MNIST dataset, slightly lower
than the 99.59% of the original ReLU-based model. Hesamifard et al. [12] approximated the
derivative of the ReLU activation function using a 2-degree polynomial and then replaced

Appl. Sci. 2023, 13, 4815 4 of 19

the ReLU activation function with a 3-degree polynomial obtained through integration,
further improving the accuracy on the MNIST dataset, but reducing the absolute accuracy
by about 2.7% when used for a deeper model on the CIFAR-10 dataset. Alsaedi et al. [21]
approximated the ReLU function using the Legendre polynomials and achieved a plaintext
accuracy of 99.80% on the MNIST dataset, but did not evaluate their model on encrypted
data. Yagyu et al. [22] improved model accuracy by pretraining the polynomial approx-
imation coefficients of the MISH activation function. Their ciphertext accuracy on the
MNIST dataset was 0.01% higher than plaintext accuracy, but their encrypted accuracy
on CIFAR-10 was only 67.20%. Lee et al. [14] utilized advanced min-max approximate
polynomials to achieve the best activation function approximation and successfully im-
plemented ResNet-20 on the RNS-CKKS homomorphic encryption scheme for the first
time. Although their method achieved about 92.43% ± 2.65% inference accuracy on the
CIFAR-10 dataset, the degree of their polynomial is very high, which results in a higher
inference delay because ciphertext multiplication is very expensive. In addition, a large
number of bootstrapping operations are needed to refresh ciphertext noise, which may
cause decryption errors.

Although solutions based on the first type of homomorphic encryption have an
advantage in ciphertext inference speed in the activation layers of DNN, their lack of
support for batch processing results in slower inference speeds in non-activation layers.
The second type of solution can achieve fast inference in non-activation layers, but currently
has limited methods for handling activation layers. Using low-degree polynomials can only
achieve privacy-preserving inference of encrypted data in shallow networks, but applying
this method to deeper networks results in a significant decrease in model accuracy. On
the other hand, using high-degree polynomials can achieve high model accuracy, but the
ciphertext inference latency is very high. Therefore, efficient privacy-preserving inference of
deeper DNN using FHE solutions is an important research topic that needs to be addressed.
To address the limitations of current research, we propose a low-degree Hermite deep neural
network framework (called LHDNN). LHDNN uses a set of low-degree trainable Hermite
polynomials (referred to as LotHps) as activation layers in the DNN. LotHps contains
three weight parameters that can be learned during the model training process through
backpropagation algorithm. By combining a novel weight initialization and regularization
module with LotHps, we can ensure a more stable training process and stronger model
generalization ability. Furthermore, we propose a variable-weighted difference training
(VDT) strategy that uses the original ReLU-based model to guide the training of the LotHps-
based model, thereby improving the accuracy of the LotHps-based model.

3. Preliminaries
3.1. Fully Homomorphic Encryption

Homomorphic encryption has been an active area of research for over 30 years, with the
first reasonably implementable fully homomorphic encryption scheme being proposed by
Gentry in 2009 [4]. In this paper, we adopt the Cheon–Kim–Kim–Song (CKKS) encryption
scheme proposed by Cheon et al. [23], which is considered the most suitable for machine
learning applications due to its support for floating-point operations. The CKKS scheme
consists of the following seven components.

• KeyGen(λ): Given the security parameter λ, choose M = M(λ, Q), choose an integer
P = P(λ, Q)

• Sample s← χs, output sk = (1, s).

• Sample a← RQ and e← χe , output pk =
(

b = [−a · s + e]q, a
)

.

• Sample a′ ← RPQ and e′ ← χe , output evk =
(

b′ =
[
−a′s + e′ + Ps2]

PQ, a′
)

• Enc(pk, m): For m ∈ R, sample r ← χr and e0, e1 ← χe , outputc = [r · pk+ (m + e0, e1)]q.
• Dec(sk, c): For c = (b, a) ∈ R2

q, output m = [b + as]q.
• Add(c, c′): Given two ciphertexts c, c′ ∈ R2

q, output cadd = c + c′mod q, cadd ∈ R2
q.

Appl. Sci. 2023, 13, 4815 5 of 19

• Mult(c, c′): Given two ciphertexts c = (b1, a1), c′ = (b2, a2) ∈ R2
q, let (d0, d1, d2) =

[(b1b2, a1b2 + a2b1, a1a2)]q, output cmult =
[
(d0, d1) +

⌊
P−1d2 · evk

⌉]
q.

• ReScalel→l−1(c): Given R a ciphertext c ∈ R2
ql

at level l, output c′ =
[⌊

ql−1
ql

c
⌉]

ql−1
.

The CKKS scheme uses large integers which require a high computational complexity.
To reduce this complexity, Cheon et al. [24] proposed a variant of the CKKS scheme called
RNS-CKKS. In this variant, large integers are split into several small integers, and the
addition and multiplication operations on the original large integer are equivalent to the
corresponding operations on the small integers in the residue number system.

3.2. Bootstrapping of CKKS

The ReScale operation is crucial for the homomorphic multiplication of ciphertexts.
However, each ReScale operation reduces the modulus of the ciphertext, which means
there is a limit on the number of homomorphic multiplications that can be performed.
Nevertheless, bootstrapping technology can solve this problem. The bootstrapping of
CKKS mainly consists of four parts: ModRaise, CoeffToSlot, EvalMod, and SlotToCoeff.

• ModRaise: If a ciphertext ct contains the plaintext m(X) = [〈ct, sk〉]q, then t(X) =

〈ct, sk〉 = qI(X) + m(X) ≡ m(X)(mod q), where
∣∣∣I(X)|∞ < K = O

(√
h
)

, and h is
the number of 1 in sk. The purpose of ModRaise is to increase the ciphertext modulus
q to a large modulus Q, such that [t(X)]Q = t(X).

• CoeffToSlot: There is a modular reduction to be performed on the coefficients of the
polynomial, but we need to approximate the modular reduction function using ho-
momorphic addition and multiplication. Homomorphic addition and multiplication
are done for the numbers in the slots, so we put the coefficients in the slots. This
process is equivalent to a homomorphic ciphertext decoding operation, that is, for the

matrix U0 and U1, homomorphic calculation z′k = 1
N

(
−

Uk

T
· z′ + UT

k ·
−
z′
)

, to obtain

two ciphertexts encrypting vectors z′0 =
(

t0, . . . , t N
2 −1

)
and z′1 =

(
t N

2
, . . . , tN−1

)
.

U0 =


1 ζ0 . . . ζ

N
2 −1

0

1 ζ1 . . . ζ
N
2 −1

1
...

...
. . .

...

1 ζ N
2 −1 . . . ζ

N
2 −1
N
2 −1

 and U1 =


ζ

N
2

0 ζ
N
2 +1

0 . . . ζN−1
0

ζ
N
2

1 ζ
N
2 +1

1 . . . ζN−1
1

...
...

. . .
...

ζ
N
2
N
2 −1

ζ
N
2 +1
N
2 −1

. . . ζN−1
N
2 −1

 (1)

• EvalMod: The goal of EvalMod is to homomorphically compute the modular reduc-
tion [·]q function. Since the [·]q function is not a polynomial function, considering its

periodicity, it can be approximated by a sine function to obtain S(t) = q
2π sin

(
2πt

q

)
.

The Taylor polynomial is then used to approximate S(t) and the final approxima-

tion polynomial q
2π

d−1
∑

j=0

(−1)j

(2j+1)!

(
2πt

q

)2j+1
is obtained. In addition, the double angle

formula cos(2θ) = cos2θ − sin2θ and sin(2θ) = 2cosθ · sinθ can be used to reduce the
calculation cost [25].

• SlotToCoeff : SlotToCoeff is the inverse process of CoeffToSlot, which restores the numbers
in the slots to the coefficients of the polynomial. That is, for the given two encoded
vectors z0 =

(
m0, · · · , m N

2 −1

)
and z1 =

(
m N

2
, · · · , mN−1

)
, the linear transformation

z = U0 · z0 + U1 · z1 is computed.

Appl. Sci. 2023, 13, 4815 6 of 19

4. The Proposed Method

In this section, we introduce the proposed low-degree Hermite neural network
(LHDNN), as shown in Figure 2, which includes the LotHps activation layer and weight
initialization and regularization modules. In addition, we introduce the variable-weighted
difference training (VDT) strategy.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19

encoded vectors 𝑧଴ = ൬𝑚଴, ⋯ , 𝑚మಿ ିଵ൰ and 𝑧ଵ = ൬𝑚మಿ , ⋯ , 𝑚ேିଵ൰ , the linear transfor-

mation 𝑧 = 𝑈଴ ⋅ 𝑧଴ + 𝑈ଵ ⋅ 𝑧ଵ is computed.

4. The Proposed Method
In this section, we introduce the proposed low-degree Hermite neural network

(LHDNN), as shown in Figure 2, which includes the LotHps activation layer and weight
initialization and regularization modules. In addition, we introduce the variable-weighted
difference training (VDT) strategy.

4.1. Low-Order Trainable Hermite Polynomials(LotHps) Activation Layer
As previously mentioned, the ciphertext produced by homomorphic encryption only

supports addition and multiplication operations. Therefore, the standard ReLU activation
function used in deep neural networks does not work properly in this context. To address
this issue, we need to use a homomorphic-friendly polynomial as our activation function.
Furthermore, performing a single multiplication on the ciphertext produced by homo-
morphic encryption is computationally expensive, so we want to minimize the number of
multiplication operations. To achieve this, we need to design a low-degree polynomial
activation function. In this section, we will discuss the important properties of Hermite
orthogonal polynomials and how to use them as our activation layer.

Figure 2. Low-degree Hermite neural network (LHDNN) framework.

Hermite polynomials: The Hermite orthogonal polynomials are defined as 𝐻௡(𝑥) =(−1)௡𝑒௫మ ௗ೙ௗ௫೙ 𝑒ି௫మ. They have been widely used in various fields due to their many excel-
lent properties [26]. Here, we only introduce the orthogonality that we use. Specifically,
for any two distinct non-negative integers 𝑛 and 𝑚, the Hermite polynomial 𝐻௡(𝑥) and 𝐻௠(𝑥) are orthogonal under the weight function 𝑒(ି௫మ), i.e.: න 𝑒ି௫మஶ

ିஶ 𝐻௡(𝑥)𝐻௠(𝑥)𝑑𝑥 = √𝜋2௡𝑛! 𝛿௡௠ (2)

where 𝛿௡௠ = 1 when 𝑛 = 𝑚, otherwise 𝛿௡௠ = 0. Additionally, the Hermite polynomials
satisfy a three-term recurrence relation: ൜ℎ଴(𝑥) = 1, ℎଵ(𝑥) = 2𝑥ℎ௡ାଵ(𝑥) = 2𝑥ℎ௡(𝑥) − 2𝑛ℎ௡ିଵ(𝑥), 𝑛 ൒ 2 (3)

LotHps based on Hermite polynomials: Based on the orthogonality of Hermite pol-
ynomials, we constructed a low-degree trainable Hermite polynomials (called LotHps)
activation function. In order to maintain low depth of multiplication, we only use the

Figure 2. Low-degree Hermite neural network (LHDNN) framework.

4.1. Low-Order Trainable Hermite Polynomials (LotHps) Activation Layer

As previously mentioned, the ciphertext produced by homomorphic encryption only
supports addition and multiplication operations. Therefore, the standard ReLU activation
function used in deep neural networks does not work properly in this context. To address
this issue, we need to use a homomorphic-friendly polynomial as our activation function.
Furthermore, performing a single multiplication on the ciphertext produced by homo-
morphic encryption is computationally expensive, so we want to minimize the number
of multiplication operations. To achieve this, we need to design a low-degree polynomial
activation function. In this section, we will discuss the important properties of Hermite
orthogonal polynomials and how to use them as our activation layer.

Hermite polynomials: The Hermite orthogonal polynomials are defined as
Hn(x) = (−1)nex2 dn

dxn e−x2
. They have been widely used in various fields due to their

many excellent properties [26]. Here, we only introduce the orthogonality that we use.
Specifically, for any two distinct non-negative integers n and m, the Hermite polynomial
Hn(x) and Hm(x) are orthogonal under the weight function e(−x2), i.e.:∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx =
√

π2nn!δnm (2)

where δnm = 1 when n = m, otherwise δnm = 0. Additionally, the Hermite polynomials
satisfy a three-term recurrence relation:{

h0(x) = 1, h1(x) = 2x
hn+1(x) = 2xhn(x)− 2nhn−1(x), n ≥ 2

(3)

LotHps based on Hermite polynomials: Based on the orthogonality of Hermite poly-
nomials, we constructed a low-degree trainable Hermite polynomials (called LotHps)
activation function. In order to maintain low depth of multiplication, we only use the lower
degree terms h0(x), h1(x), and h2(x) of the Hermite polynomials. The LotHps function
proposed by us can be expressed as:

LotHps(x) = w0h0(x) + w1h1(x) + w2h2(x) (4)

Appl. Sci. 2023, 13, 4815 7 of 19

where w0, w1, and w2 are learnable parameters whose values are adjusted adaptively
during neural network training. Specifically, during the backward propagation process
in the model, the gradient of the weights in the LotHps activation layer can be derived
using the chain rule. Assuming that θ represents the objective function, the gradient of
parameters in the LotHps activation layer are:

∂θ

∂wi
= ∑

c

∂θ

∂H(xc)

∂H(xc)

∂wi
= ∑

c

∂θ

∂H(xc)
hi(xc), i = 0, 1, 2 (5)

where c represents the number of specific input channels, xc represents the input value
of the c-th channel of the Hermite activation layer, and ∂θ

∂H(xc)
represents the gradient

back-propagated from a deeper layer. With the gradient, we can update the values of w0,
w1, and w2 through optimization algorithms such as stochastic gradient descent [27] to
minimize the loss function.

As to why we use the Hermite polynomials instead of the similar Legendre, Chebyshev
and Laguerre polynomials, etc., this is because only the orthogonal interval of Hermite
polynomials is [−∞,+∞]. This means that no matter how large the output value of the
batch normalization (BN) layer in a DNN is, it is always in the orthogonal interval of
the Hermite polynomial. Although we can satisfy the orthogonality condition for other
orthogonal polynomials by scaling the input values, we will undoubtedly introduce more
weights to train [26].

4.2. Weight Initialization and Regularization Module

Weight initialization of LotHps: To reduce the uncertainty of weight random initial-
ization for the LotHps activation layer, we propose a novel weight initialization method
that can make the error in the initial stage of model training smaller. Specifically, we use
the weight coefficients obtained by approximating the ReLU function as the initial weights
of the LotHps activation layer, which provide a good starting point for it. The approximate
method we propose is as follows:

Assume that ϕ0(x), ϕ1(x), · · · , ϕn(x) is a family of functions with weight orthogonal
about the point set {xi}(i = 0, 1, · · · , m). In this case, we use a family of Hermite orthogonal
functions where ϕ(x) refers specifically to h(x). Specify that the approximation function
consisting of this family of orthogonal functions takes the form:

S(x) = a0 ϕ0(x) + a1 ϕ1(x) + · · ·+ an ϕn(x) (6)

The conventional approximation method is to minimize the sum of squared errors, as
shown in the following equation:

‖δ‖2
2 =

m

∑
i=0

[
S*(xi)− yi

]2
= min

S(x)∈ϕ

m

∑
i=0

[S(xi)− yi]
2 (7)

where S*(x) represents the best approximation polynomial, and (xi, yi) represents the
sample points, in this case specifically the points on the ReLU function.

The conventional method only provides the best fit for the original function, which
is effective for the forward propagation process of the neural network model. However,
the gradient of its approximation function may have a large difference with the gradient
of the original function, leading to a large error in the backward propagation process of
the model. To address this, we consider adding the error of both derivative functions to
the objective function. Additionally, since the output values of the batch normalization
layer follow a normal distribution, the values are mostly concentrated around 0. We use

Appl. Sci. 2023, 13, 4815 8 of 19

a weight function
√

1− (x/l)2 to better approximate the function values and derivative
values around 0, resulting in the final approximation objective we use:

min
S(x)∈ϕ

m

∑
i=0

√
1− (x/l)2 · [S(xi)− f (xi)]

2 +
[
S′(xi)− f ′(xi)

]2 (8)

where S′(x) represents the derivative of the approximating function, f ′(x) represents the
derivative of the approximated function, and [−l, l] represents the approximation interval.

Weight regularization of LotHps: During DNNs model training, we found that sig-
nificant changes in the values of the weights of the LotHps activation layer or changes
in sign caused large fluctuations in the model loss. To prevent the instability of weights
during training, we combined the aforementioned weight initialization techniques and
proposed a novel weight regularization module that can also improve the generalization
ability of the model.

Because wi corresponds to the Hermite polynomial hi(x), and hi(x) itself is not in
the same dimension, so we first use wi = 1√

2i i!
wi to get dimensionless wi. Then, let

Wt =
(
wt

0, wt
1, · · · , wt

2
)

represent the weight of the LotHps activation layer during training,
and Ws =

(
ws

0, ws
1, · · · , ws

2
)

represent its initial weight. We calculate the relative Euclidean
distance between Wt and Ws as a regularization term to constrain Wt. Finally, the relative
Euclidean distance for a single LotHps activation layer is as follows:

d =
‖Wt −Ws‖
‖Ws‖

(9)

The parameters d of each LotHps activation layer of the model are subsequently
averaged while multiplying by a regular term parameter λ to control the strength of the
regularity, in order to obtain the LotHps weight regularity term, which is as follows:

Ω(Wt) = λ · 1
N

N

∑
i=0

di (10)

where N denotes the number of LotHps activation layers and di represents the relative
Euclidean distance for the i-th LotHps activation layer.

4.3. Variable-Weighted Difference Training (VDT) Strategy

The proposed LotHps activation layer shows good performance on shallower DNNs,
but its accuracy degrades slightly when applied to deeper networks. Inspired by knowledge
distillation techniques, we propose a variable-weighted difference training (VDT) strategy
designed to reduce the difference between DNNs using LotHps functions (called LotHps-
based models) and DNNs using ReLU functions (called ReLU-based models), thereby
improving the accuracy of LotHps-based models.

In Figure 3, we demonstrate our novel VDT strategy, which leverages the original
ReLU-based model as a teacher to supervise the training of the LotHps-based model.
The proposed VDT strategy consists of two loss terms: the first loss term corresponds to
the activation loss between the LotHps-based model and the ReLU-based model, while
the second loss term comprises the output loss of both models and the cross-entropy
between the LotHps-based model output and the true label. Notably, we utilize a weight
function denoted by ρ(x) in Equation (16) to achieve a smooth transition between the
two aforementioned loss terms.

Appl. Sci. 2023, 13, 4815 9 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19

Figure 3. Variable-weighted difference training (VDT) schematic.

Activation Loss: To quantify the activation loss for the two models, we utilize Kull-
back–Leibler (KL) divergence. Specifically, we assume that activation layer output distri-
butions of the LotHps and ReLU-based models are represented as 𝑞(𝑥) and 𝑝(𝑥) respec-
tively. The KL divergence of 𝑞(𝑥) and 𝑝(𝑥) can be expressed as:

𝐷௄௅(𝑝 ∥ 𝑞) = ෍ൣ𝑝൫𝑥௝൯log𝑝൫𝑥௝൯ − 𝑝൫𝑥௝൯log𝑞൫𝑥௝൯൧ெ
௝ୀଵ (11)

Let 𝑁 be the number of activation layers, and 𝐷௜(𝑝௜ ∥ 𝑞௜) be the KL divergence of
the 𝑖-th activation layer. Then, the first loss term is:

𝑙𝑜𝑠𝑠_𝑎𝑐𝑡 = ෍ 𝐷௜(𝑝௜ ∥ 𝑞௜)ே
௜ୀଵ = ෍ ෍ 𝑝௜(𝑥௝)ൣlog𝑝௜(𝑥௝) − log𝑞௜(𝑥௝)൧ெ

௝ୀଵ
ே

௜ୀଵ (12)

where 𝑝௜(𝑥) and 𝑞௜(𝑥) are the 𝑖-th activation layer output distributions of the LotHps-
based model and the ReLU-based model, respectively.

Output Loss: For the loss terms of the final output distribution of the two models, we
utilize the approach suggested in [28], which uses a response-based knowledge distilla-
tion method with a soft target technique: 𝑄்[𝑖] = exp(𝑧௜ 𝑇⁄)∑ exp௝ ൫𝑧௝ 𝑇⁄ ൯ (13)

where 𝑄்[𝑖] is the soft target version of the class 𝑖 sample prediction, 𝑇 represents the
temperature, and 𝑧௜ is the logarithm of the original prediction. The second loss term is
obtained by combining the output distribution differences and hard label loss as follows: 𝑙𝑜𝑠𝑠_𝑜𝑢𝑡 = 𝛼ଵ𝑇ଶ ⋅ 𝐶𝐸(𝑄ு், 𝑄ோ்) + 𝛼ଶ ⋅ 𝐶𝐸(𝑄ுଵ , 𝑦true) (14)

where 𝑄ு் and 𝑄ோ் represent the soft target outputs of the LotHps and ReLU-based mod-
els, respectively, 𝑦௧௥௨௘ represents the true label, and 𝐶𝐸 represents the cross-entropy
function. 𝛼ଵ and 𝛼ଶ are two hyperparameters that control the relative magnitude of the
two cross-entropy losses.

Loss Smooth Transition: We did not simply weigh the two aforementioned loss
terms arithmetically. Instead, we used a smooth transition function 𝜌(𝑥) as a dynamic
weighting function to achieve a smooth transition from 𝑙𝑜𝑠𝑠_𝑎𝑐𝑡 to 𝑙𝑜𝑠𝑠_𝑜𝑢𝑡. In this way,
during the initial training, the main goal of the LotHps-based model is to reduce the dif-
ference between it and the activation output distribution of the ReLU-based model. In the
later stages of training, the LotHps-based model adjusts the model according to the final
learning goals. The specific expression of the smooth transition function 𝜌(𝑥) is as fol-
lows:

Figure 3. Variable-weighted difference training (VDT) schematic.

Activation Loss: To quantify the activation loss for the two models, we utilize
Kullback–Leibler (KL) divergence. Specifically, we assume that activation layer output
distributions of the LotHps and ReLU-based models are represented as q(x) and p(x)
respectively. The KL divergence of q(x) and p(x) can be expressed as:

DKL(p ‖ q) =
M

∑
j=1

[
p
(
xj
)
logp

(
xj
)
− p

(
xj
)
logq

(
xj
)]

(11)

Let N be the number of activation layers, and Di(pi ‖ qi) be the KL divergence of the
i-th activation layer. Then, the first loss term is:

loss_act =
N

∑
i=1

Di(pi ‖ qi) =
N

∑
i=1

M

∑
j=1

pi
(

xj
)[

logpi
(
xj
)
− logqi

(
xj
)]

(12)

where pi(x) and qi(x) are the i-th activation layer output distributions of the LotHps-based
model and the ReLU-based model, respectively.

Output Loss: For the loss terms of the final output distribution of the two models, we
utilize the approach suggested in [28], which uses a response-based knowledge distillation
method with a soft target technique:

QT [i] =
exp(zi/T)

∑
j

exp
(
zj/T

) (13)

where QT [i] is the soft target version of the class i sample prediction, T represents the
temperature, and zi is the logarithm of the original prediction. The second loss term is
obtained by combining the output distribution differences and hard label loss as follows:

loss_out = α1T2 · CE
(

QT
H , QT

R

)
+ α2 · CE

(
Q1

H , ytrue

)
(14)

where QT
H and QT

R represent the soft target outputs of the LotHps and ReLU-based models,
respectively, ytrue represents the true label, and CE represents the cross-entropy function.
α1 and α2 are two hyperparameters that control the relative magnitude of the two cross-
entropy losses.

Loss Smooth Transition: We did not simply weigh the two aforementioned loss terms
arithmetically. Instead, we used a smooth transition function ρ(x) as a dynamic weighting
function to achieve a smooth transition from loss_act to loss_out. In this way, during the
initial training, the main goal of the LotHps-based model is to reduce the difference between
it and the activation output distribution of the ReLU-based model. In the later stages of

Appl. Sci. 2023, 13, 4815 10 of 19

training, the LotHps-based model adjusts the model according to the final learning goals.
The specific expression of the smooth transition function ρ(x) is as follows:

ρ(x) =


2
(

x−e0
e1−e0

)2
, e0 ≤ x ≤ c

1− 2
(

x−e1
e1−e0

)2
, c < x ≤ e1

1, x > e1

(15)

where e0 = 0 represents the initial moment of training, e1 is an adjustable parameter
representing the complete transition moment, and c = 1

2 (e0 + e1) represents the moment
when two loss priorities are equal. Ultimately, the total loss item of the LotHps-based
model can be expressed as:

Loss = ρ(x) · loss_act + (1− ρ(x)) · loss_out (16)

5. Implementation Details

The specific implementation is divided into two parts: model training on unencrypted
data, and privacy inference on encrypted data. We built three models in three different
datasets. The first model is a network (named CNN-6) with five nonlinear activation layers
on the MNIST dataset. The second model is an AlexNet model on the Skin-Cancer dataset.
The third model is a ResNet-20 model on the CIFAR-10 dataset. Please see Table 1 for more
details on the models. In this section, we will present the datasets and models we used, as
well as the security parameters and inference optimization methods.

Table 1. Model information.

Dataset Input Shape Model Params (MB) Mul-Depth

MNIST 1 × 28 × 28 CNN-6 0.57 5
Skin-Cancer 3 × 32 × 32 AlexNet 88.74 7

CIFAR-10 3 × 32 × 32 ResNet-20 1.04 19
CNN-6 represents [C-B-A-C-B-A-P] × 2-F-A-F, C represents the convolutional layer, B represents the batch
normalization layer, A represents the activation layer, P represents the average pooling layer, and F represents the
fully connected layer. Mul-depth represents the multiplication depth of the model.

5.1. DataSets

• MNIST [29]: The MNIST dataset consists of single-channel images of 10 handwritten
Arabic numerals. It includes 50,000 images in the test set and 10,000 images in the
training set, each with a size of 28 × 28 pixels. In total, there are 60,000 images in the
MNIST dataset.

• Skin-Cancer [30]: The Skin-Cancer dataset consists of medical images of different types
of skin cancer, with a total of 10,015 images belonging to seven different categories.
We modified the size of all images to 32 × 32 pixels, and divided the dataset into a
training set and a test set in an 8:2 ratio. Because the data was severely imbalanced,
we performed data enhancement and resampling operations on the training data.

• CIFAR-10 [31]: The CIFAR-10 dataset consists of color images of 10 different objects,
with a total of 60,000 images. It includes 50,000 images in the test set and 10,000 images
in the training set, each with a size of 32 × 32 pixels. The training set is extended by
random rotation and random clipping.

5.2. Model Architecture

For the MNIST dataset, we built a network (named CNN-6) containing four convolu-
tional layers and two fully connected layers. The exact arrangement of the network layers
is shown in Table 1, where C represents the convolutional layer, B represents the batch
normalization layer, A represents the activation layer, P represents the average pooling
layer, and F represents the fully-connected layer. For the Skin-Cancer dataset, we modified

Appl. Sci. 2023, 13, 4815 11 of 19

the standard AlexNet network [32] to accommodate the size of the input images, and
replaced the maximum pooling layer with a homomorphism-friendly average pooling
layer. For the CIFAR-10 dataset, we used the standard ResNet-20 network [33].

5.3. Approximation Interval of Weight Initialization

Because the outputs of the intermediate layers of different models are different, this
also leads to different input values of the activation layer. If we choose too small an interval
for weight initialization, those larger input values, which increase rapidly after activation,
will easily lead to gradient explosion. At the same time, if the interval is too large, it
will lead to a poor approximation effect of the LotHps function to the ReLU function,
resulting in a large initial training loss in the LotHps-based model. Therefore, it is especially
important to choose a good initialization interval, and we use the maximum absolute value
of each activation layer input as the parameter l of the approximation interval [−l, l]. When
training the original ReLU-based model, we counted this value as 23.2, 32.8 and 40.3 for
the three models, so when training the LotHps-based model, we used these values as the
parameter l.

5.4. Safety Parameter Setting

As with other encryption schemes, the CKKS homomorphic encryption scheme re-
quires parameters to be set to ensure that known attacks are computationally infeasible.
We chose different configurations for the different models, and all configurations satisfy
128-bit security, which means that an adversary would need to perform at least 2128 basic
operations to crack the scheme with probability 1. The polynomial degree N of the first
configuration is set to 215, with integer and fractional partial precision set to 10 and 50,
respectively, and a multiplication depth of 14. The second configuration is set to N = 215,
with integer and fractional partial precision set to 10 and 39, respectively, and a multiplica-
tion depth of 20. The third configuration is set to N = 216, with integer and fractional partial
precision set to 12 and 48, respectively, and a multiplication depth of 9. In addition, in the
third configuration, we use bootstrapping technology. The degree of the approximation
polynomial of the modulus function is set to 14, and the maximum length of the modulus
is 1332, which meets 128-bit security, while Lee et al. [14] only meets 111.6 bits of security.
The parameters for each configuration are listed in Table 2.

Table 2. Safety parameters configuration.

Model λ
Integer

Precision
Fractional
Precision

Evalution
Level Degree Bootstrapping

Level

CNN-6 128 10 50 14 215 -
AlexNet 128 10 39 20 215 -

ResNet-20 128 12 48 9 216 13

5.5. Inference Optimization

When performing model inference on ciphertexts, some ciphertext packing techniques
and special convolution methods are required to reduce the complexity of the inference
process. Aharoni et al. [34] proposed a data structure called the graph block tensor and an
interleaved packing method that can effectively reduce the latency and memory consump-
tion of ciphertext inference, and can easily adapt the output of one convolutional layer
as the input for the next convolutional layer. The graph block tensor is a data structure
that packs tensors into fixed-size blocks according to the requirements of homomorphic
encryption and allows them to be manipulated similarly to regular tensors [34]. We use this
approach, and the shape and packing of the tensor blocks for the three models are shown
in Table 3.

Appl. Sci. 2023, 13, 4815 12 of 19

Table 3. Parameter setting of inference optimization method.

Model Batchsize Tile Shape Packing Mode

CNN-6 64 8× 8× 1× 4× 64 F-W-H-C-B
AlexNet 8 8× 4× 4× 16× 8 C-W-H-F-B

ResNet-20 16 4× 16× 16× 2× 16 C-W-H-F-B
C represents the number of channels, W represents the width of the image, H represents the height of the image, F
represents the number of convolution kernels, B represents the batchsize.

Given an image input I[wI , hI , c, b], each dimension represents the height and width,
number of channels and batch of the image, and the convolution kernel size F[wF, hF, c, f];
each dimension represents the height and width, number of input channels, and number
of output channels of the convolution kernel (i.e. the number of convolution kernels)
respectively. The two are multiplied to obtain O[w, h, c, b, f]. For a particular block shape
[t1, t2, t3, t4, t5] and packing method, C-W-H-F-B can be decomposed and rearranged to
O
[

c
t1

, w
t2

, h
t3

, f
t4

, b
t5

]
for O.

6. Evaluation
6.1. Plaintext Training

In this section, we train the proposed LotHps-based model on three different datasets.
Please note that our focus is not on achieving higher classification accuracy, but on reducing
the accuracy gap between the LotHps-based model and the original ReLU-based model.
This ensures that our LotHps-based model can be effectively applied to privacy inference
on ciphertexts.

6.1.1. MNIST Dataset

For the MNIST dataset, we evaluated CNN-6 using our proposed methods. We set
the batchsize to 64 and used the Adam optimizer. The initial learning rate for both the
ReLU and LotHps-based models is set to 0.001. We adopt a dynamic adjustment learning
rate strategy, where the learning rate decays by half every 10 epochs of training. The
final accuracy of the original ReLU-based model is 99.57%, and the final accuracy of the
LotHps-based model is 99.62%. We also tried to increase the number of Hermite orthogonal
bases in the activation layer, but found that the accuracy actually decreased and the training
process was prone to gradient explosion due to the runge phenomenon of higher degree
polynomials. Since our LotHps-based model is more accurate than the original ReLU-based
model, we do not need to use the variable-weighted difference training strategy to further
improve its performance. This avoids adding additional computational overhead.

We compared the accuracy and errors of the methods proposed in other literature
on the MNIST dataset, and the models used by these methods are shown in Table 4.
CryptoNets [9] used x2 to replace the original ReLU activation function, resulting in an
absolute accuracy reduction of 0.32%. PPCN [10] used the Taylor approximation of the
softplus function combined with the BN layer, which results in an accuracy reduction of
0.29%. CryptoDL [12] used a 2-degree polynomial approximation of the derivative function
of ReLU and integrates it to obtain a 3-degree polynomial to replace the ReLU function. The
original model has an accuracy of 99.67%, but this drops to 99.52% after the replacement.
QuaiL [35] used the idea of dynamic programming to train the polynomial as the model of
activation function, and its accuracy was 99.26%. We used the approximate polynomial
from Approx-ReLU [21] as the activation function, which resulted in a 0.03% reduction in
model accuracy. However, the model test accuracy curve of this method fluctuates widely,
as shown in Figure 4.

Appl. Sci. 2023, 13, 4815 13 of 19

Table 4. Contrast of plaintext accuracy on three datasets.

Dataset Method Model Replacement
Accuracy

Original
Accuracy

Accuracy
Difference

MNIST

CryptoNets [9] C-A-P-A-F 98.95 99.28 −0.33
PPCN [10] [C-B-A-C-B-A-P]*3-F-F 99.30 99.59 −0.29

CryptoDL [12] [[C-B-A]*2-P-C-B-A]*2-F-F 99.52 99.56 −0.04
Approx-ReLU [21] [C-B-A-C-B-A-P]*2-F-A-F 99.54 99.57 −0.03

QuaiL [35] LeNet-5 99.26 99.32 −0.06
LHDNN [C-B-A-C-B-A-P]*2-F-A-F 99.62 99.57 0.05

Cancer

CryptoNets [9] AlexNet 67.26 81.14 −13.88
Approx-ReLU [21] AlexNet 75.85 81.14 −5.29
LHDNN (no VDT) AlexNet 78.08 81.14 −3.06

LHDNN AlexNet 81.10 81.14 −0.04

CIFAR-10

CryptoDL [12] CNN-10 91.50 94.20 −2.70
PACN [13] VGG-16 91.87 91.99 −0.12
QuaiL [35] VGG-11 82.85 90.46 −7.61
QuaiL [35] ResNet-18 85.72 93.21 −7.49
BDGM [28] AlexNet 87.20 90.10 −2.90

LHDNN (no VDT) ResNet-20 88.97 91.58 −2.61
LHDNN ResNet-20 91.54 91.58 −0.04

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19

Figure 4. Comparison of train loss and test accuracy on MNIST.

Figure 4 shows the training loss and test accuracy curves of the three activation func-
tions: ReLU, LotHps, and Approx-ReLU [21]. From the figure, we can see that the model
training losses of our proposed LotHps and Approx-ReLU are very close after 30 epochs.
However, the model losses of our method are smaller in the early training period, which
indicates the effectiveness of our proposed weight initialization method. Observing the
test accuracy curves, we can see that the model test accuracy curves corresponding to the
Approx-ReLU fluctuate more, while the curves of the LotHps are more stable and have
higher test accuracy. This reflects that our weight regularization module can ensure the
stability of model generalization ability in the process of model training and can effec-
tively improve the model’s generalization ability.

6.1.2. Skin-Cancer Dataset
For the Skin-Cancer dataset, we evaluated AlexNet using our proposed methods. We

set the batchsize to 64, the optimizer to Adam, and the initial learning rate to 0.001. The
learning rate decays to 0.5 times the original value every 10 steps, and the LotHps regu-
larization parameter 𝜆 is set to 0.0005. The accuracy of the original ReLU-based model is
81.14%, while the LotHps-based model without VDT strategy reaches 78.08%, resulting in
a 3.06% accuracy reduction. In contrast, the LotHps-based model trained with VDT strat-
egy achieves an accuracy of 81.10%. We set the value of 𝑒ଵ in the smooth transition func-
tion 𝜌(𝑥) to 20, meaning that the model discarded the 𝑙𝑜𝑠𝑠_𝑎𝑐𝑡 term after 20 epochs and
only used the reduction of 𝑙𝑜𝑠𝑠_𝑜𝑢𝑡 as the learning goal. We also tried making 𝑒ଵ fluctu-
ate up and down by 5 steps and found that the accuracy fluctuates within 0.03%. Addi-
tionally, we evaluated AlexNet using two methods: the squared activation function [9]
and Approx-ReLU [21], with a final accuracy of 67.26% and 75.85%, respectively. This is a
significant difference in accuracy compared to the original ReLU-based model.

6.1.3. CIFAR-10 Dataset
For the CIFAR-10 dataset, we evaluated ResNet-20 using our proposed method. The

original ReLU-based model using the training hyperparameters from literature [33]
achieved an accuracy of 91.58%. For our LotHps-based model, the optimizer was Adam,
the LotHps regularization parameter 𝜆 was set to 0.0005, and the initial learning rate was
set to 0.001. The learning rate was dynamically adjusted, decreasing by a factor of 0.5 every
10 epochs. Without using the VDT strategy, our LotHps-based model achieved an accu-
racy of 88.97%. Using the VDT strategy, our LotHps-based model achieved an accuracy of
91.54%, an improvement of approximately 2.57%, with the weighting function parameter 𝑒ଵ set to 25. We also observed a final accuracy fluctuation within 0.05% by fluctuating 𝑒ଵ
by 5 steps.

We compared the accuracy and errors of the methods proposed in other literature to
the CIFAR-10 dataset, and the models used by these methods are shown in Table 4. Using
the Approx-ReLU [21] function as the activation layer of ResNet-20, it achieved an

Figure 4. Comparison of train loss and test accuracy on MNIST.

Figure 4 shows the training loss and test accuracy curves of the three activation
functions: ReLU, LotHps, and Approx-ReLU [21]. From the figure, we can see that the
model training losses of our proposed LotHps and Approx-ReLU are very close after
30 epochs. However, the model losses of our method are smaller in the early training period,
which indicates the effectiveness of our proposed weight initialization method. Observing
the test accuracy curves, we can see that the model test accuracy curves corresponding to
the Approx-ReLU fluctuate more, while the curves of the LotHps are more stable and have
higher test accuracy. This reflects that our weight regularization module can ensure the
stability of model generalization ability in the process of model training and can effectively
improve the model’s generalization ability.

6.1.2. Skin-Cancer Dataset

For the Skin-Cancer dataset, we evaluated AlexNet using our proposed methods.
We set the batchsize to 64, the optimizer to Adam, and the initial learning rate to 0.001.
The learning rate decays to 0.5 times the original value every 10 steps, and the LotHps
regularization parameter λ is set to 0.0005. The accuracy of the original ReLU-based model
is 81.14%, while the LotHps-based model without VDT strategy reaches 78.08%, resulting in
a 3.06% accuracy reduction. In contrast, the LotHps-based model trained with VDT strategy
achieves an accuracy of 81.10%. We set the value of e1 in the smooth transition function ρ(x)
to 20, meaning that the model discarded the loss_act term after 20 epochs and only used the

Appl. Sci. 2023, 13, 4815 14 of 19

reduction of loss_out as the learning goal. We also tried making e1 fluctuate up and down
by 5 steps and found that the accuracy fluctuates within 0.03%. Additionally, we evaluated
AlexNet using two methods: the squared activation function [9] and Approx-ReLU [21],
with a final accuracy of 67.26% and 75.85%, respectively. This is a significant difference in
accuracy compared to the original ReLU-based model.

6.1.3. CIFAR-10 Dataset

For the CIFAR-10 dataset, we evaluated ResNet-20 using our proposed method.
The original ReLU-based model using the training hyperparameters from literature [33]
achieved an accuracy of 91.58%. For our LotHps-based model, the optimizer was Adam,
the LotHps regularization parameter λ was set to 0.0005, and the initial learning rate was
set to 0.001. The learning rate was dynamically adjusted, decreasing by a factor of 0.5
every 10 epochs. Without using the VDT strategy, our LotHps-based model achieved an
accuracy of 88.97%. Using the VDT strategy, our LotHps-based model achieved an accuracy
of 91.54%, an improvement of approximately 2.57%, with the weighting function parameter
e1 set to 25. We also observed a final accuracy fluctuation within 0.05% by fluctuating e1 by
5 steps.

We compared the accuracy and errors of the methods proposed in other literature to
the CIFAR-10 dataset, and the models used by these methods are shown in Table 4. Using
the Approx-ReLU [21] function as the activation layer of ResNet-20, it achieved an accuracy
of only 62.38%. CryptoDL [12] used its proposed method to evaluate the 10-layer DNN
(called CNN-10) and achieved an accuracy of 91.50%, but the accuracy was reduced by
3.7% compared to the original ReLU-based model. QuaiL [35] used its proposed method
to evaluate VGG-11, and its accuracy was reduced by about 7.61%, indicating that the
proposed method was not applicable to the depth model. Lee et al. [13] used a 27-degree
polynomial instead of the ReLU function to evaluate the VGG-16 model, resulting in a
0.11% reduction in accuracy. However, their high-degree polynomial caused a significant
delay in cryptographic inference. BDGM [28] proposed a smooth replacement activation
function method and evaluated AlexNet combined with a knowledge distillation technique.
The replacement accuracy was 87.20%, while the original ReLU-based model’s accuracy
was 90.10%.

6.2. Ciphertext Inference

In this subsection, we present the results of our trained model’s ability to reason over
ciphertexts. We implemented our proposed model using the Helayers library [34], released
by IBM Research, which connects to the three underlying homomorphic cryptographic
libraries—HELib, HEAAN, and SEAL. Our three models all use the HEAAN ciphertext,
and our simulation environment is a cloud server with an Intel(R) Xeon(R) Gold 5218 CPU
@ 2.30 GHz processor (48 cores) and 100 GB of RAM.

6.2.1. Analysis and Comparison of Ciphertext Inference Results

In most cases, the cloud would perform privacy classification on multiple images from
the user, so batch inference can be performed on the images. However, due to memory
limitations on the server we use, we cannot set the batch size too large. At the same time,
it cannot be too small either, as this would increase the amortized runtime. Taking these
constraints into account, we set the inference batchsize for CNN-6, AlexNet, and ResNet-20
to 64, 8, and 16 respectively.

Table 5 shows the specific time consumption of the three model reasoning processes
using an RNS-CKKS encryption scheme. We chose HEAAN as the back-end encryption
library and only encoded the model parameters without encrypting them. For time con-
sumption, the total reasoning times of our CNN-6, ALexNet, and ResNet-20 are 142.62 s,
244.90 s, and 1027.96 s, respectively, and the corresponding amortized running times (time
per image) are 2.23 s, 30.61 s, and 64.25 s, respectively. In practical applications, we can
run our model on GPU to further reduce inference latency [36]. Regarding memory usage,

Appl. Sci. 2023, 13, 4815 15 of 19

the total reasoning memory usages of the three are about 23 G, 81 G, and 96 G respec-
tively. As can be seen from the table, the AlexNet model parameter encoding stage has
the largest memory occupation, which is caused by the huge number of parameters in
its full connection layer. For the ResNet-20 model, the polynomial degree corresponding
to CIFAR-10 image ciphertext is N = 216, and bootstrapping refresh noise is adopted,
so the corresponding context memory is relatively large. We also evaluated the memory
consumption of inferencing only one image at a time, with the three models consuming
6.91 G, 24.58 G, and 34.63 G of memory, respectively.

Table 5. Ciphertext inference time (s) and memory usage (GB) consumption.

Option Dataset Model Initialization
Context

Model
Encoding

Input
Encryption

Output
Decryption Inference

Time
MNIST (b = 64) CNN-6 1.39 0.11 0.41 0.0045 142.62
Cancer (b = 8) AlexNet 2.97 2.70 0.75 0.0049 244.90

CIFAR-10 (b = 16) ResNet-20 8.18 0.53 0.18 0.0233 1027.96

Memory
MNIST (b = 64) CNN-6 1.67 0.0021 2.26 0.0005 19.12
Cancer (b = 8) AlexNet 5.13 0.1735 3.94 0.0005 71.91

CIFAR-10 (b = 16) ResNet-20 11.62 0.0035 1.05 0.0002 83.13

We compared our results with existing solutions, and Table 6 presents the results of
evaluating DNN using homomorphic encryption on different datasets in previous work.
Considering evaluation metrics such as accuracy, inference time, and security, our solution
outperforms all other solutions. For example, our MNIST CNN-6 has the highest inference
accuracy and the lowest amortized time, achieving a standard 128-bit security. Our SKIN
AlexNet has an amortized time of 30.61 s, which is 1.49 times faster than AlexNet using
Apprx-ReLU [21], and has higher accuracy. Finally, our CIFAR10 ResNet-20 is 348.20 times
faster, 181.88 times faster, and 165.01 times faster than FCryptoNets [37], CryptoDL [12], and
PACN [14], respectively, with higher security. Although the amortized time of LDCN [38]
is also low, it is an improvement of PACN by its authors, mainly focusing on improving
the speed of convolution and bootstrapping. In contrast, we mainly focus on reducing the
inference latency of the activation layer, and our ResNet-20 trained using the proposed
method can also adopt the convolution and bootstrapping strategy of LDCN [38] to further
improve the inference speed.

Table 6. Comparison of ciphertext inference results.

Dataset Method Model Accuracy Amortized
Time

Memory
Usage λ

MNIST

CryptoNets [9] CNN-4 98.95 249.6 N/A 80
FCryptoNets [37] CNN-4 98.71 39.1 N/A 128

CryptoDL [12] CNN-4 99.25 148.9 N/A 80
HCNN-CPU [39] CNN-3 99.00 90.32 N/A 76

LHDNN CNN-6 99.62 2.23 6.91G 128

Cancer
Approx-ReLU [21] AlexNet 75.85 45.68 32.89G 128

LHDNN AlexNet 81.10 30.61 24.58G 128

CIFAR-10

FCryptoNets [37] CNN-8 75.99 22372 N/A 128
CryptoDL [12] CNN-9 91.50 11686 N/A 80

PACN [14] ResNet-20 92.43 ± 2.65 10602 172G 111.6
LDCN [38] ResNet-20 91.31 79.46 N/A 128
LHDNN ResNet-20 92.28 ± 2.58 64.25 34.63G 128

N/A indicates that this value is not given in the reference.

We note that the results reported in Table 6 were obtained on different machines. The
MNIST CNN-4 of CryptoNets [9] was run on a machine with an Intel Xeon E5-1620 CPU at

Appl. Sci. 2023, 13, 4815 16 of 19

3.5 GHz with 16 GB RAM. The MNIST CNN-4 of FCryptoNets was run on a machine with
an Intel Core i7-5930K CPU at 3.5GHz with 48 GB RAM, while its CIFAR-10 CNN-8 was
run on an n1-megamem-96 instance on the Google Cloud Platform, with 96 Intel Skylake
2.0 GHz vCPUs and 1433.6 GB RAM. The CPU evaluation of HCNN [39] was conducted
on a machine with an Intel Xeon Platinum CPU at 2.10 GHz with 187.5 GB RAM. The
experimental environment for CryptoDL was a machine with Intel Xeon E5-2640 at 2.4 GHz
with 16GB RAM. The experimental environment for PACN was a machine with dual Intel
Xeon Platinum 8280 CPU (112 cores) with 512GB RAM. The experimental environment for
LDCN was a machine with AMD Ryzen Threadripper PRO 3995WX at 2.096 GHz (64 cores)
with 512 GB RAM.

6.2.2. Analysis of Decryption Error

For the MNIST and SKIN data sets, we inferred ciphertext for the entire test set with
99.62% and 81.10% accuracy, respectively, which is exactly the same as plaintext accuracy.
For the CIFAR-10 dataset, we conducted five random samplings of the test set and inferred
384 images each time, with an accuracy of 92.28 ± 2.58% slightly lower than the plaintext
accuracy of 92.59% ± 2.27%. For this result, we further analyzed the reason. By calculating
the relative error between the ciphertext prediction vector and the plaintext prediction
vector (called decryption error), we found that the mean decryption error of CNN-6 on the
MNIST data set and AlexNet on the SKIN data set were both small, 3 and 4, respectively.
However, the ResNet-20 mean relative error on the CIFAR-10 dataset is about 10, which
is very large compared to the first two. This is because ResNet-20 uses bootstrapping
technology in the ciphertext reasoning process, while bootstrapping in the HEAAN library
is approximate, and each bootstrapping will introduce a new error.

In addition, we also calculated the decryption errors of different categories in the
dataset and drew box plots by randomly selecting 20 sampling points in each category,
as shown in Figure 5. We tested the differences between decryption errors of different
categories. For the MNIST dataset, we first tested the homogeneity of variance of decryption
errors for all categories, and the result of the p-value was 0.596 > 0.05. The initial hypothesis
was accepted, indicating that the decryption errors of different categories were considered
to satisfy the homogeneity of variance. Then, one-way ANOVA was performed on the
decryption errors, and the result of the p-value was 0.580 > 0.05, indicating that there was
no significant difference in decryption errors among different categories in the MNIST
dataset. For the SKIN and CIFAR-10 datasets, the p-values for the homogeneity of variance
test were 0.174 and 0.830, respectively, and the p-values for one-way ANOVA on variance
were 0.325 and 0.376, respectively. Therefore, the same conclusion as the MNIST dataset
was drawn, indicating that there was no significant difference in decryption errors between
different categories.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 19

Figure 5. Decryption error statistics of different categories.

7. Conclusions
In this paper, we propose LHDNN to achieve both high inference accuracy and low

inference latency of Deep Neural Networks (DNNs) on homomorphic encrypted data.
The LHDNN employs a set of low-degree trainable Hermite polynomials known as
LotHps as activation layers in DNNs. Additionally, we integrate a new weight initializa-
tion and regularization module into the LotHps activation layer to make the training pro-
cess of DNNs more stable and strengthen generalization ability. To further enhance the
model’s accuracy, we propose a variable-weighted difference training (VDT) strategy that
uses ReLU-based models to guide the training of LotHps-based models. Extensive exper-
iments conducted on multiple benchmark datasets demonstrate that the LHDNN ap-
proach is superior to other methods in terms of both inference speed and accuracy on
homomorphic encrypted data.

Author Contributions: Methodology, J.Q.; software, J.Q., H.Z. and X.M.; validation, P.Z.; writing—
original draft preparation, J.Q. and H.Z.; writing—review and editing, P.Z.; visualization, X.M.;
funding acquisition, M.L. and J.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by National Natural Science Foundation of China (No.
62102134), Key Scientific Research Project in Colleges and Universities of Henan Province of China
(No. 23A520046 and 23A413005) and Key Science and Technology Project of Henan Province of
China (No. 232102210130 and 232102210138).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 1–74.

2. Liu, X.; Zheng, Y.; Yuan, X.; Yi, X. Securely outsourcing neural network inference to the cloud with lightweight techniques. Ieee
Trans. Dependable Secur. Comput. 2022, 20, 620–636.

3. Boulemtafes, A.; Derhab, A.; Challal, Y. A review of privacy-preserving techniques for deep learning. Neurocomputing 2020, 384,
21–45.

4. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

5. Falcetta, A.; Roveri, M. Privacy-preserving deep learning with homomorphic encryption: An introduction. Ieee Comput. Intell.
Mag. 2022, 17, 14–25.

Figure 5. Decryption error statistics of different categories.

Appl. Sci. 2023, 13, 4815 17 of 19

7. Conclusions

In this paper, we propose LHDNN to achieve both high inference accuracy and low
inference latency of Deep Neural Networks (DNNs) on homomorphic encrypted data. The
LHDNN employs a set of low-degree trainable Hermite polynomials known as LotHps
as activation layers in DNNs. Additionally, we integrate a new weight initialization and
regularization module into the LotHps activation layer to make the training process of
DNNs more stable and strengthen generalization ability. To further enhance the model’s
accuracy, we propose a variable-weighted difference training (VDT) strategy that uses
ReLU-based models to guide the training of LotHps-based models. Extensive experiments
conducted on multiple benchmark datasets demonstrate that the LHDNN approach is
superior to other methods in terms of both inference speed and accuracy on homomorphic
encrypted data.

Author Contributions: Methodology, J.Q.; software, J.Q., H.Z. and X.M.; validation, P.Z.; writing—
original draft preparation, J.Q. and H.Z.; writing—review and editing, P.Z.; visualization, X.M.;
funding acquisition, M.L. and J.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by National Natural Science Foundation of China (No. 62102134),
Key Scientific Research Project in Colleges and Universities of Henan Province of China (No.
23A520046 and 23A413005) and Key Science and Technology Project of Henan Province of China (No.
232102210130 and 232102210138).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74. [CrossRef] [PubMed]

2. Liu, X.; Zheng, Y.; Yuan, X.; Yi, X. Securely outsourcing neural network inference to the cloud with lightweight techniques. IEEE
Trans. Dependable Secur. Comput. 2022, 20, 620–636. [CrossRef]

3. Boulemtafes, A.; Derhab, A.; Challal, Y. A review of privacy-preserving techniques for deep learning. Neurocomputing 2020, 384,
21–45. [CrossRef]

4. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

5. Falcetta, A.; Roveri, M. Privacy-preserving deep learning with homomorphic encryption: An introduction. IEEE Comput. Intell.
Mag. 2022, 17, 14–25. [CrossRef]

6. Li, M.; Chow, S.S.M.; Hu, S.; Yan, Y.; Shen, C.; Wang, Q. Optimizing Privacy-Preserving Outsourced Convolutional Neural
Network Predictions. IEEE Trans. Dependable Secur. Comput. 2022, 19, 1592–1604. [CrossRef]

7. Wang, J.; He, D.; Castiglione, A.; Gupta, B.B.; Karuppiah, M.; Wu, L. Pcnncec: Efficient and privacy-preserving convolutional
neural network inference based on cloud-edge-client collaboration. IEEE Trans. Netw. Sci. Eng. 2022. [CrossRef]

8. Zhang, Q.; Xin, C.; Wu, H. SecureTrain: An Approximation-Free and Computationally Efficient Framework for Privacy-Preserved
Neural Network Training. IEEE Trans. Netw. Sci. Eng. 2022, 9, 187–202. [CrossRef]

9. Dowlin, N.; Gilad-Bachrach, R.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. CryptoNets: Applying Neural Networks to
Encrypted Data with High Throughput and Accuracy. In Proceedings of the 33rd International Conference on Machine Learning,
New York, NY, USA, 19–24 June 2016.

10. Chabanne, H.; De Wargny, A.; Milgram, J.; Morel, C.; Prouff, E. Privacy-preserving classification on deep neural network. Cryptol.
Eprint Arch. 2017, 2017, 35.

11. Mohassel, P.; Zhang, Y. Secureml: A system for scalable privacy-preserving machine learning. In Proceedings of the 2017 IEEE
Symposium on Security And Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 19–38.

https://doi.org/10.1186/s40537-021-00444-8
https://www.ncbi.nlm.nih.gov/pubmed/33816053
https://doi.org/10.1109/TDSC.2022.3141391
https://doi.org/10.1016/j.neucom.2019.11.041
https://doi.org/10.1109/MCI.2022.3180883
https://doi.org/10.1109/TDSC.2020.3029899
https://doi.org/10.1109/TNSE.2022.3177755
https://doi.org/10.1109/TNSE.2020.3040704

Appl. Sci. 2023, 13, 4815 18 of 19

12. Hesamifard, E.; Takabi, H.; Ghasemi, M. Deep Neural Networks Classification over Encrypted Data. In Proceedings of the
9th ACM Conference on Data and Application Security and Privacy (CODASPY), Richardson, TX, USA, 25–27 March 2019;
pp. 97–108.

13. Lee, J.; Lee, E.; Lee, J.-W.; Kim, Y.; Kim, Y.-S.; No, J.-S. Precise approximation of convolutional neural networks for homomorphic
ally encrypted data. arXiv 2021, arXiv:2105.10879.

14. Lee, J.-W.; Kang, H.; Lee, Y.; Choi, W.; Eom, J.; Deryabin, M.; Lee, E.; Lee, J.; Yoo, D.; Kim, Y.-S.; et al. Privacy-Preserving Machine
Learning With Fully Homomorphic Encryption for Deep Neural Network. IEEE Access 2022, 10, 30039–30054. [CrossRef]

15. Bourse, F.; Minelli, M.; Minihold, M.; Paillier, P. Fast homomorphic evaluation of deep discretized neural networks. In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2018; pp. 483–512.

16. Sanyal, A.; Kusner, M.; Gascon, A.; Kanade, V. TAPAS: Tricks to accelerate (encrypted) prediction as a service. In Proceedings of
the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4490–4499.

17. Lou, Q.; Jiang, L. SHE: A Fast and Accurate Deep Neural Network for Encrypted Data. In Proceedings of the 33rd Conference on
Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019.

18. Folkerts, L.; Gouert, C.; Tsoutsos, N.G. REDsec: Running Encrypted DNNs in Seconds. IACR Cryptol. Eprint Arch. 2021, 2021, 1100.
19. Meftah, S.; Tan, B.H.M.; Mun, C.F.; Aung, K.M.M.; Veeravalli, B.; Chandrasekhar, V. DOReN: Toward Efficient Deep Convolutional

Neural Networks with Fully Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3740–3752. [CrossRef]
20. Meftah, S.; Tan, B.H.M.; Aung, K.M.M.; Yuxiao, L.; Jie, L.; Veeravalli, B. Towards high performance homomorphic encryption for

inference tasks on CPU: An MPI approach. Future Gener. Comput. Syst. 2022, 134, 13–21. [CrossRef]
21. Alsaedi, E.M.; Farhan, A.K.; Falah, M.W.; Oleiwi, B.K. Classification of Encrypted Data Using Deep Learning and Legendre

Polynomials. In Proceedings of the ICR’22 International Conference on Innovations in Computing Research, Athens, Greece,
29–31 August 2022; pp. 331–345.

22. Yagyu, K.; Takeuchi, R.; Nishigaki, M.; Ohki, T. Improving Classification Accuracy by Optimizing Activation Function for
Convolutional Neural Network on Homomorphic Encryption. Advances on Broad-Band Wireless Computing, Communication
and Applications. In Proceedings of the 17th International Conference on Broad-Band Wireless Computing, Communication and
Applications (BWCCA-2022), Tirana, Albania, 27–29 October 2022; pp. 102–113.

23. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of
the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 3–7
December 2017; pp. 409–437.

24. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. A full RNS variant of approximate homomorphic encryption. In Proceedings of
the International Conference on Selected Areas in Cryptography, Calgary, AB, Canada, 15–17 August 2018; pp. 347–368.

25. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. Bootstrapping for approximate homomorphic encryption. In Proceedings of the
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 29 April–3 May
2018; pp. 360–384.

26. Ma, L.; Khorasani, K. Constructive feedforward neural networks using hermite polynomial activation functions. IEEE Trans.
Neural Netw. 2005, 16, 821–833. [CrossRef] [PubMed]

27. Bottou, L. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the Trade; Springer: Cham, Switzerland, 2012; pp.
421–436.

28. Baruch, M.; Drucker, N.; Greenberg, L.; Moshkowich, G. A methodology for training homomorphic encryption friendly neural
networks. In Proceedings of the International Conference on Applied Cryptography and Network Security, Rome, Italy, 20–23
June 2022; pp. 536–553.

29. LeCun, Y.; Cortes, C.; Burges, C. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/
exdb/mnist/ (accessed on 18 October 2022).

30. Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of
common pigmented skin lesions. Sci. Data 2018, 5, 180161. [CrossRef] [PubMed]

31. Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-10; Canadian Institute for Advanced Research: Toronto, ON, Canada, 2010.
32. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. Acm

2017, 60, 84–90. [CrossRef]
33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
34. Aharoni, E.; Adir, A.; Baruch, M.; Drucker, N.; Ezov, G.; Farkash, A.; Greenberg, L.; Masalha, R.; Moshkowich, G.; Murik, D.; et al.

HeLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data. arXiv 2020, arXiv:2011.01805. [CrossRef]
35. Garimella, K.; Jha, N.K.; Reagen, B. Sisyphus: A cautionary tale of using low-degree polynomial activations in privacy-preserving

deep learning. arXiv 2021, arXiv:2107.12342. [CrossRef]
36. Wang, Z.; Li, P.; Hou, R.; Li, Z.; Cao, J.; Wang, X.; Meng, D.; Systems, D. HE-Booster: An Efficient Polynomial Arithmetic

Acceleration on GPUs for Fully Homomorphic Encryption. IEEE Trans. Parallel 2023, 34, 1067–1081. [CrossRef]

https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1109/TIFS.2021.3090959
https://doi.org/10.1016/j.future.2022.03.033
https://doi.org/10.1109/TNN.2005.851786
https://www.ncbi.nlm.nih.gov/pubmed/16121724
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/sdata.2018.161
https://www.ncbi.nlm.nih.gov/pubmed/30106392
https://doi.org/10.1145/3065386
https://doi.org/10.56553/popets-2023-0020
https://doi.org/10.48550/arXiv.2107.12342
https://doi.org/10.1109/TPDS.2022.3228628

Appl. Sci. 2023, 13, 4815 19 of 19

37. Chou, E.; Beal, J.; Levy, D.; Yeung, S.; Haque, A.; Fei-Fei, L. Faster cryptonets: Leveraging sparsity for real-world encrypted
inference. arXiv 2018, arXiv:1811.09953.

38. Lee, E.; Lee, J.-W.; Lee, J.; Kim, Y.-S.; Kim, Y.; No, J.-S.; Choi, W. Low-complexity deep convolutional neural networks on fully
homomorphic encryption using multiplexed parallel convolutions. In Proceedings of the International Conference on Machine
Learning, Baltimore, MA, USA, 17–23 July 2022; pp. 12403–12422.

39. Al Badawi, A.; Jin, C.; Lin, J.; Mun, C.F.; Jie, S.J.; Tan, B.H.M.; Nan, X.; Aung, K.M.M.; Chandrasekhar, V.R. Towards the alexnet
moment for homomorphic encryption: Hcnn, the first homomorphic cnn on encrypted data with gpus. IEEE Trans. Emerg. Top.
Comput. 2020, 9, 1330–1343. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TETC.2020.3014636

	Introduction
	Related Work
	Preliminaries
	Fully Homomorphic Encryption
	Bootstrapping of CKKS

	The Proposed Method
	Low-Order Trainable Hermite Polynomials (LotHps) Activation Layer
	Weight Initialization and Regularization Module
	Variable-Weighted Difference Training (VDT) Strategy

	Implementation Details
	DataSets
	Model Architecture
	Approximation Interval of Weight Initialization
	Safety Parameter Setting
	Inference Optimization

	Evaluation
	Plaintext Training
	MNIST Dataset
	Skin-Cancer Dataset
	CIFAR-10 Dataset

	Ciphertext Inference
	Analysis and Comparison of Ciphertext Inference Results
	Analysis of Decryption Error

	Conclusions
	References

