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Abstract: In light of the increasing demand for the reliability analysis of self-recovery products, with
features of limited storage period and multistage degradation, a reliability evaluation model in whole
life cycle is proposed. The degradation process comprises one storage phase and two working phases.
On the basis of the idea of competitive failure, the shock process and the feature of self-recovery
were introduced into the model. Furthermore, the problem of it being difficult to add variables to
a reliability model is solved with the use of the Stieltjes integral. The influences of the parameters
of model reliability are analyzed, and the results demonstrate that the new model could adequately
describe the competing failure process. The model also exhibited certain feasibility and theoretical
reference values.

Keywords: self-recovery; multistage degradation; whole life cycle; competing failure

1. Introduction

In traditional reliability analysis, the product life is considered the main research
object, and the evaluation results need large amounts of supporting failure data; this
method is suitable for products with low technical complexity and a short life. With
advances in modern science and technology, high-quality products with a long life are
developed. Moreover, reliability analysis based on performance degradation data has
become a new research focus [1–3]. Unlike traditional reliability analysis, performance-
degradation-based reliability analysis considers the degradation process the main cause of
failure. By measuring performance-degradation data, more life-cycle information can be
obtained. In contemporary research, performance-degradation data are mainly fitted using
the degradation-trajectory and stochastic-process models. The degradation of a product is
affected by several factors, such as material characteristics and external shocks; therefore,
degradation quantity shows a random variation throughout the product’s life cycle. If a
product is capable of self-recovery, the degradation process is likely nonmonotonic, which
complicates the analytical process. Compared with the traditional degradation-trajectory
model, using the Wiener [4,5] and gamma [6] processes for modeling is more advantageous
and closer to the needs of the actual analysis.

Several studies discussed the self-recovery characteristics [7] of some materials [8]
and electronic devices [9,10]; however, relatively few studies have conducted the reliability
analysis of such products. Owing to the complexity of mechanical products and the various
applications of new materials, the self-recovery phenomenon must be introduced into the
reliability modeling of such products to assess their reliability. Qi analyzed the performance
degradation and self-recovery process of a semiconductor laser [11,12]. Several studies
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have verified the influence of the self-recovery process on system reliability via simulation
analysis. In this study, the internal relationship between the shock interval and the self-
recovery phenomenon, and the reliability modeling process with competitive failure are
discussed. However, this model ignores that the degradation process of self-healing
products is phased; phasing is related to changes in the working environment of the
product, the characteristics of the material, and other factors.

Many scholars have examined the phenomenon of phased-product degradation.
Dong set up two alarm thresholds related to the degradation amount in the degrada-
tion model [13]. The degradation process was divided into two different stages, and
expressed with different mathematical models before and after the degradation reached
the thresholds. Furthermore, after the system enters the second stage, the working time
of products could lead to system failure. Tavangar [2] established a stochastic process
reliability model, considering that at the junction of two degradation stages, degradation
increases significantly. Gao [14] illustrated the universality of the two-stage degradation
process with change points, considering lithium ion batteries, light-emitting diodes, and
other electronic components as examples; they assumed that changes occurred at the degra-
dation stage according to the cumulative degradation and the number of shocks. Another
study [15] reported that the parameters of the soft failure threshold and the Wiener process
drift change with changes in the degradation stage, and presented a simulation example
verifying this phenomenon. Zhao [16] proposed a two-stage self-healing model based
on cumulative and delta shocks, considering that self-recovery occurred only at the first
stage of degradation. All the above-mentioned models had different definitions of phase
change points. These articles, however, did not consider the fact that a product’s working
environment is alterable, and that such a change could cause the degradation process to
enter the next stage.

Reliability modeling based on performance-degradation theory cannot be separated
from the application of competitive failure; moreover, the interactions between shock
and degradation processes cannot be ignored. Chang et al. [17] reported that reaching
the performance-degradation threshold caused the decline of the hard-failure threshold.
One study considered the delta shock in a reliability model, proposing that the shock
causes degradation increment. An et al. [18] modeled the multidegradation process using
the copula function, considering that the performance-degradation process was affected
when the degradation was sufficiently large. Gao et al. [19] proposed two models; one
considered that the arrival of effective shocks considerably increases degradation, and
one considered that it accelerates the degradation process. These models have practical
significance and cannot ignore the interactions between failure modes. However, few
studies have considered the self-recovery of specific products.

Most contemporary stochastic process reliability models focus on the continuous
degradation process, and few models discussed the impact of the shock process on per-
formance degradation [20,21]. For example, semiconductor products are used in different
working environments; thus, it is unreasonable to use only one degradation process model.
The semiconductor industry has various unique production processes, so there are many
restrictions for indices such as priority, production time, and storage time. The duration of
the product inventory directly influences cumulative degradation before the working stage;
thus, the initial degradation rate and inventory time should be analyzed. Therefore, to solve
the above-mentioned problems, in this study, semiconductor products with self-recovery
properties are the research object, meaning that the small failures of the semiconductor
could be recovered through the intervention of a control unit or associated component to en-
sure that the semiconductor products continued to work normally, and to reduce the failure
rate of products. Considering that there are two degradation processes during the service
life of a product, a three-stage, stochastic-process, competitive-failure, reliability-evaluation
model is proposed.
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In this paper, the performance-degradation and self-recovery properties of products
at the storage stage are considered, and the shock process was integrated into the study.
A reliability-evaluation model of products in the whole life cycle is proposed that was
verified with a simulation. The proposed model could describe the competitive failure
process more accurately, and effectively prevent the product reliability from being over- or
underrated due to the incompleteness of considering the product degradation features.

The article is organized as follows. The modeling description and basic derivation are
presented in Section 2. The specific derivation process and results of this model are outlined
in Section 3. In Section 4, a numerical example is presented to illustrate and verify the
proposed model. Conclusions and the scope for future research are discussed in Section 5.

2. System Description and the Soft-Failure Process Analysis of Self-Recovery Products
2.1. System Description

The life cycle of a product comprises the storage period and working period. To ensure
the universality of the model, the effects of the impact load and continuous degradation are
considered together. Product performance degrades when the product is used continuously.
Product failure occurs when degradation Xs(t) reaches the certain degree of soft-failure
threshold D or the magnitude of external shock is greater than hard failure threshold H.
Degradation volume accumulates during the storage period. The basic concepts assumed
in this study are as follows:

1. In a whole life cycle, the product has a storage phase (0, T1) and two work stages,
(T1, T2) and (T2, ∞). On the basis of the type of mathematical models used to describe
the degradation processes, the three phases are the first and second Wiener processes,
and the gamma process.

2. Provided that the shock process follows a homogeneous Poisson process with intensity
λ, the number of arrived shocks by time t is N(t) = n. It was assumed that there was
no shock in the first Wiener process.

3. The degradation comprises continuous degradation and degradation increments
caused by shocks. Self-recovery occurs when shock interval B is greater than self-
recovery threshold τ. No shocks occur during the self-recovery process; therefore,
there is no additional non-stationary interference to the degradation processes. In this
situation, the gamma process is adequate to describe the third-phase degradation.

4. The value range [c1, c2] of cumulative degradation c during the storage period is
determined by analyzing the actual object, where c2 denotes the upper limit of the
cumulative degradation allowed in the storage stage, and c1 is the minimal cumulative
degradation allowed in the storage stage.

5. The i th shock follows a homogeneous Poisson process: Wi ∼ (µW , σ2
w). The corre-

sponding degradation increment caused by Wi is denoted as Y0i ∼ N(µ3, σ2
3 ).

The dependent competing failure processes of a product are shown in Figure 1.
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Figure 1. Dependent competing failure processes of a product.

2.2. Stochastic Process Model

The reliability model based on the Wiener process is expressed as follows:

XW(t) = XW(0) + µΛ(t; θΛ) + σB(τ(t; θτ)) (1)

where XW(0) is the initial degradation, and µ and σ represent the drift and diffusion
coefficients, respectively. Functions Λ(t; θΛ) and τ(t; θτ) describe the change in mean
degradation and time transformation, respectively. The initial degradation was assumed
to be XW(0) = 0 and Λ(t; θΛ) = τ(t; θτ) = t. On the basis of the properties of the Wiener
process, we obtained XW(t) ∼ N(µt, σ2t).

The two Wiener processes mentioned above are expressed as follows:

XW1(t) = µ1t + σ1B(t) (2)

XW2(t) = µ2t + σ2B(t) (3)

Then, we obtained
XW1(t) ∼ N(µ1t, σ1

2t) (4)

XW2(t) ∼ N(µ2t, σ2
2 t) (5)

When a soft failure occurs, the life of product TW is equal to the first passage time for
the degradation threshold:

TW = inf{t|XW ≥ D, t ≥ 0} (6)

On the basis of the Wiener process, XW1(t) = µ1 + σ1B(t); TW follows an inverse
Gaussian distribution. Let us assume that TW1 represents the end time of the first Wiener
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process. Then, we obtain the probability density function and the cumulative distribution
function of TW1 as follows:

fTW1 =
c√

2πσ1
2t3

exp(− (c− µ1t)2

2σ1
2t

) (7)

FTW1 = φ(
µ1t− c
σ1
√

t
) + exp(

2µ1c
σ1

2 )φ(−µ1t + c
σ1
√

t
) (8)

The gamma process is expressed as G(t) ∼ Ga(β(t), η(t)), where β(t) is the scale
parameter, and η(t) is the shape parameter. The probability density function of degradation
XG(t) in this phase is expressed as follows:

f (XG(t)|η(t), β(t)) =
xη(t)−1β(t)η(t)e−β(t)x

Γ(η(t))
, x > 0 (9)

TG is denoted as TG = inf{XG(t) > D, t ≥ 0} in the gamma process. Let β(t) = β
and η(t) = αt; then, the cumulative distribution function of Equation (9) can be expressed
as follows:

FTG (t) = P{TG ≤ t} = P{XG(t) ≥ D} =
∫ ∞

D f (XG(t)|η(t), β)dy

=
∫ ∞

D
xαt−1βαte−βx

Γ(αt) dx =
∫ ∞

Dβ
µαt−1e−µ

Γ(αt) dµ

= Γ(αt,Dβ)
Γ(αt)

(10)

where
Γ(a, b) =

∫ ∞

b
ya−1e−ydy (11)

Γ(a) =
∫ ∞

0
ya−1e−ydy (12)

On the basis of Equation (10), the reliability function of the gamma process can be
expressed as follows:

RG(t) = P{TG ≥ t} = 1− FTG (t) = 1− Γ(αt, βD)

Γ(αt)
(13)

2.3. Derivation of the Reliability Function for Self-Recovery Products

The cumulative distribution function of degradation increment Y0i caused by Wi is
expressed as FY0i (y) = p(Y0i ≤ y). The effective shock time by time t is denoted as N(t),
and the total degradation increment is expressed as follows:

S0(t) =


N(t)
∑

i=1
Y0i N(t) > 0

0 N(t) = 0
(14)

Due to the self-recovery property of the product, S0(t) was larger than the actual value.
Let us assume that S(t) represents the degradation increment considered in self-recovery,
and the actual degradation increment of Wi is Yi. Then, to obtain the distribution function
of Yi, the cumulative distribution function is expressed as follows:

FYi (y) = p(Yi ≤ y) = 1− p(Yi > y)

= 1− [p(Y0i > y|Bi ≤ τ)× p(Bi ≤ τ) + p(Y0i > y|Bi > τ)× p(Bi > τ)]
(15)
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Self-recovery occurs when shock interval Bi > τ,which means that Y0i = 0. Thus,
p(Y0i > y) = 0. On the basis of the property of a homogeneous Poisson process, the shock
interval (λ) followed an exponential distribution. Thus, we obtained p(Bi ≤ τ)= 1− e−λτ ,
and Equation (15) could be expressed as follows:

FYi (y) = 1− p(Y0i > y|Bi ≤ τ)× p(Bi ≤ τ)

= p(Y0i ≤ y
∣∣∣Bi ≤ τ)× p(Bi ≤ τ)= (1− e−λτ)FY0i (y)

(16)

Moreover, Equation (16) is given as follows:

pYi (y) = (1− e−λτ)pY0i (y) (17)

Let us assume that K(t) represents the number of shocks that caused the degradation
increment. On the basis of Equation (17), the ratio of K(t) to all the shocks in (0, t) can be
derived as follows:

p1 = 1− e−λτ (18)

On the basis of Poisson’s decomposition theorem and Equation (18), the self-recovery
process (λe−λτ) and shock process

((
1− e−λτ

)
λ
)

could be determined, and both followed
the Poisson process. The probability of k1 times self-recovery occurring by time t was
calculated as follows:

p{K1(t) = k1} =
(e−λτλt)k1

k1!
e−e−λτλt (19)

Considering the safety of the proposed model, the number of shocks causing the
degradation increment can be expressed by rounding up the impact ration as follows:

K(t) = p1N(t) + 1 (20)

On the basis of the definition of self-recovery, the product recovers from damage when
N(t) < 2. The total degradation increment can be expressed as follows:

S(t) =


K(t)
∑

i=1
Yi N(t) ≥ 2

0 N(t) < 2
(21)

Let N(t) = n; then, when n ≥ 2, we obtain

S(t) =
K(t)

∑
i=1

Yi ∼ N((np1 + 1)µ3, (np1 + 1)σ2
3 ) (22)

Considering the self-recovery of the product, the total degradation by time t is given
as Xs(t) = X(t) + S(t). Reliability in competing failure is expressed as follows:

R(t) =
∞
∑

n=0
P(X(t) + S(t) < D,

N(t)
∩

i=1
(Wi < H)|P(N(t) = n))× P(N(t) = n)

=
∞
∑

n=0
RSF(t|N(t) = n) × pn(Wi < H)× p(N(t) = n)

(23)

3. Reliability Modeling for Self-Recovery Products in Whole Life Cycle

(1) When t > T2, the product fully undergoes three phases. Degradation by time t can
be derived as follows:

X(t) = XW1(T1) + XW2(T2 − T1) + XG(t− T2) (24)
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On the basis of Equations (2) and (3), Equation (24) can be expressed as follows:

X(t) = µ1T1 + σ1B(T1) + µ2(T2 − T1) + σ2B(T2 − T1) + XG(t− T2) (25)

Using Equations (21), (22), and (25), we can obtain the degradation by time t. The
probability of no soft failure occurring can be expressed as follows:

p1(X(t) + S(t) < D)
= p(µ1T1 + σ1B(T1) + µ2(T2 − T1) + σ2B(T2 − T1) + XG(t− T2) + S(t) < D)
= p(XG(t− T2) < D− (µ1T1 + σ1B(T1) + µ2(T2 − T1) + σ2B(T2 − T1) + S(t)))

(26)

According to the classification shown in Equation (21), the right-hand side of Equation (26)
is A11 when n ≥ 2, and A12 when n < 2. Then, we obtain

A11 ∼ N(D− µ1T1 − µ2(T2 − T1)− (np1 + 1)µ3, σ2
1 T1 + σ2

2 (T2 − T1) + (np1 + 1)σ2
3 ) (27)

A12 ∼ N(D− µ1T1 − µ2(T2 − T1), σ2
1 T1 + σ2

2 (T2 − T1)) (28)

On the basis of Equations (10) and (13), the probability of product survival in the
soft-failure process is expressed as follows:

p1(X(t) + S(t) < D) =

1− Γ(α(t−T2),βA11)
Γ(α(t−T2))

n ≥ 2

1− Γ(α(t−T2),βA12)
Γ(α(t−T2))

n < 2
(29)

The probability of the two situations mentioned above is p11(t) and p12(t), respectively.
T1 is introduced into the model by using Equation (7). Let us assume that T2 fol-

lows a uniform distribution U(T1, t); then, the probability density function of T2 is given
as follows:

fG(T2) =
1

t− T1
(30)

On the basis of Section 2, the probability density function of cumulative degradation c
in the storage stage can be derived as follows:

fC(c) =
1

c2 − c1

Γ(a + b)
Γ(a)Γ(b)

(
c− c1

c2 − c1
)

a−1
(1− c− c1

c2 − c1
)

b−1
(31)

In Equation (7), the probability density function of T1 becomes

f W1
T1

(T1) =
c√

2πσ1
2t3

exp(− (c− µ1t)2

2σ1
2t

) (32)

By combining Equations (27)–(32) and (25), when n ≥ 2 and n < 2, reliability can be
given as follows:

RSF11(t) =
∫ c2

c1

∫ t

0

∫ T2

0
p11(t)× f W1

T1
(T1)× fG(T2)× fC(c)dT1dT2dc (33)

RSF12(t) =
∫ c2

c1

∫ t

0

∫ T2

0
p12(t)× f W1

T1
(T1)× fG(T2)× fC(c)dT1dT2dc (34)
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The first Wiener process had no impact arrival based on the hypothesis; thus, reliability
in this situation can be expressed as follows:

R1(t) =
∞
∑

n=2
RSF11(t|N(t− T1) = n) × pn(Wi < H)× p(N(t− T1) = n)

+
1
∑

n=0
RSF12(t|N(t− T1) = n) × pn(Wi < H)× p(N(t− T1) = n)

(35)

where
p(Wi < H) = φ(

H − µW
σW

) (36)

p(N(t− T1) = n) =
exp(−λ(t− T1))(λ(t− T1))

n

n!
(37)

(2) When T1 < t < T2 the reliability model comprises the first and second Wiener
processes. Total continuous degradation by time t is given as follows:

X(t) = XW1(T1) + XW2(t− T1) = µ1T1 + σ1B(T1) + µ2(t− T1) + σ2B(t− T1) (38)

The cumulative degradation at the end of the first Wiener process is considered
a variable in interval [c1, c2]. The total degradation increment occurred in the second
Wiener process. The probability of the product surviving from the soft-failure process was
calculated as follows:

p2(X(t) + S(t) < D)

= p(µ1T1 + σ1B(T1) + µ2(t− T1) + σ2B(t− T1) + S(t) < D)

= p(XW2(t− T1) < D− (c + S(t)))

(39)

The right-hand side of Equation (39) is marked as A2 and given as follows:

A2 ∼ N
(

D− c− (np1 + 1)µ3, (np1 + 1)σ2
3

)
(40)

On the basis of Equations (8) and (40), the cumulative distribution function by the end
time of degradation is given as follows:

FTW2(t) = P{TW2 ≤ t} = P{X(t) ≥ D}

= φ
(

µ2(t−T1)−A2)
σ2
√

t−T1

)
+ exp

(
2µ2 A2

σ2
2

)
φ

(
− µ2(t−T1)+A2

σ2
√

(t−T1)

) (41)

Then, Equation (41) becomes:

p2(X(t) + S(t) < D)

=


φ
(

A2−µ2(t−T1))
σ2
√

t−T1

)
− exp

(
2µ2 A2

σ2
2

)
φ

(
− µ2(t−T1)+A2

σ2
√

(t−T1)

)
n ≥ 2

φ
(

(D−c)−µ2(t−T1))
σ2
√

t−T1

)
− exp

(
2µ2(D−c)

σ2
2

)
φ

(
− µ2(t−T1)+(D−c)

σ2
√

(t−T1)

)
n < 2

(42)

The probability for the two situations mentioned in Equation (42) is labeled as p21(t)
and p22(t), respectively. By combining Equations (7), (30) and (42), we obtain:

RSF21(t) =
∫ c2

c1

∫ t

0
p21(t)× f W1

T1
(T1)× fc(c)dT1dc (43)

RSF22(t) =
∫ c2

0

∫ t

0
p22(t)× f W1

T1
(T1)× fc(c)dT1dc (44)
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The overall reliability in T1 < t < T2 can be expressed as follows:

R2(t) =
∞
∑

n=2
RSF21(t | N(t− T1) = n)× pn(Wi < H)× p(N(t− T1) = n)

+
1
∑

n=0
RSF2(t | N(t− T1) = n)× pn(Wi < H)× p(N(t− T1) = n)

(45)

(3) When t < T1, the product was at the storage stage. On the basis of Equation (8),
reliability is given as follows:

R3(t) = φ

(
D− µ1t

σ1
√

t

)
− exp

(
2µ1D

σ2
1

)
φ

(
−µ1t + D

σ1
√

t

)
(46)

The running state of the product is one of the above cases; then, the overall reliability
in the whole life cycle can be expressed as follows:

R(t) =


R1(t) t > T2
R2(t) T1 < t ≤ T2
R3(t) 0 < t ≤ T1

(47)

4. Numerical Example

The resulting functions include variable bounds, and the integrand had variables
such as T1, T2, and c; therefore, it was challenging to complete the calculation, so we
propose an approximate solution. Moreover, we compared it with the result obtained
by solving with the Monte Carlo method. The flowchart is presented in Figure 2. The
initial setting of the parameters is an important step to validate the model. Semiconductor
laser GB/T31359-2015 was tested according to its standard testing method at the ambient
temperature of 2–23 ◦C and relative humidity of 5–55%. Failure occurred when the output
optical power of the semiconductor laser was decreased to 55% of the initial optical power,
that is, failure threshold D = 55. When the output optical power degradation had reached
the failure threshold and could be recovered, the semiconductor laser did not fail. However,
when the degradation of the output optical power of the semiconductor laser reached
the failure threshold, but could not be recovered, the semiconductor laser failed. At the
storage stage, the lower limit of natural degradation of semiconductor laser was c1 = 3,
and the upper limit was c2 = 5. At the working stage, the high-temperature shock process
of the semiconductor laser was a homogeneous Poisson process, the arrival rate of the
high-temperature shock was λ = 0.2, the hard-failure threshold is H = 5, and the interval
of self-recovery was τ = 3. Parameter estimation showed that the drift coefficient and
diffusion coefficient of the Wiener process were µ1 = 0.5, µ2 = 2, µ3 = 0.5, δ1 = 0.1, δ2 = 1,
δ3 = 0.1. The shape and scale parameters were α = 3 and β = 1, respectively. The time
step used in this simulation was ∆t = 0.25, and at each time point, N = 100 samples
were processed. The average of the elemental values in the reliability array was taken as
the reliability value of the respective point. MATLAB was used to fit the reliability curve
with all reliability values in the range of [0, 50]. The black curves in Figures 3–8 show the
reliability of each time point with the above-mentioned parameters. The curves with other
colors are obtained results with different values of the key parameters indicating that the
proposed model had good sensitivity.
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Figures 3 and 4 show the reliability curves with different arrival rates of the shock
process and soft failure threshold, respectively. A larger arrival rate implies a lower
curve. A higher arrival rate implies that more shocks arrived at the same time, and the
damage caused by these shocks further accelerated the natural degradation process, which
considerably decreased the product reliability. Similar changes occurred in reliabilities with
a smaller soft-failure threshold. The working life of a product is longer when the initial
value of the soft-failure threshold is high. Thus, an inaccurate set of soft-failure thresholds
severely affects the final reliability and could produce a result that largely deviates from the
actual circumstances. Therefore, the initial setting of soft-failure threshold D requires a large
amount of product data and much practical experience to ensure the actual effectiveness of
the reliability model. The empirical threshold given from related studies, such as national
standards, provides a reference basis for this paper.

Figure 5 demonstrates the influence of the self-recovery feature on the reliability of the
considered products. In this model, the time interval between two shocks was set as the
self-healing condition. Satisfying the condition is difficult when threshold τ increases, and
reliability is lower when there are fewer cases of self-recovery.

The declining speed of the natural degradation process cuould be determined ac-
cording to the drift parameters considered in the Wiener process. Larger parameter µ2
corresponds to a faster degradation rate. Figure 6 shows that a smaller value of parameter
µ2 implied a slower decline of product reliability, resulting in a longer life.
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Time T2 was random, and the reliability of the product in (T1, t) was determined
via the second Wiener and gamma processes. As shown in Figures 7 and 8, reliability
increased with an increase in the shape parameter α or a decrease in scale parameter β.
Equation (47) had many variables, and sampling was used in the calculation process. Thus,
the computation fluctuated slightly; however, it did not affect the accuracy of the model.

On the basis of the original parameters above, parameter µ2 was 1.5. The dashed
lines in Figure 8 comprise a set of curves obtained by changing the second Wiener process’
diffusion parameter σ2. Although the differences between the curves were not significant,
an increase in reliability with the increase in diffusion parameter σ2 was evident.

To verify the proposed model, the curves were compared with the results of the
model with only the Wiener or gamma process. Self-recovery was also considered for the
verification. Using Equations (43)–(46), the reliability obtained with the Wiener process
could be expressed as follows:

R4(t) =



∞
∑

n=2
RSF21(t|N(t− T1) = n) × pn(Wi < H)× p(N(t− T1) = n)

+
1
∑

n=0
RSF22(t|N(t− T1) = n) × pn(Wi < H)× p(N(t− T1) = n)

t > T1

φ(
D−µ1t
σ1
√

t
)− exp( 2µ1D

σ1
2 )φ(− µ1t+D

σ1
√

t
) 0 < t ≤ T1

(48)

Using the gamma process, Equation (26) becomes:

p2(X(t) + S(t) < D) = p(µ1T1 + σ1B(T1) + XG(t− T1) + S(t) < D)
= p(XG(t− T1) < D− (µ1T1 + σ1B(T1) + S(t)))

(49)

Similarly, when n ≥ 2 and n < 2, the right-hand side of Equation (49) was A51 and
A52, respectively. Then, the distribution is given as follows:

A51 ∼ N(D− µ1T1 − (np1 + 1)µ3, σ2
1 T1 + (np1 + 1)σ2

3 ) (50)

A52 ∼ N(D− µ1T1, σ2
1 T1) (51)

As the model was described only with the gamma process, Equation (29) could be
written as follows:

p2(X(t) + S(t) < D) =

1− Γ(α(t−T1),βA51)
Γ(α(t−T1))

n ≥ 2

1− Γ(α(t−T1),βA52)
Γ(α(t−T1))

n < 2
(52)

When n ≥ 2 and n < 2, probabilities were p21(t) and p22(t), respectively. Then,
Equations (33) and (34) are given as follows:

RSF51(t) =
∫ c2

c1

∫ t

0
p21(t)× f W1

T1
(T1)× fC(c)dT1dc (53)

RSF52(t) =
∫ c2

c1

∫ t

0
p22(t)× f W1

T1
(T1)× fC(c)dT1dc (54)

Reliability when t > T1 is given as follows:

R53(t) =
∞
∑

n=2
RSF51(t|N(t− T1) = n) × pn(Wi < H)× p(N(t− T1) = n)

+
1
∑

n=0
RSF52(t|N(t− T1) = n) × pn(Wi < H)× p(N(t− T1) = n)

(55)
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Using Equation (46), the reliability modeled with the gamma process is expressed
as follows:

R5(t) =

 R53(t) t > T1

φ(D−µ1t
σ1
√

t
)− exp( 2µ1D

σ1
2 )φ(− µ1t+D

σ1
√

t
) 0 < t ≤ T1

(56)

Figure 9 contains the curves obtained with Equations (48) and (56), and the simulation
and analytical results based on the proposed model. The proposed model was closer to
the actual situation, indicating its better accuracy; however, it was necessary to introduce
self-recovery for the analysis of specific products.
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5. Conclusions

The proposed model in this paper considered all stages of the whole life cycle of the
products and self-recovery properties, and improved the accuracy level of product reliability
evaluation. As shown in Figure 9, compared with only one degradation model to evaluate
product reliability, the accuracy of the proposed model was higher. Moreover, compared
with the model that did not consider self-recovery properties, the accuracy of the proposed
model was also higher. Therefore, when predicting the life or evaluating the reliability
of products with self-recovery properties, the influence of self-recovery properties on
reliability evaluation, and of performance degradation and threshold variation on product
reliability should be considered in modeling. Through the analysis and proof of this paper,
the following conclusions were drawn:

(1) If the influence of the degradation threshold variation on product reliability is not
considered, the reliability of the product is overestimated, and the accident rate is increased.

(2) Ignoring the self-recovery properties of the product results in the reliability of
the product being underestimated, which leads to increased costs of early operation
and maintenance.

(3) With considering the impact of product degradation at the storage stage on product
reliability, the proposed model had better accuracy.

In further research, in order to establish an improved reliability evaluation model with
better accuracy that is more in line with actual working conditions, the influence of various
stochastic processes and their combinations on the proposed model should be considered.
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