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Abstract: Aiming at the problems of the traditional planetary gear fault diagnosis method of wind
turbines, such as the poor timeliness of data transmission, weak visualization effect of state monitor-
ing, and untimely feedback of fault information, this paper proposes a planetary gear fault diagnosis
method for wind turbines based on a digital twin. The method was used to build the digital twin
model of wind turbines and analyze the wind turbines’ operating state utilizing virtual and real
data. Empirical mode decomposition (EMD) was used, and an atom search optimization–support
vector machine (ASO-SVM) model was established for planetary gear fault diagnosis. The digital
twin model diagnoses faults and constantly revises the model based on the diagnostic results. The
digital twin fault diagnosis system was implemented in the Unity3D platform. The experimental
results demonstrate the feasibility of the proposed early-warning system for the real-time diagnosis
of planetary gear faults in wind turbines.
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1. Introduction

In the face of global energy shortages and increasing atmospheric warming, wind
power generation, producing clean and renewable energy, has become one of the most
trusted forms of power generation [1]. However, wind turbines often break down due
to their harsh operating environment, leading to unexpected shutdowns and economic
losses [2]. The wind turbine transmission system gear is often complicated in structure,
has a high failure rate, and failure sites are not easy to find in time. The accompanying
economic loss accounts for the largest proportion of each fan component [3]. Therefore,
realizing the real-time monitoring and intelligent diagnosis of the planetary gear of wind
turbines is of great significance for safe and stable operation.

At present, gear fault diagnosis methods mainly include those based on expert sys-
tems, physical models, and those that are data-driven [4–6]. Compared with the first two
methods, the data-driven fault diagnosis method has the advantages of low requirements
for professional knowledge and easy access to data. In this era of mature sensor technol-
ogy [7] and big data analysis, scholars in the industry favor the data-driven fault diagnosis
method. Data-driven fault diagnosis methods mainly include traditional machine learning
algorithms [8] and deep learning models [9]. Although deep learning models, such as
convolutional neural networks [10], long- and short-term memory networks [11] and auto-
matic encoders [12], have outstanding achievements in feature extraction, they still have
defects such as large sample sizes and long training times. Traditional machine learning
algorithms can perform better when historical data samples are limited. However, all the
data-driven diagnosis methods collect the data, conduct an offline analysis, and then obtain
the diagnosis results. Therefore, it is crucial to seek new technical methods to solve the
problems of the data acquisition, condition monitoring, and fault diagnosis of planetary
gear of wind turbines during operation.
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With the development of the fourth Industrial Revolution, the need for digital and
intelligent equipment operation and maintenance is becoming increasingly urgent. Re-
searching digital twin technology and machine learning algorithms that combine data
and physics has become a top priority. Professor Grieves first proposed the digital twin
concept in 2002 [13], which establishes a mirror model of a physical entity in the digital
space. With the continuous innovation of network information technology, digital twin
technology has also been rapidly developed. The virtual model and physical entity data
connection interactive mapping are completed by establishing the digital twin model and
using sensor technology. Furthermore, the simulation and health monitoring, diagnosis,
and maintenance can be realized by analyzing the collected data information [14].

As the research of digital twin technology becomes more in-depth, the recurrence of
technology is becoming increasingly mature; the development potential is huge, and the
technical concept is constantly expanding. At the same time, digital twin technology is
becoming more widely used in online monitoring and intelligent equipment diagnosis. For
example, Tao et al. [15] proposed a five-dimensional digital twin model, which added the
composition of the service system and communication connection to the original three-
dimensional structure and realized the fault prediction and health management method
driven by the digital twin. However, this research is only theoretical, and much work is
needed before a complete reproduction can be achieved. Liu et al. [16] proposed a ship
structure bearing a monitoring system based on a digital twin. Through a local stress
correlation method, the stress monitoring data collected by sensors are applied to the
digital twin model of the ship monitoring structure to realize the health management of
the ship structure and greatly reduce the cost of ship maintenance. However, this study
only focuses on the analysis and research of offline data collection and needs the capability
of real-time monitoring and diagnosis. Li et al. [17] proposed a gear test bench condition
monitoring method based on a digital twin. By obtaining the physical information, the
digital twin model simulates the gear running state in real time and carries out simulation
analysis and verification to realize the monitoring of the running state and improve the
operating stability of the gear test bench. However, this method only realizes condition
monitoring based on real-time data and does not continue to complete further data mining
analysis. Aiming at the problems of inconvenient multi-robot monitoring and poor real-
time performance, Zong et al. [18] developed a set of multi-robot monitoring systems based
on digital twin technology. By collecting data through OPC Unified Architecture (OPC
UA), they realized the multi-robot cooperative collision test and improved the factory’s
production efficiency. However, this system only involves monitoring the robot arm’s
working state. It does not involve monitoring the equipment’s operating state and deeper
data analysis.

Digital twin technology also provides a new concept and method for intelligent
equipment fault diagnosis. Zhang et al. [19], aiming at the problem of obtaining fault data
in advance for rolling-bearing fault diagnosis, proposed a rolling-bearing fault diagnosis
method based on a digital twin. By constructing a dynamic virtual model to generate
simulation data and adopting a partial adaptive algorithm, the twin model can accurately
diagnose the health condition of actual rolling bearings under unknown fault conditions.
Thus, the safe operation of bearings is ensured, and the maintenance cost is reduced.
However, this method is still in the offline data analysis and diagnosis stage and cannot
achieve real-time online analysis and diagnosis. Xiong et al. [20] developed a real-time field-
programmable gate array-digital twin (FPGA-DT) technique. By constructing recognizable
feature vectors and combining digital twinning technology to diagnose and classify system
faults, the online real-time diagnosis of the transformer is realized, greatly improving the
efficiency and accuracy of fault diagnosis. However, the system hardware requirements
are relatively high and cannot universally achieve the system. Guo et al. [21] proposed an
improved random forest (IRF) algorithm based on a digital twin. The digital twin’s fault
diagnosis method added to the basis of the traditional machine learning algorithm not
only improves the fault diagnosis accuracy but can also quickly discover and locate the
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fault location. Focusing on the disadvantage that historical and static data drive traditional
satellite system fault diagnosis and health monitoring methods, Shangguan et al. [22]
proposed a fault diagnosis method for complex satellite systems based on a digital twin. By
integrating simulation data and real-time data, the real-time diagnosis and maintenance of
in-orbit satellites are realized, and the reliable operation of the satellite system is ensured,
greatly reducing the operator’s workload. However, the requirements and accuracy of the
data are very strict, so the diagnosis cannot be realized quickly or conveniently.

The above work shows that digital twin technology has good application prospects
and excellent practicability in equipment condition monitoring and fault diagnosis. How-
ever, there are few studies on the condition monitoring and intelligent maintenance of
planetary gear of wind turbines by using digital twin technology and online fault diagnosis
by collecting real-time data. Given this, a fault diagnosis system for planetary gear of wind
turbines based on digital twinning is proposed in this paper. The strain signal of the gear
is collected and analyzed for online diagnosis, and it is successfully applied to the fault
diagnosis test bench of the wind turbine. Compared with existing research, the main contri-
butions of this paper are summarized as follows: (1) A digital twin virtual model based
on the collected parameters is built, scripts are written to complete the accurate behavior
mapping between the virtual model and the physical entity, and the interaction between
virtual and real data is realized through data acquisition, transformation, transmission,
and other methods to complete the real-time visual status monitoring of the wind turbine;
(2) A data-driven fault diagnosis method based on empirical mode decomposition (EMD)
and atom search optimization–support vector machine (ASO-SVM) is proposed to diagnose
and predict the operating state of planetary gear by identifying strain signals of outer gear
rings of the wind turbine planetary gearbox, which effectively improves the accuracy of
fault diagnosis and does not require a large amount of data for a calculation that requires
a long time; and (3) The combination of the fault diagnosis method and digital twin tech-
nology can realize the online fault diagnosis and location, realize the high efficiency and
intelligence of fault diagnosis, and solve the problem of the wind turbine planetary gear
fault diagnosis being untimely and difficult to maintain. Finally, the system’s feasibility is
verified on the laboratory’s wind turbine fault diagnosis test bed.

The rest of this article is organized as follows. Section 2 introduces the construction
method and architecture of the digital twin system of the wind turbine transmission system,
including the construction of a twin model, the composition of twin data, acquisition, and
data transmission, and analysis of virtual-real interaction. Section 3 introduces the fault
diagnosis method of EMD-ASO-SVM based on a digital twin. Section 4 is an experimental
example of the wind turbine’s digital twin planetary gear fault diagnosis system. It verifies
the feasibility of the planetary gear fault diagnosis system based on a digital twin. Section 5
discusses the contributions of this paper and future research directions. Section 6 provides
the conclusions of the report.

2. Establishment of a Digital Twin of the Wind Turbine Transmission System

Digital twinning establishes a multi-scale and multi-physical quantity simulation
model using data from a physical object and other information. A two-way interactive
feedback mechanism is established to update the digital twin using real-time information
from the physical object. Since there is a lack of real-time fault diagnosis methods, a digital
twin is established within the present study to perform real-time online fault diagnosis to
determine a wind turbine transmission system’s operating status and fault conditions. The
digital twin model of the planetary gear of a wind turbine is presented in Figure 1. The
model comprises the physical object, virtual model, twin data, and service system [23].
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Figure 1. Architecture of the digital twin model.

2.1. Wind Turbine Transmission System Entity

A digital twin of the wind turbine drive system is established. It consists of multiple
function modules and sensors; the function modules consist of different units, as shown in
Figure 2. The object of interest is a custom-made Spectra Quest test rig for the fault diagnosis
of a wind turbine drivetrain. It consists of a motor, spur gearbox, planetary gearbox, and
magnetic powder brake. The motor drives the transmission shaft, which powers the spur
and planetary gearbox, transmitting power to the fan blade. The magnetic powder brake
generates a magnetic field that pulls the armature toward the magnet, transmitting the
torque. The spur gearbox comprises an input shaft, gear, output shaft, roller bearing, and
other components. The roller bearing includes an outer ring, inner ring, and ball roller. The
planetary gearbox is composed of the rodent ring, the planetary gear, and the sun gear.
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2.2. Twin Model of Wind Turbine Transmission System

The first task of constructing a digital twin is to create a digital twin model of the
object. The twin model connects the virtual model to the real object. Creating a digital twin
of the wind turbine drive system consists of geometric modeling, scene construction, and
modeling of the object’s status [24], as shown in Figure 3.
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(1) Geometric model

Establishing a geometric model includes modeling the geometric size and relationship
of the physical components of the wind turbine transmission system. The geometry consists
of the motor’s shape, size, tolerances, roller bearing, spur gearbox, planetary gearbox, and
other components. The geometric relationships between the components are determined.
The 3D modeling of the wind turbine drive system involves measuring the components’
sizes and shapes. A 1:1 3D modeling was performed in NX software, and the data were
exported to an STL file format. This file was opened in 3DS Max software for rendering
and format conversion. The rendered and transformed model was imported into Unity3D
in the FBX format.

(2) Scene construction

The scene construction of a digital twin model refers to the scenes of analog objects,
including the external environment and the internal operating mechanism in different
spatiotemporal conditions. This step is critical for the virtual space’s scene layout and
functional design according to real-world conditions. Different materials are added for
detailed rendering to obtain a realistic virtual scene. Wind farms are often constructed
in harsh environments, such as wasteland areas near mountains and the ocean. Unity3D
enables the generation of various environments.

(3) Modeling of the object’s status

Modeling the object’s status is required to achieve virtual–real interaction. This model
ensures that the virtual model performs the same actions as the real-world object. Timely
model corrections can be made according to the environment and system uncertainty. A
customized script based on the C# programming language was used in Unity3D to perform
a dynamic simulation of the wind turbine drive system. The model was updated with
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real-time data to ensure the synchronous operation of the wind turbine in the virtual world
and the physical world.

2.3. Composition of Twin Data

The data to establish a digital twin and run simulations are derived from information
on the physical object and its environment and data obtained from simulations with various
models. The interaction between the physical object and the virtual model and model
updating and optimization is achieved by inputting massive amounts of multidimensional
and dynamic data [25]. This strategy ensures a real-time relationship between the physical
entity and virtual model, improves the operation of the digital twin, and allows for infor-
mation sharing. The digital twin data of the wind turbine drive system include physical
data, virtual simulation data, external environment data, and other knowledge data [26], as
shown in Figure 4.
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The physical data of the wind turbine drive system include the real-time operat-
ing status, unit parameter performance, sensor parameter information, data sampling
frequency, and measurement point configuration. The virtual simulation data consist
of geometric model data of the wind turbine (size, component relationships, positions,
and operating data), influencing factors, operation logic, data obtained from the analysis
model and boundary condition model, and the outputs. External environment data include
ambient temperature, wind speed, and terrain. Other knowledge data include expert
knowledge, industry standards, inference, equipment maintenance rule base, and fault
diagnosis model data.

2.4. Data Transmission between the Virtual Model and Actual Wind Turbine Transmission System

The real-time acquisition of dynamic data of the wind turbine drive system is required
as input into the digital twin. Ensuring the real-time transmission of dynamic data is
crucial to establishing a 3D virtual model of the wind turbine drive system and achieving
an intelligent transmission system. The link between the virtual model and physical entity
and the data transmission process is presented in Figure 5.
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The virtual–real interaction between the electrical equipment is achieved as follows:
(1) The physical entity and the virtual model are connected using a universal asynchronous
receiver/transmitter (UART) serial port. The dynamic information collected by the sensor
is transmitted to the Unity3D platform in real time to reflect the running state of the wind
turbine drive system. The status of the virtual model is updated in real time, and the data
are saved in a MySQL cloud database. (2) The node.js language is used to read/write
information from/to the database. This information is depicted in ECharts using a front-end
HTML file. A URL link is created in Unity3D to integrate the web chart into the platform
and visualize the dynamic data. (3) The calling function of the fault identification model is
compiled in MATLAB into a C# dynamic link library using the deploytool toolbox. The
C# language is used to invoke the dynamic link library in Unity3D to import the real-time
data collected by the identification model to perform online fault diagnosis. (4) The virtual
model promptly displays the wind turbine transmission system’s operating status and fault
alarm signals and transmits the information to the staff. The staff then performs offline
inspection, repair, and maintenance promptly according to the diagnostic results to ensure
the safe and stable operation of the wind turbine and reduce economic losses.
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3. Fault Diagnosis Method Based on Digital Twinning

The planetary gear is used in the wind turbine transmission system. It has time-
varying conditions, high-impact vibration, high speed, and a poor working environment.
The planetary’s failure reduces the gearbox’s stability and may cause the wind turbine to
malfunction. Therefore, the fault diagnosis of the planetary gear of wind turbines using a
digital twin can address these problems. The intelligent monitoring and fault diagnosis
model of the planetary gear of wind turbines based on a digital twin is shown in Figure 6.
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3.1. Establishment of Fault Diagnosis Model
3.1.1. Feature Extraction Using Empirical Mode Decomposition

The EMD algorithm was proposed by Huang [27]. It can decompose the signal
according to the time scale characteristics of the data without any basis function and has
a high signal-to-noise ratio. Therefore, the EMD method is used in this paper. According
to the strain signal’s energy characteristic information, the component’s energy entropy is
decomposed to realize the selection of characteristic parameters, as shown in Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

 

3. Fault Diagnosis Method Based on Digital Twinning 

The planetary gear is used in the wind turbine transmission system. It has time-var-

ying conditions, high-impact vibration, high speed, and a poor working environment. The 

planetary’s failure reduces the gearbox’s stability and may cause the wind turbine to mal-

function. Therefore, the fault diagnosis of the planetary gear of wind turbines using a dig-

ital twin can address these problems. The intelligent monitoring and fault diagnosis 

model of the planetary gear of wind turbines based on a digital twin is shown in Figure 6.  

 

Figure 6. Intelligent diagnosis process for planetary gear of wind turbine. 

3.1. Establishment of Fault Diagnosis Model 

3.1.1. Feature Extraction Using Empirical Mode Decomposition 

The EMD algorithm was proposed by Huang [27]. It can decompose the signal ac-

cording to the time scale characteristics of the data without any basis function and has a 

high signal-to-noise ratio. Therefore, the EMD method is used in this paper. According to 

the strain signal’s energy characteristic information, the component’s energy entropy is 

decomposed to realize the selection of characteristic parameters, as shown in Figure 7. 

EMD
IMF component 
energy entropy 

calculation

Time domain 
preprocessing

Feature vector 
selection

Classifier
Classification 

result
Target 
signal

 

Figure 7. Recognition process of feature extractor based on IMF energy. 

First, the eigenmode function (IMF) is obtained after EMD decomposition, and the 

energy entropy of each IMF component is calculated [28]. Then, the feature vector is se-

lected. The frequencies of different-order IMF components differ, and the higher the IMF 
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First, the eigenmode function (IMF) is obtained after EMD decomposition, and the
energy entropy of each IMF component is calculated [28]. Then, the feature vector is
selected. The frequencies of different-order IMF components differ, and the higher the IMF
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order, the fewer high-frequency components it contains, as shown in Figure 8. Therefore,
the IMF energy entropy of orders 1–5 is selected to design the classifier to improve feature
vector extraction. The steps are as follows:

(1) The signal is decomposed by EMD to obtain the IMF components ci = (t).
(2) The lines are summarized, and the energy entropy of each IMF Ei = (t) is calculated:

Ei =
∫
|ci = (t)|

2
dt (1)

(3) The energy proportion of each IMF is obtained and normalized:

pi(t) =
Ei(t)

∑n
i=1 Ei(t)

(i = 1, 2, . . . , n) (2)

(4) The IMF energy entropy is defined as:

H = −
n

∑
i=1

pi log pi (3)
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3.1.2. Atom Search Optimization–Support Vector Machine Algorithm

An SVM is a supervised learning model with relatively high classification accuracy and
few samples. Support vector machines have been widely used in practical engineering [29].
The basic principle of an SVM is to find an optimal classification hyperplane to classify
samples, as shown in Equation (4); the objective function is provided in Equation (5), and
the classification model is given in Equation (6).

ωTx + b = 0, (4)

s.t.


min 1

2‖ω‖
2 + c

n
∑

i=1
ξi

yi
[
ωtφ(xi) + b

]
≥ 1− ξi,

i = 1, 2, . . . , n

(5)

g(x) =
n

∑
i=1

αiyiK(xi, x) + b, (6)



Appl. Sci. 2023, 13, 4776 10 of 19

where ω is the weight vector; x is the sample feature; b is the offset item; ξi is the relaxation
factor; and c is the penalty factor. It can be seen from the formula that the value of c will
affect the model’s generalization ability. If the value of c is too large, the training time will
be long, and over-fitting will occur. If the value of c is too small, underfitting will occur.
K(xi, x) is the kernel function, where g is the radius of the kernel function, and the value
of g will directly affect the training speed and prediction speed of the model. Therefore,
optimizing penalty factor c and kernel radius g can build a better SVM model.

In the present study, an SVM was combined with an ASO algorithm to improve the
classification accuracy and optimize the penalty factor c and kernel radius g of the SVM.

Proposed in 2018 [30], ASO has become a popular optimization algorithm based on
molecular dynamics. The algorithm is based on Newton’s second law. It simulates the
motion of atoms in a molecular system, i.e., the force between atoms and the binding force
of the system leading to displacement.

The atom’s mass influences its attraction and repulsion in the molecular system [31], namely:

ai =
Fi + Gi

mi
, (7)

where Fi is the interaction force acting on atom i; Gi is the covalent bond between atoms i;
and mi is the mass of atom i.

(1) Interaction force Fd
i

The interaction force Fd
i represents the sum of the forces of the surrounding atoms on

the current atom i; it is defined as follows:

Fd
i (t) = ∑

j∈Kbest

randjFd
ij(t), (8)

where t is the number of current iterations; randj is the random number in the range of
[0, 1]; d is the dimension of the atom; Kbest represents a set of atoms with high fitness
function values; and Fd

ij(t) represents the Lennard-Jones potential force on the atom i of the
j iteration.

Fd
ij(t) = −η(t)

{
2
[
hij(t)

]13 −
[
hij(t)

]7}, (9)

where η(t) is the depth function used to adjust the repulsive and attractive regions; and hij
is the distance between the two atoms.

η(t) = −α

(
1− t− 1

T

)3
e−

20t
T (10)

hij =
rij(t)
σ(t)

, (11)

where α is the depth weight; σ is the length, representing the collision diameter; and rij is
the Euclidean distance between atoms.

rij = ‖xi(t), xj(t)‖2, (12)

σ(t) = ‖xi(t),
∑j∈Kbest(t)

xj(t)

Kbest(t)
‖

2
, (13)

where xi and xj are the positions of atoms i and j, respectively.

Kbest(t) = N − (N − 2) ·
√

t
T

, (14)

where N is the total number of atoms; and T is the total number of iterations.
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(2) Covalent bond force Gd
i

The covalent bond force Gd
i represents the force of attraction between atoms; it is

defined as follows:
Gd

i = βe
−20t

T

(
xd

best(t)− xd
i (t)

)
, (15)

where β is the coefficient; xd
best(t) is the optimal position of the atoms in the t iteration; and

xd
i (t) is the position of atom i in the first iteration.

(3) Atomic acceleration ad
i

The equation for solving the acceleration of atom i in time t in dimension d is as follows:

ad
i =

Fd
i +Gd

i
mi(t)

=

−α
(

1− t−1
T

)3
e−

20t
T ∑

j∈Kbest

randj

[
2(hij(t))

13−(hij(t))
7]

mi(t)
+

βe−
20t
T
(xd

best(t)−xd
i (t))

mi

(16)

The fitness value of the individuals determines the atomic mass mi(t) in the cur-
rent population:

Mi(t) = e
− fi(t)− fmin(t)

fmax(t)− fmin(t) , (17)

mi(t) =
Mi(t)

∑N
j=1 Mi(t)

(18)

(4) Iterative position update

In each iteration, the speed and position of the atoms according to their acceleration
are updated as follows:

vd
i (t + 1) = randd

i vd
i (t) + ad

i (t), (19)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (20)

where vd
i and xd

i are the velocity and position of atom i; and randd
i is a random number in

the range of [0, 1].
An ASO method was used to optimize the SVM parameters, the ASO-SVM classifier

was trained using a test sample, and the implementation process of optimization algorithm
is shown in Figure 9.

This study randomly selected 2/3 of the data set (42 × 1300) from the laboratory’s
wind turbine drive system failure test bench for sample training. The remaining 1/3 of
the data was used in the test process. In the ASO process of SVM algorithms c and g, the
parameter values of the atom search algorithm were initialized. The maximum iteration
number was set to 200 and the initial atomic number was set to 10. The depth and multiplier
weights were set for each iteration to 50 and 0.2, respectively. Two algorithms, SVM and
ASO-SVM, were used for training, and the training results are shown in Figure 10. The
accuracy of SVM without optimization was only 86.67%, while the accuracy of ASO-SVM
was 6.67% higher than that of SVM. In conclusion, the ASO-SVM algorithm is superior to
the traditional SVM algorithm in classifying and identifying gear faults.
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3.2. Adjustment Method of Fault Diagnosis Model

The complex wind turbine equipment and the harsh and changeable operating en-
vironment result in various faults in the wind turbine’s planetary gear. The trained fault
identification model can only identify existing faults but not new faults. Due to missing and
insufficient sample data, inaccurate results may be obtained from the fault identification
model. Therefore, the model must constantly be optimized to predict new fault types.

As the faults are detected and classified, the data are stored in a database for future
retrieval and training to improve the knowledge base and enable the staff to investigate the
reasons for the faults. After the operating status of the planetary gear has been evaluated,
the newly collected and historical signal data are used to retrain the fault detection model
to improve the model’s detection accuracy.

3.3. Digital Twin Model Correction Method

The digital twin model was corrected repeatedly to improve fault detection and
visualize the operating state of the wind turbine’s planetary gear. The model was updated
when a fault was detected in the planetary gear, and the fault position was highlighted. A
flashing light attracted the staff’s attention so that a timely repair and maintenance of the
faulty parts of the gearbox could be performed. The data were sent to the digital twin’s
database to update the fault diagnosis model. When the planetary gear operated normally,
the virtual model continued to operate normally, and the data were stored in the database.

4. Case Study
4.1. Experimental Process

This paper uses a Spectra Quest custom-manufactured wind turbine drive system
fault diagnosis test stand as an example. It consists of a motor, spur gear, planetary gear,
magnetic powder brake, console (PC), sensor, and acquisition device (STM32 development
board). The parameters of the strain gauge sensor are shown in Table 1. In this paper, a
wind turbine’s planetary gear fault diagnosis system based on a digital twin is tested by the
planetary gear’s normal and broken tooth fault states. The normal and faulty gears used for
replacement are the planetary gear of the planetary reduction box, as shown in Figure 11,
and the parameters of each gear option are shown in Table 2. For more relevant work of the
real wind turbine speed, according to the characteristics of the wind turbine, the spindle
speed was low, the motor speed was set to 750 r/min, the frequency was set to 12.5 Hz, the
impeller in the spindle speed was just about 18 r/min, the torque was set to 33 N·m, and
the sampling frequency for the experiment was 500 Hz. Using Ansys simulation software,
through the transient simulation analysis (sun wheel speed 87 RPM, planet carrier torque
33 N·m), as shown in Figure 12, it can be observed that the strain gauge sensors pasted
outside the planetary gear ring gear, meshing gear, and tooth root area can be measured
with the maximum strain signal. Hence, the planetary gear sensor layout’s wind machine
is shown in Figure 13.

Table 1. Strain gauge sensor parameters.

Type Grid Size (mm) Base Size (mm) Resistance Value (Ω)

350-3AA 3.0 × 3.1 7.3 × 4.1 350 ± 0.1

Table 2. Gear main parameters and geometric dimensions.

Items Gear

Number of teeth 36
Module (mm) 1
Pressure Angle 20
Crest height (mm) 1
Top clearance (mm) 0.25
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Table 2. Cont.

Items Gear

Root height (mm) 1.25
Tooth height (mm) 2.25
Diameter of the dividing circle (mm) 36
Base circle diameter (mm) 33.83
Apex diameter (mm) 38
Root circle diameter (mm) 33.5
Pitch of teeth (mm) 3.14
Tooth thickness (mm) 1.57
Slot width (mm) 1.57
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First, the strain gauge sensor is connected to the STM32 development board. The other
end of the development board is connected to the signal amplifier to amplify and filter the
received signals. The other end of the bridge is connected to a PC to realize the real-time
acquisition of various data of the wind turbine’s planetary gear. The visualization of the
collected data is completed by an ECharts chart, and the collected data are stored in the
MySQL database. Then, the classification diagnosis of real-time data and the continuous
updating optimization of the fault diagnosis model are realized by a machine learning
algorithm supported by MATLAB software. Finally, the User Interface (UI) interface is
established in the Unity3D platform, and the diagnostic results and data are displayed
visually in the interface.

4.2. Digital Twin Visual Interface

First, the digital twin virtual model of the wind turbine transmission system is con-
structed based on the fault diagnosis experimental platform of the wind turbine transmis-
sion system. Then, the operation data of the wind turbine transmission system are collected
and sent to the monitoring platform in Unity3D through the UART serial port. The platform
functional area of the wind turbine digital twin system consists of six parts: the control
button, speed measuring point, state monitoring, state information, gear measuring point,
and gearbox state, as shown in Figure 14. In the column of the control button in the upper
left corner, the speed of the spindle and motor of the wind turbine is updated based on
the collected real-time data, simulates the real-time running state of the wind turbine, and
is corrected in the Unity3D platform. When there is a deviation between virtual and real
running, users can set and adjust the speed of the virtual model in the digital space both
manually and timely according to the real running speed of the physical entity. At the
same time, the system can realize the timing of data acquisition and model restoration.
The speed measuring point marks the speed of the motor, gear, and blade according to the
feedback data of the Hall sensor so that users can receive the information faster. The state
monitoring part is connected with external camera devices such as mobile phones to realize
the real-time monitoring of the failure test platform in the real world, allowing users to
observe the state of physical entities while sitting in front of the system. The trained fault
recognition model was invoked in the Unity3D platform as a dynamic link library using C#
language. The planetary gear was diagnosed and predicted through the collected real-time
signal data. The status information bar displayed the feedback results after diagnosis and
prediction. In the part of the gear measuring point, the frequency domain data of the
gear root of the outer gear ring of the planetary gearbox measured by the strain gauge
sensor are displayed in the system platform using the ECharts chart. Furthermore, the
collected data are saved to the MySQL database. When the staff needs to analyze the
historical data or retrain the fault identification model, it can be directly retrieved from the
database. The gearbox status information section observes the operation of the planetary
gear. When the faulty gear data are collected, the system will diagnose and predict the
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failure of the planetary gear. The status information section on the upper right side of
the system interface will mark abnormal conditions and flash red as a warning, enabling
users to find fault states more directly, as shown in Figure 15. If the fault diagnosis result is
not accurate or cannot be identified, the fault recognition model is retrained by retrieving
historical data to realize the continuous updating and optimization of the planetary gear
fault diagnosis system of wind turbines based on digital twin.

Figure 14. Digital twin system diagram.

Figure 15. Fault diagnosis effect diagram.
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5. Discussion

This paper applies digital twinning technology to the real-time condition monitoring
and fault diagnosis of wind turbine planetary gear. In the monitoring and diagnosing
planetary gear of wind turbines, the shortcomings of traditional monitoring and diagnosis
systems lacking 3D visualization and online real-time diagnosis are solved. This study aims
to establish a digital twin fault diagnosis system by integrating the digital twin model and
EMD-ASO-SVM fault diagnosis model to realize the condition monitoring and real-time
diagnosis of planetary gear of wind turbines. The feasibility of the digital twin system and
the accuracy of fault diagnosis are observed in experimental examples. The results show
that, compared with the traditional monitoring and diagnosis system, the proposed method
can realize the fault diagnosis and 3D visual monitoring of the planetary gear of wind
turbines, more intuitively reflect the operating status and data changes of the equipment,
quickly locate the fault location, shorten the equipment maintenance time, and improve
the economic benefits. Moreover, experiments show that the diagnostic accuracy of the
EMD-ASO-SVM diagnosis model is 94%, which is 6.67% higher than that of the traditional
SVM fault diagnosis model. Moreover, the advantages of a small sample size and short time
highlight the diagnostic efficiency of the system. Meanwhile, compared with the traditional
digital twinning system, the proposed method has the characteristics of low delay and high
universality. In future studies, the proposed method may facilitate the study of digital twin
fault diagnosis systems for more wind turbine components to complete the comprehensive
monitoring of wind turbine operating conditions and online fault diagnosis.

6. Conclusions

This paper proposes a fault diagnosis method for the planetary gear of wind turbines
based on digital twinning. Additionally, a fault diagnosis system platform for the planetary
gear of wind turbines based on digital twinning is built. The accuracy and feasibility of
the proposed fault diagnosis system are verified by the experimental research on the wind
turbine fault test bench conducted within the laboratory. The planetary gear fault diagnosis
of wind turbines based on a digital twin is realized. The main conclusions are as follows:

(1) Digital twinning technology is applied to carry out the real-time visual monitoring of
the operating state of the wind turbine planetary gear through the data acquisition
of sensors, making it possible to monitor the internal operation process of the wind
turbine digitally. The proposed digital twin fault diagnosis system provides a new
concept and a complete solution for the visual monitoring, real-time fault diagnosis,
and performance maintenance of the planetary gear of wind turbines.

(2) A data-driven fault diagnosis method based on EMD-ASO-SVM is proposed to make
timely and effective judgments on the health status of planetary gears by the real-time
collection, diagnosis, and analysis of strain signals in the running state of planetary
gears of wind turbines. The fault classification accuracy of the ASO-SVM model is
94%, while that of the traditional SVM model is only 86.67%, characterized by fewer
required samples and higher diagnostic efficiency.

(3) Compared with other digital twin systems, the system developed in this paper has
the advantages of low delay and high efficiency, providing it with very high applica-
tion universality.

The research work after this paper will be devoted to introducing more data types to
realize the continuous improvement and optimization of the service function of the wind
turbine fault diagnosis system based on digital twinning.
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