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Abstract: In processes of industrial production, the online adaptive tuning method of proportional-
integral-differential (PID) parameters using a neural network is found to be more appropriate
than a conventional controller with PID for controlling different industrial processes with varying
characteristics. However, real-time implementation and high reliability require the adjustment
of specific model parameters. Therefore, this paper proposes a PID controller that combines a
back-propagation neural network (BPNN) and adversarial learning-based grey wolf optimization
(ALGWO). To enhance the unpredictable behavior and capacity for exploration of the grey wolf,
this study develops a new parameter-learning technique. Alpha gray wolves use the random walk
of levy flight as their hunting method. In beta and delta gray wolves, a search strategy centering
on the top gray wolf is employed, and in omega gray wolves, the decision wolves handle the
confrontation strategy. A fair balance between exploration and exploitation can be achieved, as
evidenced by the success of the adversarial learning-based grey wolf optimization technique in ten
widely used benchmark functions. The effectiveness of different activation functions in conjunction
with ALGWO were evaluated in resolving the parameter adjustment issue of the BPNN model. The
results demonstrate that no unique activation function outperforms others in different controlled
systems, but their fitnesses are significantly inferior to those of the conventional PID controller.

Keywords: gray wolf optimization algorithm; back propagation neural network; activation functions;
PID controller

1. Introduction

In control manufacturing, standard PID control algorithms are frequently utilized
as a control strategy, providing the benefits of unequivocal simplicity and excellent per-
formance [1], among others. PID control algorithms, alongside traditional methods, are
mainly used for control-parameter optimization [2,3]. However, the PID control algorithm
has several drawbacks, including difficulty in parameter setting and susceptibility to dis-
turbance. More PID tuning algorithms, such as neural networks [4], machine learning [5,6],
and heuristic algorithms [7,8], should be developed for use in actual control processes to
address these issues.

However, as controlled systems become increasingly complex, there is a growing need
for control strategies that can handle time-varying behavior and time delays. The complex-
ity of the controlled system contributes to the frequently subpar control effects of a PID con-
troller [9,10]. At present, many intelligent algorithms have been developed. Systems with
time-varying and hysteresis delays can benefit significantly from these approaches [11,12].
By manually modifying the control rules, the expert PID control algorithm can be applied
to specific simulation systems [13]. Fuzzy PID control can be included in the controller
using a lookup table, making it simpler to obtain better control effects [14–19]. However,
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the expert PID and fuzzy PID controllers always have subpar timing precision and lim-
ited anti-interference capabilities. Due to the benefits of rapid adjustment velocity and
excellent accuracy [20,21], the neural network PID control approaches have been applied in
numerous complicated systems [22–24]. In 2022. Wang et al. [25] used the PSO-BPNN-PID
algorithm to control the nutrient solution, and the simulation results demonstrated that the
reaction time and accuracy of the control system were superior to those of the conventional
PID control method. The same year, a BPNN-PID controller was developed using a Xilinx
field-programmable gate array (FPGA) technology in [26]. The findings revealed that
the suggested system exhibited fast convergence and dependable performance. To better
regulate the delay system in 2023, a particle swarm optimization-radial basis function
(PSO-RBF) is utilized in place of a traditional PID controller [27]. In general, BP neural
network research has thus shown positive results.

In addition, to achieve effective controller performance, these parameters of the BPNN-
PID controller must be properly optimized. Moreover, heuristic methods are typically
used in the process of parameter optimization [28–32]. In 2018, the BP neural network
was optimized using a mind evolutionary algorithm to predict wave heights; the model
achieved great accuracy and a fast running time [33]. In 2021, using an algorithm known
as the water cycle method, Zhang et al. [34] improved the BP neural network model for
landside prediction. In 2022, it was proposed that the Boost circuit’s dynamic and generally
pro capabilities be improved by combining a genetic algorithm with BP neural network
PID control (GA-BP-PID) [35]. Therefore, an ALGWO-BPNN control model is proposed in
this paper as a better way to control time-varying and time delay systems. The primary
contributions of the proposed controller are as follows:

1. The GWO technique is used to propose and optimize a PID control model based on a
BPNN. Considering that the GWO algorithm is not necessarily the best for solving
complex problems, a stochastic adjustment convergence factor formula is proposed,
and the beta and delta are adjusted in combination with a differential evolution (DE).
With the enhanced GWO method, the connection weight of the BPNN achieved a
verifiably better control effect.

2. Several benchmark functions are selected to analyze ALGWO.
3. Some activation functions for the output layer of the BPNN model are analyzed

and compared.
4. The ALGWO-BPNN model is simulated and compared with the conventional PID controller.

2. Related Works
2.1. Back Propagation Neural Network

Using the error back propagation technique, a multilayer feedforward neural net-
work is called to become a back propagation neural network. Due to its nature, it has
outstanding performance in nonlinear mapping, such as function approximation and
pattern recognition.

There are three layers in a back propagation neural network model: input, hidden,
and output. The structure of the fundamental BPNN model is depicted in Figure 1. The
input layer deals with the kind and volume of input. By the quantity of control layers and
activation functions, the hidden layer introduces the possibility for nonlinear mapping.
The output layer is in charge of producing certain information.

Output of the neuron model structure is usually expressed as a nonlinear combination
of input and weight, as shown in (1).

ŷj = f (
n

∑
i=1

wijxi − bij) (1)

where ŷj is output of the neuron, xi is output of the neuron, bij and wij are the bias and
weight of the neuron, and f () is an activation function.
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Typical loss function for optimization is shown in (2).

E =
n

∑
i=1

(ŷi − yi)
2 (2)

where ŷi is the truth value and E is a loss function.
Gradient Descent (GD) technology is typically used for weight minimization [36].

wi j = wi j − η
∂E(wi j)

∂wi j
(3)

where η is a learning rate.

2.2. Grey Wolf Optimization Algorithm

Authors of [37] examined the grey wolf’s social behavior before modeling it and
creating an algorithm for the grey wolf’s optimization.

The pros and cons of the actual problems’ remedies are used to categorize the entire
grey wolf population. The best option is designated as the alpha (α), the second best option
is designated as the beta (β), the third best option is designated as the delta (δ), and the
remaining gray wolves are designated as the omega (ω).

The following describes how gray wolves’ behavior toward nearby prey is mathemati-
cally modeled:

→
Di =

∣∣∣∣→Wprey ·
→
Xprey −

→
Xi

∣∣∣∣ (4)

→
Xi =

→
Xprey −

→
Ai ·

→
Di (5)

where
→
Xprey is the position of the prey,

→
Xi is the position vector of the grey wolf, and

→
Ai

and
→
Wprey are coefficient vectors.
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The
→
Ai and

→
Wprey are calculated as follows:

→
Ai = 2 · rand ·→a −→a (6)

→
Wprey = 2 · rand (7)

where
→
a decreases linearly and rand are random vectors.

Because we do not know where the prey is, we can only roughly determine where the
gray wolf is by using our decision-making level to mimic the gray wolf’s hunting behavior.
Through the following, each gray wolf can update its location:

→
Dα =

∣∣∣∣→Wα ·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→Wβ ·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→Wδ ·
→
Xδ −

→
X
∣∣∣∣

(8)



→
Xiα =

∣∣∣∣→Xα −
→
Aα ·

→
Dα

∣∣∣∣
→
Xiβ =

∣∣∣∣→Xβ −
→
Aβ ·

→
Dβ

∣∣∣∣
→
Xiδ =

∣∣∣∣→Xδ −
→
Aδ ·

→
Dδ

∣∣∣∣
(9)

→
Xi =

→
Xiα +

→
Xiβ +

→
Xiδ

3
(10)

3. Model Optimization

The standard grey wolf optimization algorithm has all omega members update their
positions until they hit the termination conditions and discover the best answer (alpha) by
learning from the first three best leaders. Even when the alpha falls into the local optimum,
the standard grey wolf optimization algorithm still has good performance and the ability
of fast collection, but the effect is relatively general when solving the problem of complex
search space. As a conclusion, the proposed ALGWO enhances strategy optimization from
two perspectives, namely the adaptive weight and gray wolf location update methods,
predicated on the standard GWO.

3.1. Random Adjustment Strategy

The parameter established by the grey wolf algorithm to balance the capabilities of
exploration and exploitation is called the convergence factor. The non-decreasing strategy
increases the probability of selecting a larger step size at the beginning of the iteration,
increasing the exploration capabilities. At the end of the iteration, the grey wolf is forced to
select a smaller step size to increase its development capabilities. The convergence factor

→
a

in this study has the potential to take on a greater or smaller value during the algorithm’s
iterative procedure by applying the random selection technique. Hence, by achieving a
smaller value in the early stages, the convergence speed can be sped up, and by acquiring a
higher value in the latter stages, the local optimum can be jumped. These three curves are
shown in Figure 2.

a1 = 2− 2 ∗ t
T

(11)

a2 = 2− 2∗ln(1+ t
T
(e− 1)) (12)
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a3 = 2− 2 ∗ e
t
T − 1
e− 1

(13)
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3.2. Decision-making Level Update Scheme

Since the alpha gray wolf already represents the optimal value in the current popula-
tion of gray wolves, and since the gray wolf does not benefit from the gray wolf’s optimal
solution, the location update in this study uses levy flight instead of the sub-optimal or
third optimal solutions.

→
Xα =

→
Xα +

→
s (14)

where
→
s is calculated from the formula proposed by Mantegna.

The differential evolution idea is utilized to update the position to strengthen the
leadership influence of the alpha gray wolf over potential leaders in beta and delta gray
wolves because of the differential evolution algorithm’s strong local search capability in
multimodal function search and grey wolf.

→
Xβ =

→
Xβ +

→
F · (

→
Xα −

→
Xδ)

→
Xδ =

→
Xδ +

→
F · (

→
Xα −

→
Xβ)

(15)

The populations of the beta (β) and the delta (δ) are set to one or more, and
→
F is the

variation factor. It declines in line with the amount of iterations from 0.6 to 0.3.
The entire grey wolf group may slip into the local optimum and lose the ability to

perform global searches under the formula and formula update if the alpha (α), beta (β),
and delta (δ) grey wolves are in the local optimum in the multimodal function. Hence, the
conflict between candidate leaders and leaders can be employed to resolve the decline in
optimization accuracy induced by this condition.

→
Xi =

→
X iα+

→
X iβ+

→
X iδ

3 , r > q
→
Xi =

→
X iα−

→
X iβ−

→
X iδ

3 , r ≤ q
(16)
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where the beta (β) and the delta (δ) are the second and third candidate solutions of the
problem; q is the preset selection threshold, and it decreases linearly with the number of
iterations from 0.9 to 0.6.

3.3. PID Controller Based on Back Propagation Neural Network

The back propagation neural network maps the input, output, and the errors nonlin-
early to the PID controller’s three parameters, kp, ki, and kd. In addition, the BP neural
network has three neuron points for the input layer, five for the buried layer, and three for
the output layer. The frequently employed Tanh function is utilized in the hidden layer.

f (x) =
ex − e−x

ex + e−x (17)

The three no-negative gain parameters of the PID control scheme are output by BP
neural networks, hence sigmoid functions and other functions with no-negative output
values are applied.

g(x) = ub · 1
1 + e−x (18)

t(x) = ub · ex

ex + e−x (19)

h(x) = min(max(0, x), ub) (20)

where ub is upper bound of the output. It is employed to regulate the output range.
The structure of the PID control scheme based on a back propagation neural network

is shown in Figure 3.
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3.4. Structure of the Total Algorithm

The search space in this paper consists of the network weight and hyperparameters,
since they have a major impact on the performance of the back propagation neural network
model. The system’s process is shown in Figure 4.
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4. Results and Discussion
4.1. Experiment Settings

Ten different test functions are employed to gauge the performance of the proposed
method in order to demonstrate its usefulness. To guarantee a fair comparison, the pop-
ulation size in this paper is fixed at 30 and the number of iterations is set at 1000. The
parameters of different algorithms that might be used are displayed in Table 1. In order to
avoid random variation, tests are carried out 10 times independently.

Table 1. Parameter setups of different algorithms.

Algorithm Values of the Parameters

GWO a = 2 (linear reduction during iteration)
SOGWO [38] a = 2 (linear reduction during iteration)

PSO c1 = 2, c2 = 2, wMax = 0.9, wMin = 0.2
DE F = 0.5, CR = 0.5

However, additional analysis is required to determine how well the ALGWO-BPNN-
PID algorithm performs in control issues. In order to assess the superiority of the ALGWO-
BPNN control technique, the four tests are also performed using the fitness value, overshoot,
and settling time performances. The simulation’s settings are similar. As a controller
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model, the incremental digital PID is employed. The sampling interval is set at one. The
g(x) and the other function are the activation functions described above. The output
control signal of the controller is restricted to [−10, 10]. Equation (21) is used to assess the
algorithm’s effectiveness.

J =
∞∫

0

(w1|e(t)|+w2u2(t))dt (21)

where e(t) is the system error and u(t) is the controller output, and w1 and w2 are the
weights, with values of 0.001 and 0.999. Furthermore, overshoot will cause the fitness to
increase more quickly.

4.2. Test Systems
4.2.1. Test System 1

Six unimodal functions are included in the test functions. PSO and GWO are con-
trasted with the suggested ALGWO algorithm’s solution. The unimodal test functions are
described in Table 2. Figure 5 displays the two-dimensional parameter space for these six
unimodal functions to show them more easily.

Table 2. Details of the unimodal test function.

Function Name Expression Search Space Dim

F1 F1 =
n
∑

i=1
x2

i
[−100,100] 30

F2 F2 =
n
∑

i=1
|xi| −

n
∏
i=1
|xi| [−10,10] 30

F3 F3 =
n
∑

i=1
(

i
∑

j=1
xj)

2
[−100,100] 30

F4 F4 =max
i
{|xi|, 1 ≤ i ≤ n } [−100,100] 30

F5 F5 =
n
∑

i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
[−30,30] 30

F6 F6 =
n
∑

i=1
(|xi + 0.5|) 2 [−100,100] 30
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The average and standard deviations for ten independent runs used to assess the
resilience and average accuracy of algorithms are shown in Table 3. For each function,
the best results are displayed in bold. Figure 6 shows the convergence curves of the six
test functions.

Table 3. Comparison results of three algorithms on six groups of benchmark functions.

Base Function GWO ALGWO PSO

F1
STD 6.69 × 10−70 0 1.40 × 10−11

AVE 2.49 × 10−70 0 5.48 × 10−12

F2
STD 3.49 × 10−41 0 1.01 × 10−5

AVE 3.89 × 10−41 3.01 × 10−238 7.24 × 10−6

F3
STD 1.57 × 10−20 0 3.47 × 100

AVE 8.72 × 10−21 0 7.16 × 100

F4
STD 2.04 × 10−17 0 1.20 × 10−1

AVE 1.77 × 10−17 2.70 × 10−206 3.90 × 10−1

F5
STD 8.78 × 10−1 4.90 × 10−1 3.46 × 101

AVE 2.66 × 101 2.62 × 101 5.04 × 101

F6
STD 2.71 × 10−1 1.09 × 100 1.59 × 10−11

AVE 3.00 × 10−1 3.58 × 10−1 8.16 × 10−12
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As shown in Table 3, the ALGWO algorithm indications are usually noticeably better
than those of other algorithms. Figure 6 illustrates that the ALGWO algorithm provides
better solution outcomes and faster convergence. As a result, the ALGWO method performs
the best overall when solving unimodal test functions when compared to other algorithms.
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4.2.2. Test System 2

Four multimodal functions are included in the test functions. They are compared to
four metaheuristic algorithms that are currently in use. PSO, DE, GWO, and SOGWO are
the algorithms utilized for comparison. Table 4 displays the specifics of the multimodal
test function. The two-dimensional parameter space of these four unimodal functions is
depicted in Figure 7.

Table 4. Details of the multimodal test function.

Function Name Expression Search Space Dim

F8 F8 =
n
∑

i=1
−xi sin(

√
|xi|) [−500,500] 30

F9 F9 =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12,5.12] 30

F10
F10 =− 20e

−0.2

√
1
n

n
∑

i=1
x2

i
− e

1
n

n
∑

i=1
cos(2πxi)

+ 20 + e
[−32,32] 30

F11 F11 = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 [−600,600] 30
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Table 5 contains the average and standard deviation for ten independent runs. The
convergence rates of the four test functions for several algorithms are displayed in Figure 8.
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Table 5. Comparison results of five algorithms on four groups of benchmark functions.

Base Function GWO ALGWO SOGWO PSO DE

F8
STD 8.45 × 102 1.26 × 103 7.11 × 102 8.35 × 102 6.86 × 102

AVE −5.98 × 103 −5.98 × 103 −6.44 × 103 −6.80 × 103 −5.97 × 103

F9
STD 0 0 0 8.22 × 100 1.57 × 101

AVE 0 0 0 3.47 × 101 2.57 × 102

F10
STD 1.49 × 10−15 0 2.39 × 10−15 3.59 × 10−6 7.20 × 10−1

AVE 1.43 × 10−14 4.44 × 10−15 1.40 × 10−14 2.56 × 10−6 1.72 × 10−1

F11
STD 0 0 0 7.30 × 10−3 2.67 × 100

AVE 0 0 0 7.10 × 10−3 3.63 × 10−1
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Table 6. The comparison of final fitness of algorithms on test system 3. 

Algorithm g x( )  t x( )  h x( )  PID 

GWO 
AVE 277.2945 295.4016 280.0701 301.2233 

STD 13.5263 13.4028 13.5383 0.2515 

ALGWO AVE 275.7396 280.0453 278.7984 301.0937 

Figure 8. The results of convergence curves. (a) The convergence curves of F8 and (b) the convergence
curves of F9 and (c) the convergence curves of F10 and (d) the convergence curves of F11.

Table 5 demonstrates that, despite the ALGWO algorithm’s poor performance in the
multimodal test function in the F8 function, the average search accuracy achieves the
minimum value of 4.44 × 10−15 in F10 and the optimal solution of 0 in F9 and F11. As
a result, the ALWO algorithm’s indication is much superior to that of other algorithms.
Figure 8 shows that, for the test functions of F10 and F11, the ALGWO algorithm yields
superior solution outcomes and accelerates convergence speed. Therefore, when solving
multimodal test functions, the ALGWO method generally outperforms other algorithms.

4.2.3. Test System 3

The first-order linear system is chosen for testing in order to confirm the superiority of
the ALGWO-BPNN in the PID control process, and the model transfer function is indicated
in (22). The value of the ub is 10, so the mapping range of the activation function is set to
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0 to 10. The control findings are shown in Table 6 and Figure 9. The best performance is
demonstrated by the g(x) activation function. The convergence characteristics can be seen
in Figure 10.

G(s) =
1.7

320s + 1
(22)

Table 6. The comparison of final fitness of algorithms on test system 3.

Algorithm g(x) t(x) h(x) PID

GWO
AVE 277.2945 295.4016 280.0701 301.2233
STD 13.5263 13.4028 13.5383 0.2515

ALGWO
AVE 275.7396 280.0453 278.7984 301.0937
STD 2.4216 12.3446 11.8726 0.2811
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Figure 9. The results of control effect. (a) The simulation results of BPNN-PID using g(x) and
(b) simulation results of BPNN-PID using t(x) and (c) simulation results of BPNN-PID using h(x) and
(d) simulation results of conventional PID.

The variance and standard deviation of utilizing the ALGWO method are noticeably
lower, as seen in Table 6, as compared to using the GWO algorithm. For instance, the PID
control system utilizing the g(x) BPNN reduces the standard deviation from 13.5263 to
2.4216 and also lowers the average value by 1.5. As a result, it has improved resilience
and average accuracy. The average value is decreased by roughly 20 after using the BPNN
model, so the average accuracy is increased. The g(x) activation function has a better impact
when utilized as an activation function.
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Figure 10. The comparison results of algorithm optimization search on test system 3.

As shown in Figure 9, the controllers employing BPNN-PID outperform the PID
controllers in reducing overshoot when the system reference value changes. As shown
in Figure 10, the ALGWO algorithm is used to control the BPNN-PID control scheme in
comparison to GWO, and it approaches the ideal solution at iteration 200 with a faster
convergence rate, demonstrating ALWO’s more deterministic global search capability and
quicker discovery speed of high-dimensional optimal solutions. The optimization val-
ues utilizing the ALGWO algorithm are 275.7396 and 301.0937, respectively, in terms of
optimization accuracy. It is shown that both in high-dimensional and low-dimensional sce-
narios, it is superior to GWO. According to the convergence curve, the ALGWO algorithm
needs 60 iterations to find the local optimal solution and 90 iterations to depart from it.
Compared to the 150 iterations needed by the GWO method, this is a huge reduction. As a
result, ALGWO can eliminate local optimal solutions more quickly.

4.2.4. Test System 4

For testing, the second-order linear system is used, and formula 23 illustrates the
model transfer function. The activation function’s mapping range is set to 0 to 30. The
performance characteristics and step response data are displayed in Table 7 and Figure 11.

G(s) =
133

s2 + 25s
(23)

Table 7. Performance characteristics on test system 4.

Algorithm Overshoot (%) Rising Time (s) Settling Time (s) Fitness

GWO and g(x) 0.62 3 3 1.0651
GWO and t(x) 0 2 4 1.0234
GWO and h(x) 0 2 2 1.0978
GWO and PID 10 2 3 11.9876

ALGWO and g(x) 0.02 2 3 1.0360
ALGWO and t(x) 0 2 4 1.0238
ALGWO and h(x) 0 2 2 1.0804
ALGWO and PID 6 2 4 11.8913
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Figure 11. Step response.

Table 7 demonstrates how the ALGWO method has lower fitness than the GWO
algorithm in some control schemes. As an illustration, the average precision is decreased
in a BPNN PID control system applied to g(x) from 1.0651 to 1.0360, and the overshoot
index is also decreased from 0.62% to 0.02%. The average accuracy is therefore increased
by the ALWO technique. In terms of whether to use BPNN technology or not, the average
accuracy decreased from 11.8913 to 1.0238, which significantly indicates that the ALGWO-
BPNN-PID control scheme is more effective in second-order linear systems. Furthermore,
the g(x) activation function has better results, as shown in Table 7.

As can be clearly seen from Figure 11, the maximum value of the tracking values
decreased from 1.10 to 1.007. As a result, ALGWO-BPNN-PID controllers have a lot of
benefits over traditional PID controllers in terms of reducing overshoot.

4.2.5. Test System 5

The first-order plus time delay model is selected for testing, and the model transfer
function is shown in (24). The mapping range of the activation function is set to 0 to 30.
Table 8 shows the mean value and standard deviation of 10 runs. Table 9 and Figure 12
illustrate the performance characteristics and step response outputs represented by one
of the results, while Figure 13 displays the 10-time average convergence characteristics of
several algorithms.

G(s) =
1.7e−10s

320s + 1
(24)

Table 8. The comparison of final fitness of algorithms on test system 5.

Algorithm g(x) t(x) h(x) PID

GWO
AVE 24.9222 25.0190 24.8169 27.0366
STD 0.6144 0.7097 0.6658 0.0773

ALGWO
AVE 24.1989 23.8964 24.8090 27.0068
STD 0.1029 0.1883 0.6113 0.0245
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Table 9. Performance characteristics on test system 5.

Algorithm Overshoot (%) Rising Time (s) Settling Time (s) Fitness

GWO and g(x) 0.06 34 41 24.2989
GWO and t(x) 0 38 49 25.0178
GWO and h(x) 0 35 44 24.7274
GWO and PID 0.18 41 52 26.9809

ALGWO and g(x) 0 35 45 24.2034
ALGWO and t(x) 0 34 44 23.9817
ALGWO and h(x) 0 30 36 24.2842
ALGWO and PID 0.11 41 53 26.9800
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Figure 12. The step response results on test system 5. (a) The simulation results of BPNN-PID using
g(x) and (b) simulation results of BPNN-PID using t(x) and (c) simulation results of BPNN-PID using
h(x) and (d) simulation results of traditional PID.

As shown in Table 8, compared to the control scheme using GWO and PID, the control
scheme using ALGWO-BPNN-PID reduces the fitness from 27.0366 to 23.8964, improving
the average accuracy. Between them, the activation function of t(x) achieves the best effect,
with the lowest average fitness of 23.8964. As can be seen from Table 9, using the ALGWO-
BPNN-PID control scheme causes, the overshoot to decrease from 0.18% to 0.00%, the rise
time to increase by about 5s, and the adjustment time to decrease by about 8s. Between the
schemes, the control scheme using the g(x) activation function has a better overall effect.
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Figure 13. The comparison results of algorithm optimization search on test system 5.

As can be clearly seen in Figure 12, the response speed of the GWO-PID control
scheme is slower, reaching 0.98 in about 52 seconds, while the BPNN-PID control scheme
is advanced to about 45 seconds. As can be seen from Figure 13, the ALGWO-BPNN-PID
control scheme has a faster convergence speed and better optimization accuracy, with
a decrease of about two. Therefore, the ALGWO-BPNN-PID control scheme has more
advantages in the first-order plus time-delay model.

4.2.6. Test System 6

The time-varying model is selected for testing, and the model’s difference equation is
displayed as follows. The mean value and standard deviation for 10 runs are displayed
in Table 10. The mapping range of the activation function is set to 0 to 30. Figure 14
shows the step response, while Figure 15 displays the comparison results. The results
demonstrate that the ALGWO-BPNN method shows the optimal control effect in slow time-
varying systems.

w = 1− 0.8× e−0.1k (25)

y(k) = 0.9969× w× y(k− 1) + 0.0053× u(k− 1) (26)

Table 10. The comparison of final fitness of algorithms on test system 6.

Algorithm g(x) t(x) h(x) PID

GWO
AVE 40.8749 46.6955 41.2529 56.4116
STD 0.61855 8.8126 1.2789 0

ALGWO
AVE 40.2174 41.1174 40.5169 49.2536
STD 0.5555 0.6698 0.6763 6.6099

First, as shown in Table 10, using the ALGWO method produces lower variances and
standard deviations compared to using the GWO algorithm. For example, a PID control
system using t(x) BPNN reduced the standard deviation from 8.8126 to 0.6698, and also
reduced the average value by 5.5. Therefore, it improves elasticity and average accuracy.
Then, the final average fitness is reduced by roughly 10, making the ALGWO-BPNN-PID
controllers significantly superior to conventional PID controllers. Finally, the g(x) activation
function has a better impact when used as an activation function, with a fitness of 40.2174.
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Figure 14 shows that the controller employing BPNN-PID outperforms the PID con-
troller in terms of reaction speed, shortening the time by around ten seconds, when tracking
the unit step response. As seen in Figure 15, the ALGWO algorithm is employed to
regulate the BPNN-PID control scheme in comparison to GWO, and by iteration 100,
it comes close to an optimal solution, demonstrating ALGWO’s superior global search
capabilities. The optimization values for the ALGWO method are 49.2536 and 40.5169,
respectively, in terms of optimization accuracy. This demonstrates that it outperforms
GWO. In conclusion, GWO-BPNN-PID controllers have better performance when applied
to slow time-varying systems.

5. Conclusions

The most popular type of industrial process control is PID control, which has been
utilized extensively in the metallurgical industry, the electromechanical industry, and
other industries. However, as the controlled system becomes increasingly complex, the
time-varying and time-delayed systems of the PID control algorithm exert only a general
control effect. In this paper, an incremental PID control algorithm based on a BP neural
network was selected. Furthermore, by utilizing a novel natural excitation optimization
technique, namely the gray wolf optimization algorithm based on confrontation learning,
we sought to enhance the control impact of the BPNN-PID controller. In the first step, a
fresh adversarial search approach for GWO was suggested. Ten test functions were used
to evaluate the ALGWO algorithm. This technique performs better than other algorithms
because it can increase convergence speed and search capability. The ALGWO-BPNN
model is based on the ALGWO algorithm, which was the second step. To achieve real-
time online modification of the PID control parameters and acquire the optimal control
rules, the key parameters of the BPNN were adjusted using ALGWO. In addition, the
impact of changing the activation function on BPNN was discussed and comparative
tests were conducted using the conventional PID control. The findings indicate that the
ALGWO-BPNN controller exerts a superior control effect compared to the conventional
PID controller in time-varying or time-delay systems.
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30. Bilandžija, D.; Vinko, D.; Barukčić, M. Genetic-Algorithm-Based Optimization of a 3D Transmitting Coil Design with a Homoge-
neous Magnetic Field Distribution in a WPT System. Energies 2022, 15, 1381. [CrossRef]

31. Kashyap, A.K.; Parhi, D.R. Particle swarm optimization aided pid gait controller design for a humanoid robot. ISA Trans. 2021,
114, 306–330. [CrossRef]

32. Feleke, S.; Satish, R.; Pydi, B.; Anteneh, D.; Abdelaziz, A.Y.; El-Shahat, A. Damping of Frequency and Power System Oscillations
with DFIG Wind Turbine and DE Optimization. Sustainability 2023, 15, 4751. [CrossRef]

33. Wang, W.; Tang, R.; Li, C.; Liu, P.; Luo, L. A BP neural network model optimized by mind evolutionary algorithm for predicting
the ocean wave heights. Ocean Eng. 2018, 162, 98–107. [CrossRef]

34. Zhang, Y.; Tang, J.; Liao, R.; Zhang, M.; Zhang, Y.; Wang, X.; Su, Z. Application of an enhanced BP neural network model with
water cycle algorithm on landslide prediction. Stoch. Environ. Res. Risk Assess. 2021, 35, 1273–1291. [CrossRef]

35. Wang, Q.; Xi, H.; Deng, F.; Cheng, M.; Buja, G. Design and analysis of genetic algorithm and BP neural network based PID control
for boost converter applied in renewable power generations. IET Renew. Power Gener. 2022, 16, 1336–1344. [CrossRef]

36. Curry, H.B. The method of steepest descent for non-linear minimization problems. Q. Appl. Math. 1944, 2, 258–261. [CrossRef]

https://doi.org/10.1515/jee-2016-0023
https://doi.org/10.1016/j.neucom.2013.03.065
https://doi.org/10.3390/s16091429
https://doi.org/10.1007/s42452-021-04626-0
https://doi.org/10.3390/electronics11060921
https://doi.org/10.3390/electronics8091051
https://doi.org/10.1016/j.eswa.2020.114182
https://doi.org/10.1109/TFUZZ.2019.2912138
https://doi.org/10.3390/ijtpp6010002
https://doi.org/10.1109/TNN.2010.2098481
https://doi.org/10.1016/j.neunet.2016.08.012
https://doi.org/10.3390/app11062685
https://doi.org/10.3390/s22155515
https://www.ncbi.nlm.nih.gov/pubmed/35898019
https://doi.org/10.3390/s22030889
https://www.ncbi.nlm.nih.gov/pubmed/35161635
https://doi.org/10.3390/app13010536
https://doi.org/10.3390/en12224239
https://doi.org/10.3390/app11020677
https://doi.org/10.3390/en15041381
https://doi.org/10.1016/j.isatra.2020.12.033
https://doi.org/10.3390/su15064751
https://doi.org/10.1016/j.oceaneng.2018.04.039
https://doi.org/10.1007/s00477-020-01920-y
https://doi.org/10.1049/rpg2.12320
https://doi.org/10.1090/qam/10667


Appl. Sci. 2023, 13, 4767 21 of 21

37. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
38. Dhargupta, S.; Ghosh, M.; Seyedali, M.; Ram, S. Selective Opposition based Grey Wolf Optimization. Expert Syst. Appl. 2020,

151, 113389. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.eswa.2020.113389

	Introduction 
	Related Works 
	Back Propagation Neural Network 
	Grey Wolf Optimization Algorithm 

	Model Optimization 
	Random Adjustment Strategy 
	Decision-making Level Update Scheme 
	PID Controller Based on Back Propagation Neural Network 
	Structure of the Total Algorithm 

	Results and Discussion 
	Experiment Settings 
	Test Systems 
	Test System 1 
	Test System 2 
	Test System 3 
	Test System 4 
	Test System 5 
	Test System 6 


	Conclusions 
	References

