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Abstract: The problem of text classification has been a mainstream research branch in natural lan-
guage processing, and how to improve the effect of classification under the scarcity of labeled samples
is one of the hot issues in this direction. The current models supporting small-sample classification
can learn knowledge and train models with a small number of labels, but the classification results are
not satisfactory enough. In order to improve the classification accuracy, we propose a Small-sample
Text Classification model based on the Pseudo-label fusion Clustering algorithm (STCPC). The algo-
rithm includes two cores: (1) Mining the potential features of unlabeled data by using the training
strategy of clustering assuming pseudo-labeling and then reducing the noise of the pseudo-labeled
dataset by consistent training with its enhanced samples to improve the quality of the pseudo-labeled
dataset. (2) The labeled data is augmented, and then the Easy Plug-in Data Augmentation (EPiDA)
framework is used to balance the diversity and quality of the augmented samples to improve the
richness of the labeled data reasonably. The results of comparison tests with other classical algorithms
show that the STCPC model can effectively improve classification accuracy.

Keywords: natural language processing; text classification; pseudo-label; few-shot learning

1. Introduction

Text classification is the process by which natural language processing techniques
accurately and rationally correspond texts to corresponding categories based on the clas-
sification system or criteria developed by users’ needs and is widely used to analyze
people’s emotions and attitudes toward products and services [1]. In recent years, deep
learning-based training models have dominated the research on text classification methods.
These models, such as Word2Vec [2], BERT [3], and ELECTRA [4], are first pre-trained on
a large scale and then fine-tuned to transfer generic knowledge to specialized sentiment
tasks. Such training methods can effectively meet the needs of sentiment classification tasks.
However, the accuracy of the sentiment classification results produced by these models is
limited when there is not enough labeled training data for practical production. Although a
large amount of unlabeled text data can be easily collected in living scenarios, the labeling
itself still requires quite a lot of cost, and there are problems such as uncontrollable labeling
time, high cost of manual labeling, and uneven quality of labeling [5]. Such problems are
more obvious in some niche and specialized fields, including but not limited to the legal
field, medical field, and financial audit field. Therefore, those classification methods that
require only a limited number of labeled data are receiving more and more attention.

Researchers begin by looking at the model and the data itself. Howard et al. [6]
proposed universal language model fine-tuning (ULMFit) to fine-tune the language model
by varying the learning rate in both longitudinal and cross-sectional dimensions, allowing
the model to converge faster on small-sample datasets. However, limited by the differ-
ences between the source and target datasets, there are problems that can easily lead to
overfitting of the prediction results. Nguyen-Nhat et al. [7] experimented with various

Appl. Sci. 2023, 13, 4716. https://doi.org/10.3390/app13084716 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084716
https://doi.org/10.3390/app13084716
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4717-4625
https://doi.org/10.3390/app13084716
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084716?type=check_update&version=2


Appl. Sci. 2023, 13, 4716 2 of 17

pre-processing techniques, including semantic lexical complementation, synonym replace-
ment, and random exchange, from the perspective of improving the diversity of labeled
data, all of which effectively improved the accuracy of the classifier. Duong et al. [8], on the
other hand, used various data augmentation means such as grammar tree transformation,
back translation, random insertion, and random deletion to perform sentiment analysis
on text. Some researchers use language models or agent networks for data augmentation.
For example, the LAMBDA (language-model-based data augmentation) [9] technology
proposed by the IBM team uses GPT-2, which has been pre-tuned on the training set, to
generate labeled augmented sentences, and then filters the augmented sentences through
the classifier to ensure data quality. Due to the confidence checking of the classifier, the
sample data obtained by this method are better than other data enhancement methods,
but the cost of over-emphasizing data confidence is at the expense of efficiency and data
diversity. The data augmentation framework EPiDA (Easy Plug-in Data Augmentation)
proposed by Zhao et al. [10] improves this point. Based on commonly used data augmen-
tation methods, EPiDA uses classifier feedback to achieve relative entropy maximization
(REM) and conditional entropy minimization (CEM). The diversity and quality of the
enhanced samples are balanced by the sum of REM and CEM, and better-enhanced samples
are selected. Compared with the LAMBADA method, the basis of EPiDA is the commonly
used data enhancement method, which has high enhancement efficiency, strong applica-
bility, and a more reasonable method for screening enhanced samples. This approach is
easy to understand, effective, and has inspired us a lot. However, the data augmentation
methods are mostly oriented to labeled data, which neither utilize the much larger amount
of unlabeled data, which is prone to information loss nor substantially increase the feature
information of the text, which is vulnerable to the small sample size. Therefore, to solve the
training dilemma of little labeled data, a holistic perspective is needed.

The introduction of new feature information has become a new research direction
for this problem. Hidetaka et al. [11] introduced new features from unlabeled data, such
as lexical features, word clustering features of Word2Vec, and clustering features with
constraints. Jedrzejowicz et al. [12] proposed a hybrid approach of the LDA algorithm and
Word2Vec. This method classifies documents in an unsupervised way, obtains the Gibbs
sampling results of LDA, and assigns the results to documents as the most representative
words in the topic by means of a cosine distance metric, which results in new features.
Self-training is likewise a good solution [13]. Self-training uses unlabeled data to generate
pseudo-results that serve as new labels for the data and are used for further training.
However, traditional self-training does not perform sample selection and does not consider
the noise in the pseudo-labels generated during the training process. Noisy data were
masking the true relationship between unlabeled data and their categories. This may
lead to error accumulation. To address this problem, Villatoro-Tello et al. [14] reduced
the sensitivity of the learning algorithm to noise in the labeled data by automatically
generating a summary, effectively improving the accuracy of model training. However,
noise is difficult to avoid, some processes, such as data augmentation, can generate noise at
any time, and noise can diversify the data to improve model learning, and blanket rejection
of noise is not always beneficial for model training. Therefore, we propose consistent
training for pseudo-labeling, making full use of unlabelled data to introduce new feature
information while using noise to improve model robustness and avoid model overfitting.

Besides, Zhang et al. [15] proposed a short text classification method based on weighted
word vector representation. This method uses the expected cross-entropy to extract the
strong category feature set from the labeled data and then generates word vectors as
feature vectors to increase the semantic information of short texts and reduce their high-
dimensional sparsity. Following these ideas, after being inspired by the use of clustering
algorithms to obtain labels in image classification [16], we improve the data pre-processing
process and design the implementation of a method to obtain pseudo-labels based on
text clustering.
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After combining the advantages and disadvantages of various algorithms in current
semi-supervised learning, we propose a small-sample text classification model based on
a pseudo-label fusion clustering algorithm (STCPC) by combining the advantages and
disadvantages of various algorithms in current semi-supervised learning. The STCPC
algorithm combines the advantages of the above methods, fully exploits the effective
information of a large amount of unlabeled data, and uses a small amount of labeled data
to achieve efficient semi-supervised text classification. The main contributions of our paper
are summarized as follows:

(1) Combining the similarity information between labeled and unlabeled data, we pro-
pose a pseudo-labeling algorithm based on text clustering, where the pseudo-labels
are formed by mining the latent features of the unlabeled data. It is also proposed to
use consistent training for the pseudo-labels to improve the robustness of the model.

(2) Combining common data enhancement methods with EPiDA framework and made
compatible with our enhanced methodology to filter out tagged enhanced data with
high overall diversity and quality scores.

(3) Using the BERT model as the basis for implementing our enhanced approach, the
improvement effect is demonstrated in the experiments of four datasets, and it is also
improved in comparison with other algorithms.

2. Related Work

Over the past few decades, there has been a great deal of interest and research in small
sample methods, and the results have played a crucial role in many realistic scenario appli-
cations. In recent years, significant results have been achieved in a range of downstream
natural language processing (NLP) tasks through pseudo-label and data augmentation. In
this section, we review the theory and literature related to few-shot learning, pseudo-label
method, and BERT models, respectively.

2.1. Few-Shot Learning

Our research focuses on scenarios with limited annotated data, also known as small-
sample learning. Researchers have turned the method of solving small sample problems
into few-shot learning, which aims to learn from a small number of samples to solve
problems [17]. In earlier research results, ew-shot learning [18,19] was mostly applied
in computer vision and based on statistical learning methods [20]. For example, Maas
et al. [21] proposed a Bayesian network with an approach that captures the relationships
between attributes using probability distributions, thus allowing a small number of labeled
image samples to yield more information. With the development of deep neural networks,
Few-shot learning has also seen some research and development in the field of natural
language processing (NLP) [22]. According to the different approaches and goals taken, the
most common small sample learning methods can be classified into three types: fine-tuning,
data augmentation, and transfer learning.

Fine-tuning-based approach. The process is to learn from a large general corpus,
train a classification model, and then fine-tune the parameters. For example, Nakamura
et al. [23] proposed a fine-tuning approach for the small-sample problem to enhance the
model capability by using a lower learning rate during training and an adaptive gradient
optimizer during the fine-tuning phase. Such approaches often suffer from overfitting
problems because the target data are too different from the pre-trained data, and a small
amount of data does not reflect the true distribution of a large amount of data well.

Data-augmentation-based approach. The process is to enhance the classification
features in the target dataset or expand the target dataset annotation information using
auxiliary information or aids for the model to extract the dataset features. For example, Wei
et al. [24] proposed the easy data augmentation method EDA (easy data augmentation),
which uses four methods: synonym replacement, random insertion, random exchange,
and random deletion to expand the text. Because of its rapidity and effectiveness, EDA is
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widely used. However, this type of approach causes a loss of information because it does
not utilize the much larger amount of unlabeled data.

Transfer-learning-based approach. The process is to transfer the information learned
by the model in advance to a new knowledge domain. In transfer learning, the existing
knowledge is called the source domain, and the new knowledge to be learned is called the
target domain, and as long as the source and target domains are related, the knowledge
and features learned in the source domain can help train the classification model in the
target domain and realize the transfer of knowledge between different domains [25]. Snell
et al. [26] proposed a prototypical network that maps images into vectors and uses the
average of sample vectors belonging to the same category as the prototype of that category.
The correlation between the training data and the test samples is used to continuously train
the model to make the samples of the same category closer to each other, thus achieving
a better prediction effect. However, in many cases, the importance of the samples used
to calculate the prototype is different, especially when the samples are noisy data. For
this reason, Li et al. [27] proposed that the model can be used to integrate the information
of all images in the support set so as to find the most discriminative features and enrich
the extracted feature information. In addition, transfer learning-based methods such as
meta-learning and graphical neural network methods are available, which fully exploit
and match the correlation between source and target domains to improve the classification
effect to different degrees, but because of this, they are inevitably affected by the differences
between source and target domains.

2.2. Pseudo-Label Method

The pseudo-labeling approach [28] can increase the size of the training dataset and
improve the model performance by labeling unlabeled data as labeled data. t-sne visual-
ization of embedding in the paper of Lee et al. [29] clearly demonstrates the effect of the
pseudo-label method. It is mentioned in that paper that using only pseudo-label methods
may be more efficient compared to the semantic drift that most data augmentation methods
introduce. Rizve et al. [30] used uncertainty–aware pseudo-label selection (UPS) combined
with uncertainty estimation and negative learning to reduce the model’s noise effectively,
but this method relies heavily on the predictive power of the original model and does
not utilize a large amount of unlabeled data, and there is an upper limit to the prediction
accuracy. When using pseudo-labeling for training, some noisy data may be misclassified,
leading to a degradation of model performance, and pseudo-labeling is an unsupervised
method that cannot solve the problem of label noise.

In conclusion, pseudo-labeling is an effective method to improve model performance
when the dataset size is small, and there is insufficient labeled data. However, it is necessary
to choose the appropriate model and parameters according to the actual situation to avoid
introducing noisy data and to note the possible errors caused by pseudo-labeling.

2.3. BERT

The BERT training model is based on the bi-directional Transformer [31] structure and
uses a pre-training process based on two tasks, masked language model (MLM) and next
sentence prediction (NSP) [32], which can output linguistic features that take into account
contextual information, compared with the structure of BERT model shown in Figure 1.

The Trm module takes the core idea of the Self-attention technique as follows: the
positional relationship of each word in a sentence text to all other words in that sentence text
is calculated. The weight of each word is then derived from this relationship to construct
a new expression for that word. The expression contains the semantics of the word itself
while also characterizing the relationships with other words. Compared with the traditional
single-word vector, the word vector obtained by Self-attention has a more comprehensive
expressive power.
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Figure 1. Structure of BERT model. Where E1, E2, . . . , EN represents the pre-processed text input, T1,
T2, . . . , TN represents the vector output trained by the BERT model. The Trm module is an Encoder
structure from Transformer.

Thanks to the powerful pre-training process, the target domain of the BERT model in
the fine-tuning phase can migrate a large amount of knowledge from the source domain to
perform classification tasks with very high accuracy. However, unlike the unsupervised
learning of the pre-training process, the fine-tuning phase of the BERT model is supervised
learning and relies on a large amount of annotated data, which are limited in the scenario
with the limited labeled data that we studied. Since the BERT model is an excellent and
classic text classification model with proven results by researchers, we will use it as a base
model and apply our improved methods to it.

3. Methodology

This section describes how to implement the text classification task with small samples
using the STCPC algorithm, which on the one hand, makes full use of the information
contained in the unlabeled data and uses the clustering algorithm to mine its potential
features to make pseudo-labels, and at the same time enhances the accuracy of pseudo-
labels through its enhanced samples to take consistent training to reduce noise. On the other
hand, we improve the utilization efficiency of labeled data and use the EPiDA framework
to expand the small amount of labeled data more reasonably. The two tasks are performed
sequentially, feeding the classification model in turn, and the parameters of the model after
the classification of the pseudo-labeled dataset are used as the input of the labeled data in
the process. The overall framework diagram is shown in Figure 2.
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We use Xu to denote a large number of unlabeled datasets, which contain a large
number of unlabeled texts, X̂u is the dataset generated by Xu using back translation method
data augmentation; Xp is the generated pseudo-labeled dataset; we use Xl to denote a
small number of labeled datasets, which contain pairs of real labels and texts,Xa is the data-
augmented sample of Xl . The details of Xu and Xl are specified in Equations (1) and (2):

Xu = {xu
1 , xu

2 , . . . , xu
m}, (1)
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Xl =
{(

xl
1, yl

1

)
,
(

xl
2, yl

2

)
, . . . ,

(
xl

n, yl
n

)}
, (2)

where m is the number of unlabeled data, xu
m is the unlabeled text; n is the number of

tagged data, xl
n is the tagged text, yl

n is the true label, yl
n ∈ {0, 1}C is the one-hot vector and

C is the number of categories.

3.1. Clustering-Based Pseudo-Labeling

This section focuses on generating pseudo-labels by making full use of a large amount
of unlabeled data. Firstly, the unlabeled data are pre-processed to reduce the dimensionality
of the unlabeled data, and then the processed unlabeled data are subjected to an unsuper-
vised k-means clustering task to obtain pseudo-labels. After the clustering is completed,
each unlabeled data point is assigned to the center of the nearest class cluster to form the
pseudo-labeled dataset. Finally, the noise of the pseudo-labeled dataset is reduced by a
consistent training method, thus improving the pseudo-labeling accuracy.

3.1.1. Data Pre-Processing

Text data have high feature dimensionality, large data volume, and redundant data,
showing the characteristics of high-dimensional sparsity. Therefore, pre-processing such as
word separation, deactivation word filtering, and extracting features to construct virtual
switch matrix (VSM), is needed for text information data. TextRank algorithm [33] can
be used for keyword extraction, summary generation, and text similarity calculation.
However, the TextRank algorithm involves the construction of word graphs and iterative
calculations, which can be computationally complex for large volumes of untagged data,
so the extraction speed is slow. The LDA algorithm [34] is used to extract topics from text
and can identify and deal with noise and meaningless words. However, LDA also has
the problem of high computational complexity and requires training in advance, which
may encounter bottlenecks when dealing with large corpora. TD-IDF algorithm [35], as a
commonly used text feature extraction method, is ideal for extracting information, easy
to implement, and highly efficient. Therefore, it was finally decided to use the TF-IDF
algorithm for text data processing.

The full name of TF-IDF algorithm is term frequency-inverse document frequency,
which is mainly used to obtain features of high importance in text. The principle is that
the importance of a word is proportional to its frequency of occurrence in a single text
and inversely proportional to its number of occurrences in all texts. The TF-IDF value is
calculated separately for each unlabeled data and is denoted as follows:

TTF−IDF =
mw

m
× log

M
Mw + 1

, (3)

where Mw is the number of sentences containing the word w in a single data, and M is
the total number of sentences in the data; mw indicates the number of times the word w
appears in a sentence, and m is the total number of words in the sentence. TTF−IDF indicates
the importance of a word, and a higher value indicates that the word is more important
for this text. After sorting, the top-ranked word is used as text representative, and pre-
processing, such as vector-matrix construction, so that the original text’s high-dimensional
hard-to-process original feature space is effectively transformed into a new easy-to-process
low-dimensional feature space to better characterize the original text.

3.1.2. Constructing Pseudo-Labeled Datasets

Text feature clustering is mostly applied in the field of data mining. The principle is
through multiple iterations, the points with high similarity are clustered together and di-
vided into a cluster, and high aggregation and low coupling are achieved between clusters,
and its class cluster center can be used as the unified feature of this part of similar data, and
its characteristics are similar to the category. Thus, we introduce the class cluster center as
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a pseudo-label. The clustering algorithms are mainly divided into grid-based clustering
algorithms, hierarchy-based clustering algorithms, and partitioning-based clustering algo-
rithms [36]. Among them, the grid-based clustering algorithms represented by STING and
WAVE-CLUSTER have high execution efficiency, but the accuracy of clustering is low and
lacks consideration of the connection between grid cells. The hierarchical-based clustering
algorithms represented by algorithms such as BIRCH and Chameleon are fast and use
less memory, but the clustering results are strongly influenced by the input order of the
objects. In contrast, the partition-based clustering algorithms such as K-means and CLARA
are simple and easy to operate and have high accuracy, so the k-means [37] clustering
algorithm was finally chosen for the pseudo-label generation.

The k-means algorithm is a classical clustering algorithm. The principle is that the
data samples are divided into clusters according to the distance between data samples,
the initial centers are randomly selected according to the given number of centers, the
clusters are assigned to the cluster classes with the closest distance in one iteration, and
the class cluster centers are dynamically adjusted by calculating the sum of the squares of
the differences of the distances between clusters and cluster centers in each cluster class
to make the distance between clusters and clusters as large as possible [38] to achieve the
sample delineation, the specific process is as follows:

Step 1 Obtain the total number of classes from the annotated data text, noted as
k-value, and input the dataset samples as clusters.

Step 2 Randomly select one cluster from all clusters as the initial center of the cluster
class, then select the one farthest from the point as the second initial class cluster center
point, then select the point with the largest nearest distance from the first two points as the
third initial class cluster center point, and so on until k initial class cluster center points are
selected.

Step 3 Assigning class clusters to the nearest cluster class set based on the distance
between each class cluster and the centroid calculated by Equation (4).

Step 4 Recalculating the centroids of each class cluster after calculating the mean value
of each cluster with respect to all class cluster centroids by Equation (5).

Step 5 When the change in the position of the new class cluster center and the previous
class cluster center is less than a threshold, it can be judged that the clustering tends to be
stable, indicating that the desired result is reached; if the change in the position of the new
class cluster centroid and the previous class cluster center is greater than a threshold, it is
necessary to loop the above steps Step 3, Step 4 and Step 5.

dc =|c− ci|2, (4)

E =
k

∑
i=1

∑
c∈Ci

|c − _
ci|2, (5)

where c refers to the value of the samples of the dataset; Ci is the total representation of

a cluster class,
−
c i is the center of class Ci, and 1 ≤ i < k. When the clustering algorithm

reaches the specified number of training rounds or the centroids tend to be constant,
the k class cluster centers that are stabilized are the pseudo-labels we need. Then, each
unlabeled data point is assigned to the nearest class cluster center to form the pseudo-
labeled dataset Xp.

3.1.3. Consistency Training

Since the k-means clustering algorithm is susceptible to noise points and outliers,
there may be mislabeling in the pseudo-labeled dataset, and directly accessing the pseudo-
labeled dataset for subsequent training will introduce too much noise. Therefore, the
consistency training of the unlabeled data-enhanced samples is added. The forced model of
the consistency loss function produces similar outputs for similar inputs, which contributes
to the robustness and generalization performance of STCPC.
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For a large number of unlabeled dataset Xu, the output distribution of pseudo-label
generation by clustering is denoted as p

θ̃
(y
∣∣x) , indicating that the pseudo-label y of the

unlabeled dataset is obtained from its unlabeled data x by transformation; X̂u is the dataset
generated from the unlabeled dataset Xu using back translation method data augmentation,
and its output distribution by clustering task is denoted as pθ(y|x̂) . Considering the
consistency constraint between the unlabeled data and its augmented samples to minimize
the metric between the two distributions, the pseudo-label consistency loss is

minLU(θ) = Ex∈Xu Ex̂∼q(x̂|x)
[
DKL

(
p

θ̃
(y
∣∣x)∣∣pθ(y

∣∣x̂))], (6)

where θ is a model parameter,
∼
θ is a fixed replica of θ that is not involved in backpropagation.

q( x̂|x) is the data augmentation function, and the distance between two distributions is
measured using Kullback–Leibler (KL) Divergence. The consistency training technique
forces the model to be insensitive to noise by aligning the clustering results of the unlabeled
data with the clustering results of its augmented samples, resulting in smoother changes in
the input space. Moreover, minimizing the consistency loss will achieve full utilization of a
large amount of unlabeled data.

3.2. EPiDA Data Augmentation

In order to improve the classification effect of the method in this paper, we also focus
on the enhancement of the labeled data. The augmentation method is represented by
the expansion of a small amount of labeled data, and the quality and diversity of the
expanded data significantly affect the performance of the model. We balance data diversity
and quality by using the EPiDA framework to generate expanded data with a high level
of synthesis.

EPiDA consists of three components: data augmentation, sample evaluation and
selection (REM + CEM), and classifier. The data augmentation module is selected from
the currently used methods: back translation and context enhancement. Moreover, the
sample evaluation and selection module and the classifier are used to evaluate the enhanced
samples generated by the data augmentation methods comprehensively through mutual
feedback. The relative entropy maximization (REM) is used to consider diversity, i.e., try
to select those augmented samples that differ the most from the original samples; the
conditional entropy minimization (CEM) considers quality, i.e., try to select augmented
samples that can minimize the uncertainty of the model. the flow chart of EPiDA data
augmentation is shown in Figure 3.

Appl. Sci. 2023, 13, 4716 9 of 18 
 

 
Figure 3. The illustration of the EPiDA data augmentation module. 

Firstly, in order to generate diverse and rich samples, it is necessary to make the sam-
ples generated by data augmentation as different as possible from the original samples; 
therefore, for the augmented samples 𝑎  loss should be maximum, and the objective 
function is 

( )( ) ( )( ) ( )( ) ( )( )
1

R
1

1max , ,
n h

j T j
i i i i

i j
L w a H p y D p w a p y

hn
φ φ

= =
= +  , (7)

where iy  is the true label; 𝜙: ℝ → ℝ  is a finite-dimensional feature mapping, which 
is not affected by data augmentation; 𝑤 ∈ ℝ  is a learnable parameter; H is the Shannon 
entropy, which is used to measure the information gain of the augmented samples; D is 

the relative entropy, which indicates the difference with ( )( )T j
ip w aφ  and ( )ip y ; and 

p is the probability distribution. Since ( )ip y  is the one-hot vector, ( )( ) 0iH p y = . 

According to Equation (7), we can understand that the difference between the origi-
nal sample and the augmented sample is the largest when the relative entropy 

( )( ) ( )( ),T j
i iD p w a p yφ  is maximized so that the diversity of the augmented data can 

be achieved. Therefore, the diversity of the augmented samples is scored as 

 ( )( ) ( )( )1 ,ij T j
i is D p w a p yφ= . (8)

Secondly, in order to generate high-quality augmented data, the semantic deviation 
of the augmented samples from the original samples is constrained by minimizing the 
conditional entropy, and the objective function is 

 ( )( ) ( )( ) ( )( )( )CminL | lj T j T
i i iw a H p w a p w xφ φ φ= . (9)

Thus, the quality score of the augmented sample is 

 ( )( ) ( )( )( )2 |ij T j T
i i

ls H p w a p w xφ φ= − . (10)

Finally, taking into account the diversity and quality of the augmented samples, the 
final score is  

1 2
ij ij ijs s sτ = + . (11)

The loss of the EPiDA data augmentation framework is  E C RL L L= + . (12)

Based on the final scores, the enhanced samples generated by back translation and 

context augmented are evaluated, and a reasonably augmented sample aX  is selected 

Figure 3. The illustration of the EPiDA data augmentation module.

Firstly, in order to generate diverse and rich samples, it is necessary to make the
samples generated by data augmentation as different as possible from the original sam-
ples; therefore, for the augmented samples aj

i loss should be maximum, and the objective
function is

maxLR

(
w, φ

(
aj

i

))
= H(p(yi)) +

1
hn

n

∑
i=1

h

∑
j=1

D
(

p
(

wTφ
(

aj
i

))
, p(yi)

)
, (7)



Appl. Sci. 2023, 13, 4716 9 of 17

where yi is the true label; φ : Rd → RD is a finite-dimensional feature mapping, which is
not affected by data augmentation; w ∈ RD is a learnable parameter; H is the Shannon
entropy, which is used to measure the information gain of the augmented samples; D is the
relative entropy, which indicates the difference with p

(
wTφ

(
aj

i

))
and p(yi); and p is the

probability distribution. Since p(yi) is the one-hot vector, H(p(yi)) = 0.
According to Equation (7), we can understand that the difference between the original

sample and the augmented sample is the largest when the relative entropy D(p(wTφ(aj
i)),

p(yi)) is maximized so that the diversity of the augmented data can be achieved. Therefore,
the diversity of the augmented samples is scored as

sij
1 = D

(
p
(

wTφ
(

aj
i

))
, p(yi)

)
. (8)

Secondly, in order to generate high-quality augmented data, the semantic deviation
of the augmented samples from the original samples is constrained by minimizing the
conditional entropy, and the objective function is

minLC

(
wφ
(

aj
i

))
= H

(
p
(

wTφ
(

aj
i

))∣∣∣p(wTφ
(

xl
i

)))
. (9)

Thus, the quality score of the augmented sample is

sij
2 = −H

(
p
(

wTφ
(

aj
i

))∣∣∣p(wTφ
(

xl
i

)))
. (10)

Finally, taking into account the diversity and quality of the augmented samples, the
final score is

sij
τ = sij

1 + sij
2 . (11)

The loss of the EPiDA data augmentation framework is

LE = LC + LR. (12)

Based on the final scores, the enhanced samples generated by back translation and
context augmented are evaluated, and a reasonably augmented sample Xa is selected and
merged with a small amount of unlabeled data Xl to realize the expansion of a small
amount of labeled data.

3.3. Total Loss

To enhance the classification capability of the model, the fine-tuning phase is divided
into two progressive parts. Firstly, the pseudo-labeled dataset Xp is passed into the classifi-
cation model for training, and the resulting cross-entropy of the classification labels and
pseudo-labels is used as a weakly-supervised cross-entropy loss, denoted as

Lp(θ1) = Ex,y∗∈Xp [− log pθ1(y
∗
∣∣∣x)]. (13)

The parameters are retained, and then the labeled datasets Xl and their data-augmented
sample datasets Xa are combined using to obtain XL = Xl ∪ Xa. XL is passed into the
classification model for training, and the resulting cross-entropy of the predicted labels and
the true labels is used as the supervised cross-entropy loss, denoted as

LL(θ2) = Ex,y∗∈XL [− log pθ2(y
∗∣∣x)]. (14)

The STCPC algorithm combines the loss LE of the EPiDA data augmentation frame-
work, the weakly-supervised cross-entropy loss Lp, the supervised cross-entropy loss LL,
and the pseudo-label consistency loss Lu to construct the total loss function Lτ :

Lτ = LE + Lp + Ll + λLu. (15)
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The STCPC algorithm not only effectively mines the information of unlabeled data
but also enriches a small amount of labeled data and strengthens the expressive power of
the model.

4. Experiment
4.1. Implementation Details

The hardware environment is i7-9700@3.00GHz CPU; the software environment is
Windows 10 system, Python 3.9.7, Tensorflow_gpu-2.5.0. The basic classification model is
selected as a case-insensitive BERT-based-uncased model trained by the general corpus only
as a pre-trained model for the experiments, and all the parts involving data augmentation
are selected back-translated by using Chinese as the intermediate language. The k-values
of clustering are automatically adjusted according to the dataset categories, and the rest of
the training parameters are shown in Table 1.

Table 1. Experiment settings.

Parameter Name Parameter Value

Cluster threshold 0.02
The maximum number of iterations of the cluster 200
Weight of consistency loss 1
Dropout random inactivation rate 0.1
Maximum sentence length 256
Number of model iterations 10
Learning rate 3 × 10−5

Random seed 0

We study the classification problem in the case of training data with small labeled
samples and focus on the accuracy of the classification results on the dataset, which is
calculated from the ratio of the total number of correctly labeled classifications TP to the
total number of classified samples N, expressed as shown in Equation (16). The performance
of the model is judged by Precision, Recall, and F1 values, as shown in Equations (17)–(19),
and the Confusion matrix of the classification results is shown in Table 2.

Acc =
TP + TN

TP + TN + FP + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 =
2TP

2TP + FP + FN
(19)

Table 2. Confusion matrix.

Real
Forecast

Positive Negative

Positive True positive (TP) False positive (FN)
Negative False positive (FP) True Negative (TN)
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4.2. Comparison with Other Methods
4.2.1. Baseline Models

To verify the effectiveness of the STCPC algorithm, experiments were conducted to
compare it with relevant mainstream text classification algorithms used for comparison,
which are:

(1) Mean Teacher [39]: a semi-supervised learning method based on deep neural networks
using a student model and an average teacher model trained on unlabeled data. It
was initially proposed for image analysis in small sample situations but has been
shown to work well for natural language processing as well.

(2) BERT: uses a pre-trained BERT-based-uncased model from Google.
(3) RoBERTa [40] is an improved version of the BERT-based model that achieves excel-

lence on several natural language processing tasks by optimizing the training data,
training objectives, and training process.

4.2.2. Datasets

The experiment selects four general text classification datasets for experiments, includ-
ing film review dataset IMDB, news domain dataset AG News, question answering corpus
dataset Yahoo! Answer, and structured content dataset Dbpedia based on Wikipedia, where
the test dataset is randomly selected from the original test dataset, and the unlabeled train-
ing dataset and labeled dataset are split and produced from the original training dataset.
To strengthen the limitation in the small sample set, we assume that the model cannot
utilize the development dataset to simulate a more barren number of tags. The dataset
information is shown in Table 3.

Table 3. Datasets.

Name Categories Train Test

IMDB 2 5000 5000
AG News 4 5000 5000

Yahoo! Answer 10 5000 5000
DBpedia 14 5000 5000

4.2.3. Performance

To ensure fair experimental comparison, the number of labeled data was assigned
by the number of categories, 50, 200, and 400, and the experimental results are shown in
Table 3.

As can be seen in Table 4, the STCPC algorithm is better than other text classification
algorithms in general in terms of accuracy on the four text classification datasets. For
example, in the IMDB dataset, classifying only 50 annotated data, STCPC has 9.4%, 5.2%,
and 2.4% improvement over BERT, Mean Teacher, and RoBERTa. The overall analysis of
the latter three datasets shows that such a boost performs better with a smaller number of
categories in the dataset, showing a better boost than other algorithms as the proportion of
labeled data decreases. Such results indicate that STCPC does have better improvement in
the case of small samples.
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Table 4. Comparison of the accuracy of each algorithm (%). Bold indicates that this data represents
the best performance in this comparison.

Name Model
Labels

50 200 400

IMDB

BERT 78.3 82.2 85.2
Mean Teacher 82.5 86.5 89.7

RoBERTa 85.3 87.2 90.4
Ours 87.7 89.5 91.9

AG News

BERT 81.6 85.3 88.0
Mean Teacher 83.0 87.1 89.3

RoBERTa 88.3 90.2 90.9
Ours 87.7 90.3 92.3

Yahoo! Answer

BERT 86.2 89.3 91.1
Mean Teacher 86.7 89.1 90.5

RoBERTa 87.0 89.6 91.4
Ours 87.3 89.6 91.7

DBpedia

BERT 88.7 90.2 92.1
Mean Teacher 88.0 89.4 90.2

RoBERTa 88.9 90.3 92.2
Ours 89.1 90.3 92.3

In order to better evaluate the STCPC algorithm, we introduced three metrics, Preci-
sion, Recall, and F1 score, and conducted experiments on the IMDB dataset. To make the
comparison of the data more intuitive, we presented it in the form of graphs, as shown in
Figures 4–6.
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From the comparison of the three plots in Figures 4–6, we can find that the STCPC
algorithm achieves good results for all three metrics, which indicates that the STCPC
algorithm model is better than the compared methods in terms of its ability to distinguish
negative samples, its ability to identify positive samples and its robustness. This shows that
STCPC has significant significance in improving the classification effect of the model, which
can effectively reduce overfitting and improve the classification performance of the model.

4.3. Ablation Experiment

To verify the effectiveness of each component of STCPC, we set up ablation experi-
ments with the removal of each component. The IMDB dataset is used as the experimental
object so that each category has labeled data of 50, and the comparison experiments of
removing the data augmentation module, removing the pseudo-labeling module, and the
original model are conducted. The experimental results are shown in Table 5.

Table 5. The comparison between our proposed method with or without pseudo-labeling and EPiDA
data augmentation (%).

Algorithm Accuracy

STCPC 87.7
- pseudo-labeling 80.3

- EPiDA data augmentation 82.4
- All 78.3

From Table 5, it can be seen that the accuracy of the trained components decreases
after different degrees of component removal, but overall they are all higher than the
original BERT model. Among them, the accuracy decreases the most by removing the
pseudo-label, which indicates that among all the components, the pseudo-label contributes
the most to the training, and the semantic features of a large amount of unlabeled data are
mined by clustering, which effectively improves the accuracy of the model. Moreover, the
same decrease in accuracy after excluding the EPiDA data augmentation shows that the
component also has the ability to improve the model effect, indicating the reasonableness
of the STCPC design.

4.4. Performance under Different Conditions

After verifying the validity of STCPC, in order to test the variation of STCPC perfor-
mance under different conditions, we choose to recreate the dataset for experimental testing.

4.4.1. Datasets

Four text classification datasets were selected for the experiment: the IMDB and
Amazon reviews datasets were kept with the same number of classifications for comparison,
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and the Sogou news and Yahoo! Answer datasets were kept with the same amount of
unlabeled data for comparison. The information on the datasets is shown in Table 6.

Table 6. Datasets.

Name Categories Train Test

IMDB 2 5000 5000
Amazon reviews 2 10,000 5000
Sogou news 4 15,000 5000
Yahoo! Answer 10 15,000 5000

4.4.2. Experiment Result

Figures 7 and 8 show the comparison of different numbers of unlabeled data for the
same number of classifications. It can be seen that the rising range of STCPC is significantly
higher than that of the BERT model when the number of unlabeled data is increased for the
same number of classifications. It shows that the unlabeled data can be better exploited
with the help of the STCPC algorithm.
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Figures 9 and 10 make a comparison of different numbers of classifications when the
amount of unlabeled data is the same. It can be seen that the rising range of STCPC is not
higher than that of the BERT model when the amount of unlabeled data is constant, and
the number of classifications increases. Considering that this is because the increase in the
number of classifications will increase the content of labeled data, whereas BERT, in this
case, has access to more labeled data for supervised learning and can perform adequate
learning. This shows that although STCPC can improve the classification ability of the
BERT model in the case of small samples, it is not enough in an environment where the
number of labeled samples is gradually increasing. This is where our algorithm needs to be
improved in the future.
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5. Conclusions

We propose a pseudo-label fusion clustering algorithm for text classification models by
combining the features of both the pseudo-labeling method and data augmentation to ad-
dress the problem that pre-trained models do not give accurate results for text classification
tasks when there is a small amount of labeled data. STCPC makes full use of labeled data
and non-labeled data to effectively avoid weak prediction ability in the training process
due to the small amount of labeling in the training set and the limited learning ability of
the pre-trained model. The comparative experimental results show that the accuracy of
STCPC is higher than that of the existing model in the case of small labeled samples, and
the lower the labeling ratio, or, the more classes labeled, the better the effect of the STCPC
model. However, while we demonstrate that STCPC can significantly improve the training
model in the case of small samples, the TF-IDF algorithm used in the pre-processing of the
pseudo-tags is unable to identify synonyms and polysemous words, and the improvement
does not reach the desired goal in scenarios where there is a gradual increase in labeled
data. In future work, we will improve the TF-IDF algorithm and focus more on informa-
tion mining of labeled data, starting from the improvement on the data itself and on the
training model, and expect to enhance the overall improvement of STCPC by some more
effective means.
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