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Abstract: Kubernetes is an orchestration tool that runs and manages container-based workloads. It
works as a collection of different virtual or physical servers that support multiple storage capacities,
provide network functionalities, and keep all containerized applications active in a desired state. It
also provides an increasing fleet of different facilities, known as microservices. However, Kubernetes’
scalability has led to a complex network structure with an increased attack vector. Attackers can
launch a Denial of service (DoS) attack against servers/machines in Kubernetes by producing fake
traffic load, for instance. DoS or Distributed Denial of service (DDoS) attacks are malicious attempts to
disrupt a targeted service by flooding the target’s service with network packets. Constant observation
of the network traffic is extremely important for the early detection of such attacks. Extended Berkeley
Packet Filter (eBPF) and eXpress Datapath (XDP) are advanced technologies in the Linux kernel that
perform high-speed packet processing. In the case of Kubernetes, eBPF and XDP can be used to
protect against DDoS attacks by enabling fast and efficient network security policies. For example,
XDP can be used to filter out traffic that is not authorized to access the Kubernetes cluster, while eBPF
can be used to monitor network traffic for signs of DDoS attacks, such as excessive traffic from a single
source. In this research, we utilize eBPF and XDP to build a detection and observation mechanism to
filter out malicious content and mitigate a Denial of Service attack on Kubernetes.

Keywords: Denial of service (DoS); Distributed Denial of service (DDoS); attack; kubernetes;
Extended Berkeley Packet Filter (eBPF); eXpress Datapath (XDP)

1. Introduction

Before the 1990s, the monitoring and analysis of the packets used to be performed
using the classic packet filtering mechanism in which all the packets were copied from
the kernel space to the userspace, leading to an increased packet processing latency. In
1992–1993, Steven McCanne and Van Jacobson introduced a mechanism named Berkeley
Packet Filter (BPF), in which not all the packets are copied from the kernel space to the
userspace [1]. The architecture of the BPF virtual machine is designed for a 32 bits machine
with a fixed-length instruction set. BPF was first introduced with the Unix operating system.
Then, this filtering mechanism was improved to the Extended Berkeley Packet Filter (eBPF),
which was adopted by Linux and Windows [2]. eBPF is a Linux technology that allows for
the safe and efficient execution of code within the Linux kernel. It provides a powerful
mechanism for implementing complex network functions, such as firewalls, load balancers,
and network monitoring, without the need for custom kernel modules. eBPF is a program
executed on the Linux kernel when some event is triggered. eBPF provides a wide range of
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functionalities such as packet monitoring, tracing new processes, and the detection of any
event generated by the computer, etc. eBPF has an improved instruction set architecture
(ISA) architecture with more registers. Unlike BPF, eBPF filters all the packets at the kernel
space to better decrease the latency. Moreover, the high-speed processing power of eBPF
facilitates the analysis of every packet in the network. XDP is a networking technology
that provides a fast and efficient way to process network packets at the kernel level. It
allows for the processing of packets before they reach the higher-level networking stack,
enabling faster and more efficient handling of network traffic. XDP is well-suited for use
in applications that require high-speed packet processing, such as network security, load
balancing, and network monitoring.

BPF Programs are written in restricted C programming language due to the Linux
kernel. However, a tool named BPF Compiler Collection, i.e., BCC [3], makes the BPF
program much easier to write using Python and some restricted C languages. This BPF
code is first compiled into BPF bytecode in userspace using a low-level virtual machine
(LLVM) or Clang. After passing through a verifier (for authentication and verification), a
just-in-time compiler helps to convert this code into a native machine code and execute
the program using a separate virtual machine on Linux Kernel [4]. Infinite loops, global
variables, etc., are not supported, so we must consider this limitation while implementing
the programs.

Today, Kubernetes has become a leading open-source orchestration tool that provides
dynamic scalability, manages different resources needed by the physical or virtual servers,
and fulfills the different adaptations and dependencies of the applications. Kubernetes
communicates between the different collections of containers on which different applica-
tions are running. It is a complex system that allows communication between different
components within a cluster and between pods. The structure of a Kubernetes cluster
network can be broken down into several key components: cluster network, pods network,
etc. Like any complex software system, Kubernetes might have security flaws that attackers
could use against users if it is not secured properly. If the cluster network is not properly
secured, an attacker could potentially intercept sensitive data or inject malicious traffic into
the network. Kubernetes uses containers to deploy applications, and these containers are
built from images. If an attacker can inject malicious code into a container image, they could
potentially compromise the application running in that container, Kubelet, which facilitates
communication between various nodes, and containers that are executing on the nodes
can all be big contributors to making the cluster vulnerable to attack while considering
the cluster network. In addition, it provides the interface platform for the application that
needs to provide high availability and scalability through its microservices [5]. Users of
Kubernetes test the deployment features of an application by diverting traffic between
different containers. On the other hand, malicious users may compromise Kubernetes
clusters to control other users’ containers. Over the past years, methods and gadgets for
launching an attack have drastically improved. DoS (Denial of Service) or DDoS (Dis-
tributed Denial of Service) are potentially the most renowned attacks. The goal behind DoS
or DDoS attacks is to bring the server out of reach for others and it will create a potential
gap in the performance overhead of the system. eBPF is a revolutionary technology in a
Linux kernel that handles everyday tasks and affects the processes running on the server.
eBPF has a significant impact on system performance because of different complexities and
the frequency of the events. It can be used to perform various tasks ranging from package
isolation to opening a particular document in the file system. Unlike other ways to change
the behavior of a part, eBPF does not require part recompilation or part module assembly
and is protected from execution by security checks by stacking code verifiers. Each second
is important in detecting malicious packets so that particular prevention methods can be
applied. Express Data Path (XDP) [6] gives the quick execution of group dealing with
and programmable association way in the cycle of Linux. XDP generally processes the
packages’ level of the stack, which prompts the quick presentation without compromising
the programmability.
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In the past few years, detection and prevention approaches have been topics of interest
in the fields of networks and cybersecurity. One of the major security risks to many
networks in the last ten years is a DDoS attack. It can not only stop authorized users from
using and accessing network resources, but it can also destroy the network [7]. Cloud
services and microservices are at high risk of DDOS attacks [8]. In 2019, it is reported that a
Kubernetes cluster that was being utilized to host a cryptocurrency mining operation came
under attack from a distributed denial-of-service (DDoS) attack. The attack, which wrecked
the Kubernetes cluster and halted the mining process, was launched by the attackers using
a huge number of compromised machines. A DdoS attack against a Kubernetes cluster
hosting a machine learning platform was reported by researchers in 2020. The attack was
carried out by the attackers using a large number of compromised devices, which led to
the collapse of the Kubernetes cluster. In [9,10], it was highlighted that these types of cyber
attacks are not only limited to a specific area but operate in a different area as well, which
helps the potential attackers use the open and less privileged loophole and then make the
entire system compromised.

We have analyzed the detailed review of the existing cloud solutions to review the
loopholes in the cloud application and also investigate the overhead in the cloud solu-
tions related to the attacks. The literature on these existing solutions is comprehensively
reviewed from well-known conferences and journals. The review of the papers mostly
contains the major aspects of observability, detection, mitigation, overheads of cloud com-
puting, architecture, cloud types, etc. In addition, we investigated and analyzed the issues
related to the performance of the existing solutions. We have investigated the identified
research problem by analyzing current experiments on cloud orchestration tools like Kuber-
netes. Existing cloud solutions are implemented using Kafka, etc. These existing solutions
contain many overheads, latency issues, accuracy, etc. However, detecting DDoS attacks
in the Kubernetes network remains a challenging problem. High-load traffic attacks are
the primary type of DDoS attack through which different network machines produce
unnecessary load toward the server. In Kubernetes, such attacks pose a major concern
given that it usually contains multiple container applications running on [11]. Traditional
DDoS countermeasures cause significant overhead on the Kubernetes cluster. Therefore, it
is necessary to devise a solution to observe and detect the traffic of DDoS attacks efficiently.
We have proposed an eBPF solution for the observation and detection of DDoS to address
the problems identified in the current cloud orchestration tool like Kubernetes. The pro-
posed solution is very lightweight and scalable on multiple clusters, and one of the most
important features is that it is very fast so that we can monitor every aspect of the incoming
packets. In this research, the proposed DDoS solution using eBPF resulted in a negligible
overhead for the virtual machines (VMs) installed on the various Kubernetes Cluster nodes.
We summarize the contribution of this study as follows:

- To analyze the state-of-the-art cloud solutions and identify the most relevant problem
in the current cloud Kubernetes solutions.

- To propose and implement an effective solution by which we can detect and observe
the Distributed Denial of Service attack in the Kubernetes cluster using eBPF.

- To validate and measure the evaluation metric based on overhead while detecting and
observing the DDOS attack using eBPF and without it.

The rest of the article is structured as follows. Section 2 reviews the related works. The
architecture of the proposed solution is presented in Section 3. The suggested architecture’s
implementation phases are elaborated on in Section 4. Section 5 provides a discussion of
the results. Finally, we conclude the study in Section 6.

2. Related Work

In this section, we discuss recent studies on the eBPF, microservices, DDOS, and
the application of the eBPF to various containerized services on Kubernetes. Several
researchers [12–14], and [15–17] have proposed different strategies and solutions for the
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use of eBPF on different aspects of emerging technologies. We provided a brief description
of the related studies in Table 1.

Table 1. Summary of related studies.

S.No. Existing Work Summary Limitations

1 [13]

For the first time, eBPF was used for the detection tasks of the
kernel like observing the page faults, over-viewing the memory
distribution, etc. The author(s) has encountered the advantage
and success factor of eBPF when developing complex networks.

While focusing on the numerous
complicated services, the proposed

design should also assess the
system overhead.

2 [12]

The author(s) have proposed a solution for the Intrusion
detection of the system by using eBPF at the kernel which

filtered the huge amount of network packets using the
matching rule set of the snorting method.

It seems that there should be
state-of-the-art comparison with

other features to evaluate the
performance of the system

3 [16]

The aim is to implement an efficient and effective processing
pipeline that will help to prevent Distributed Denial of Service

(DDoS) attacks. The authors have increased the mitigation
power at the server end which will drop the DDoS by using the
specific ruleset. eBPF is a flexible tool that will help to sample

the network traffic of the operating system using
hardware-based filtering.

When the server has a lot of resources
preserved on it, the performance of

the work will be reduced by the
suggested approach.

4 [17]

The author has proposed a solution based on eBPF which
bypasses the kernel and filters all the network packets at the

userspace which usually skips the overhead of the Linux
network stack. The proposed solution has overcome the

performance issue that arises when packets are filtered and
analyzed at kernel space.

The recommended architectural
designs perform with a small number
of alterations. The lack of drivers and

other resources will require
significant adjustments to

the solution.

5 [15]

The author(s) proposed a non-intrusive protocol-independent
intelligent analytics system, more efficient and accurate and
also provides the point-to-point observability solution with

works on eBPF. It also enables the transparency of the packets
for an application like Kubernetes in which we have nodes,

clusters, pods, containers, etc.

The proposed machine
learning-based observability
approach will become more

complicated as the number of nodes
and pods rises.

6 [18]

A framework was introduced by the author on Network
Functions Virtualization to enhance its capability for in-kernel

packet processing applications which provides flexibility
dynamically in the run-time environment. The framework used

for the development of the complex networks provides
efficiency in the kernel data plane and flexible user-space

control plane for the persistence environment.

There is a potential bottleneck
mechanism that could cause a delay
in the mechanism’s latency when a

large number of packets are
transferred from kernel space

to userspace.

7 [14]

The author(s) have highlighted the benefits of XDP and eBPF
using the offloading mechanism based on eBPF to the kernel

space from the userspace. The offloading-based mechanism is
an optimized solution for the packet processing.

When a significant number of packets
arrive at the same time, the proposed
solution will begin to slow down and

SmartNIC will become stuck.

The above-mentioned studies can be classified into two categories: (1) studies that
focused on the use of eBPF in the complex network structure and also the filtering of the
kernel packets at the userspace, which will further help to formulate different intrusion
patterns [12,13,19]; (2) studies that discussed the mitigation of the DDoS attack on the server
side and also bypassing the kernel and filtering out all the detailed information on the user
side, which will overcome the overhead on the Linux network stack [16,17]. In [15,18], the
accuracy and efficiency of the observability and monitoring based on the microservices
were discussed, along with using a framework for Network Function Virtualization to
achieve flexibility. In [14], the authors have discussed the offloading mechanism of the
packet using eBPF.

In [12,13], the kernel used eBPF for detection duties like looking for page faults and
monitoring the distribution of memory, among other things. The benefit and success
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element of eBPF was experienced while creating complex networks. Use of eBPF at the
kernel, which filtered a sizable number of network packets using a matching rule set of the
Snort approach, as the solution for the system’s intrusion detection.

In [16,17], the objective is to develop a processing pipeline that is effective and efficient,
which will aid in preventing DDoS attacks. By employing a specific ruleset, the authors have
boosted the server-end mitigation strength, decreasing the DDoS. eBPF-based solutions
essentially bypass the kernel and filter all network packets in userspace, avoiding the
Linux network stack’s overhead in the process. The performance problem that occurs
when packets are filtered and examined in the kernel space has been resolved by the
suggested fix.

In [15,18], a non-intrusive, protocol-independent intelligent analytics system that
operates on eBPF is more effective, accurate, and offers a point-to-point observability
solution. Additionally, it makes the packet transparency for the microservices possible.
In addition, it enhances its capability for in-kernel packet processing applications, which
provides flexibility dynamically in the run-time environment.

In [14], the advantages of XDP and eBPF utilizing the eBPF-based offloading method
from the userspace to the kernel space have been noted. It is ideal to use the offloading-
based approach for packet processing. Unlike earlier studies, our proposed solution stands
out for its lightweight monitoring and its scalability.

Unlike the previous studies, this work applied eBPF and XDP which can significantly
contribute to the safety and stability of Kubernetes clusters, to detect and observe the
attacks on the server, and therefore determine and prevent disruption or flooding of the
target’s service with network packets. Therefore, utilizing a Denial-of-Service attack against
Kubernetes using eBPF and XDP, we suggested a detection and observation mechanism
in this study to filter out the harmful information. By using the eBPF and XDP programs,
malicious packets can be rejected based on the eBPF program’s defined routines. To the
best of our knowledge, no existing work has been done on the detection and observation of
DDOS. The technique that is used for the cluster’s nodes is very effective and the script
does not overburden the nodes working on different VMs. Our proposed solution is a
lightweight, efficient, and scalable solution.

3. Architecture of the Proposed Solution

In this section, we discuss the architecture of the proposed solution for detecting and
observing the DDoS attack in different Kubernetes nodes. Furthermore, we show how the
proposed system can scale horizontally and vertically and be dynamic. Vertically scalable
nodes can manage numerous resources simultaneously, whereas horizontally scalable
nodes will continue to function as the number of nodes in the network grows. Scaling the
nodes horizontally or vertically needs to be done on the cluster of the Kubernetes on which
we are operating the proposed solution. We note that the suggested solution detects and
observes DDoS attacks either with the help of the eBPF software or without it. Figure 1
illustrates the schematic block diagram of the Proposed Solution. In both cases, minimal
human engagement is necessary.

3.1. Generalized Overview of the Proposed Solution

An eBPF is a robust tool for examining and modifying the Linux kernel in real time.
Small, in-kernel programs known as “eBPF programs” can be attached to a variety of
locations along the kernel’s execution path, including system calls, kprobes (dynamic
function probes), and tracepoints (static function probes). These applications can be used to
gather information, filter events, and even change how the kernel behaves. In the context
of detecting a DDoS attack in Kubernetes, eBPF can be used to attach a program to a
network interface to monitor incoming traffic and identify patterns that may indicate a
DDoS attack. The proposed solution contains the information from all the VMs working on
the cloud, i.e., the cloud contains different nodes, which form the cluster of Kubernetes. In
our experiment, we have one master node and multiple workers or child nodes working
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on different networking IP addresses. We have launched separate VMs on each node with
different OS interfaces. The effectiveness and low overhead of eBPF for DDoS detection
in Kubernetes are two of its main advantages. eBPF programs can process data quickly
without affecting system performance because they run directly in the kernel. This is crucial
when using Kubernetes since the enormous number of containers and microservices it
supports might produce high network traffic. Overall, using eBPF for DDoS detection
in Kubernetes can offer a quick and effective solution to watch incoming traffic and spot
potential attacks, assisting in the defense of the cluster and preserving service availability.
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3.2. Algorithm(s) Used for the Proposed Solution

In this subsection, we discuss our proposed algorithms for the observation and detec-
tion of DDoS attacks in Kubernetes using eBPF. Our proposed algorithm, which is presented
as a pseudocode, addresses the issues of the detection and observation of DDoS attacks.
Our suggested method uses the given approach to gather data. The following are the main
problems that we suggested the approach attempts to solve:

• To detect the IP address used for the attack.
• To observe or monitor the running processes.
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The algorithms that were utilized to gather the information for these measures are
listed below:

• Algorithm 1: To detect the IP Address with the help of payload.
• Algorithm 2: To observe the running processes with respect to process ID (PID).

Algorithm 1 specifies how the IP address of the attack is determined on the targeted
node and is used to detect DDoS attacks.

Algorithm 1: Detection of the attack Pseudocode

Require: Define a variable to hold the number of connections from each IP address
Initialization of the System

1 Read the values
2 Ensure: kprobe_tcp_v4_connect, tcp_probe->ipv4.connect
3 IP_address← Set_IP _of _the_connection
4 Count_Array← Increment_count_f or_IP _address_in_connection
5 Ensure: tracepoint_raw_syscalls_sys_enter_connect
6 Show the number of connections from each IP address
7 if (Count_Array ≥ 10) then
8 src,dst← tcp_probe.ip4.saddr, tcp_probe.ip4.daddr
9 get_load← tcp_probe.ip4.payload
10 c_payload← bpf_skb_load_bytes(get_load, BPF_CURENT_CPU)
11 if (c_payload is malicious) then
12 Possible DDOS attack from the IP address
13 end
14 end

In Algorithm 1, we have presented the detection of the DDOS attack on the Kubernetes
cluster in the form of the pseudocode. In this algorithm, firstly, we have declared all the
variables like IP_address and Count_Array for holding the numbers of the nodes’ IP along
with their connection. In line 1, the system will start reading the values. In Line 2, we have
defined BPF hooks which will be triggered when a TCP connection is established. In line 3,
with the help of the BPF hook, we can have the different IPs that are connected. In Line 4,
the count_array will increment the counter of the DDOS attack against each IP. Lines 5 and
6 provide information to the user about the connection on the targeted node. In Line 7, we
have checked the threshold value of each connection request. In Lines 8 and 9, we have to
get the source and destination IP address which helps to get the source attack IP. In line
10, we have gathered the payload which is sent from the attacking node. In line 11, we
analyzed the payload using the BPF hook to check the malicious content. In the last line, it
will show the potential attack from the IP address. Algorithm 1 is used to detect the attack,
which is coming from multiple nodes, i.e., different IPs with the same type of request and
payload. The connections are built on the extrapolated scale, so its DDOS can be shown
in Figure 2 that the detection is from different nodes. In addition, the payload helps to
detect multiple requests, i.e., DDOS requests or the genuine request of GET or POST that
are generated from different IPs. The script works by monitoring network traffic in real
time and tracking the number of connections from each IP address. The threshold of ten
connections is arbitrary and can be adjusted to suit the specific needs of the network being
monitored. A higher threshold may be more appropriate for networks that experience high
volumes of legitimate traffic, while a lower threshold may be more effective for networks
that are more susceptible to DDOS attacks. In general, setting a threshold for the number
of connections from a single IP address can help to identify potential DDOS attacks by
detecting patterns of traffic that are inconsistent with normal network behavior.
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The observation of the processes that pass through eBPF is presented in the form of
pseudo-code, shown below in Algorithm 2. Through this eBPF software, the processes’
observation is kept under surveillance. The monitoring of the process includes all pertinent
information about the process, including its status, remote and local IP addresses, port
number, acknowledgement status, and Process ID, which is one of the most crucial elements.
In Algorithm 2, we have used a dictionary for each IP that will get connected. In Line 1, we
simply read all the values from the system. In Line 2, we have gotten all the possible TCP
connections. In lines 4–7, we get the local and remote address, the status of the connection,
and most importantly, the PID of each process.

Algorithm 2: Observation of the Processes Pseudocode

Require: Define a dictionary to map TCP states to their human-readable names
Initialization of the System

1 Read the values
2 tcp_connections← Get_list_of _all_TCP _connections
3 while (tcp_connections ! = 0) do
4 Local_Address_Port← Get_Local_Address_Port
5 Remote_Address_Port← Get_Remote_Address_Port
6 Status← Get_Status_Name
7 Process_ID← Get_PID
8 end

4. Implementations

In this section, we discuss and provide the process we used to implement the suggested
solution. This section’s primary goal/motivation is to provide a detailed description of
the experimental setup and implementation of the suggested solution, along with the
necessary data collection methods and the parameters used to analyze the performance
of our suggested algorithm. The section begins with evaluating the results for real and
simulation environments. Then, the request and the response of the Kubernetes nodes
created using the simulation environments are analyzed. We build a test bed for the
detection and observation of our suggested prevention mechanism in the set of trials using
an improved Berkeley packet filter to characterize the lightweight elements of our method.
Additionally, a summary of the evaluation metric used is provided in the section.

The proposed solution is implemented on the cloud with the help of the Kubernetes
cluster mechanism. The implementation is very straightforward. It can be easily understood
by looking at the detailed implementation of the virtual machine, i.e., VMs running different
operating systems and Kubernetes processes. Each process has a unique process ID (PID)
on the process running on it. The processes not only belong to the OS but are also related
to the Kubernetes processes, like how many nodes are connected with the master node and
the status of the nodes running on different VMs. The PID number can easily identify all
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the relevant information on the VM operating system. Below is the observation working of
the DDOS, as shown in Figure 3.
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Detecting the DDoS attack on the target machine is also very important. We imple-
mented the detection of the DDoS attack on the containerized-based application, i.e., a web
application working along with an Apache server. After the attack is initiated, it is detected
by the eBPF program based on a specific threshold and considered as a possible IP source
of the attack. Figure 2 shows an example of the detection of the attack on the target node.

Based on the preliminary data acquired, we assessed the monitoring capabilities of the
suggested solution and highlighted its advantages. The following qualities are addressed
to validate it:

• Overhead

To measure the monitoring overhead of the Kubernetes that was created using the
Vagrant Cloud. The following is the overhead that is analyzed.

4.1. CPU Overhead

To validate the overhead of the VM deployed on the node of the cluster, we utilize the
top command. The Linux top program collects all the metrics of the VMs which are running
on the cloud that was created using a grant. We have executed the eBPF program script
for the detection of the DDOS attack on the nodes of the cluster so we can find the CPU
usage with and without the eBPF program. The script was running continuously so that
the observation of the pattern of the DDOS attack on the targeted node can be visualized.
The eBPF application is used to observe CPU utilization, and it was also done without its
assistance. An average CPU usage score of 10 is obtained.

4.2. Memory Overhead

A cloud microservices system may be severely impacted by memory overhead. The
SAR tool was used to acquire and collect memory statistics to calculate the memory over-
head. Almost 10 s on average was recorded. The memory overhead was measured on
the master and worker nodes of the Kubernetes cluster to demonstrate that our proposed
method does not produce any memory usage. The proposed solution is implemented on
the Kubernetes cluster node that contains the master and worker nodes. Both the nodes of
the cluster, i.e., master and worker, are used to collect the important data through which
memory usage and its utilization are observed. Memory usage for the overhead is the first
measure on the master node. The master node has a VM deployed on it and a containerized
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service for the website that is working on it. The observation for memory usage is done
with the help of the eBPF program on which an average of 10 is measured and it was also
done without the help of the eBPF program.

5. Results and Discussion

The evaluations we conducted in the previous section are all discussed in this section,
along with an empirical analysis of the suggested solution. We have carried out several
experiments to achieve the desired outcomes for detecting and observing. To evaluate the
evaluation metric based on the elements described in the previous section, we primarily
aim to observe and detect the DDoS attack on the Kubernetes cluster using eBPF. The eval-
uation findings of the performance of VM with various Kubernetes nodes are also covered.
The proposed solution provides the features of observing and detecting DDoS attacks in
Kubernetes using eBPF. Our proposed solution is efficient, accurate, and lightweight due
to its working on user mode and low overhead producing mechanism. The evaluation
process for observation and detection capabilities is presented in this section. The graphical
information is displayed to assess the performance. To verify the effectiveness of our
suggested solution, the following feature is measured, i.e., overhead.

If the microservice, in collaboration with the eBPF solution, creates a reasonable
performance overhead on the system, it is not a good solution, even if the other features
of that solution are fine; however, creating a fair overhead renders it unacceptable. In this
part, we evaluate the overhead of our suggested solution and demonstrate that it has no
noticeable impact on either the master node or the worker nodes of the Kubernetes cluster.
To evaluate the overhead on the overall cloud system, we measure the following attributes
on the node of the Kubernetes cluster, i.e., master node or worker nodes. To measure the
overhead of our proposed solution, we have executed the nodes on which the VMs are
deployed and launched using different operating system images.

Table 2 demonstrates the high efficiency of our proposed solution, which is attributed
to the effective utilization of BPF hooks for detecting and monitoring DDOS attacks. The
proposed solution effectively captures the traffic load of requests by utilizing BPF hooks
and probes. The payload detection BPF hook is highly effective at handling the load
of incoming requests, ensuring that all requests sent from various nodes are thoroughly
checked. Our Kubernetes cluster network is distributed, and all nodes share the same
kernel from the host machine. This allows the eBPF to work on the host server and
enables all nodes to detect attacks, regardless of the number of containerized applications
deployed on the cluster. Each node in the cluster has established a varying number of
connections, which our algorithm evaluates by analyzing the number of requests that
exceed a predetermined threshold value. The payload allows for the identification of
DDOS attacks versus genuine requests. As a result, our eBPF-based solution has proven
to be highly efficient and effective. In [20,21], various network policies, pod policies, and
generic policies were implemented to secure the Kubernetes cluster from unwanted traffic
and external unauthorized users. In addition, these measures help to prevent unexpected
attacks on the Kubernetes cluster network.

5.1. CPU Overhead

In our proposed solution, we have measured the CPU utilization using eBPF programs
and without them. To determine the CPU overhead, we measured it by running it on the
master node and the worker nodes.
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Table 2. Experimental Results.

eBPF Hooks
No. of

Connec-
tions

Arbitrary
Threshold

Value (≥10)

Action
DDOS

Request for
Total No. of

Connections %

Efficiency of
Solution

with Respect
to eBPF (%)

kprobe_tcp_v4_
connect,

tcp_probe>
ipv4.connect

bpf_skb_load_
bytes (Load,
BPF_ CUR-
ENT_ CPU)

tcpstates-
bpfcc

DDOS
Attack

Genuine
Request

10.0.0.11 50 Yes 40 10 80% 100%

10.0.0.12 30 Yes 25 5 84% 100%

10.0.0.13 9 No N/A N/A N/A N/A

10.0.0.14 40 Yes 20 20 50% 100%

10.0.0.15 6 No N/A N/A N/A N/A

10.0.0.16 15 Yes 13 2 87% 100%

i. CPU overhead on the Master Node

To determine the overhead of CPU utilization, we have used the Linux tool for the
recording of the CPU utilization statistics, i.e., system activity report (SAR). In an average of
every 10 s, the record was examined. When stats are gathered, either the eBPF application
is used or not, as illustrated in Figure 4, to record the information. When using the eBPF
programs versus not using them, there is rarely any change in CPU usage. Thus, it was
established that the master node’s CPU overhead is not present.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15 
 

and external unauthorized users. In addition, these measures help to prevent unexpected 
attacks on the Kubernetes cluster network. 

Table 2. Experimental Results. 

eBPF Hooks 

No. of Connec-
tions 

Arbitrary 
Threshold 
Value (≥10) 

Action 
DDOS Request 
for Total No. of 
Connections % 

Efficiency of  
Solution with 

Respect to eBPF 
(%) 

kprobe_tcp_v4_con-
nect, 

tcp_probe>ipv4.con-
nect 

bpf_skb_load_bytes 
(Load, 

BPF_CURENT_CPU) 

tcpstates-
bpfcc 

DDOS At-
tack 

Genuine 
Request 

10.0.0.11 50 Yes 40 10 80% 100% 
10.0.0.12 30 Yes 25 5 84% 100% 
10.0.0.13 9 No N/A N/A N/A N/A 
10.0.0.14 40 Yes 20 20 50% 100% 
10.0.0.15 6 No N/A N/A N/A N/A 
10.0.0.16 15 Yes 13 2 87% 100% 

5.1. CPU Overhead 
In our proposed solution, we have measured the CPU utilization using eBPF pro-

grams and without them. To determine the CPU overhead, we measured it by running it 
on the master node and the worker nodes. 
i. CPU overhead on the Master Node 

To determine the overhead of CPU utilization, we have used the Linux tool for the 
recording of the CPU utilization statistics, i.e., system activity report (SAR). In an average 
of every 10 s, the record was examined. When stats are gathered, either the eBPF applica-
tion is used or not, as illustrated in Figure 4, to record the information. When using the 
eBPF programs versus not using them, there is rarely any change in CPU usage. Thus, it 
was established that the master node’s CPU overhead is not present. 

 
Figure 4. Master Node CPU Overhead Analysis. 

ii. CPU overhead on the Worker Node 
The worker node of the Kubernetes cluster also has a VM launched on it. Our pro-

posed solution also recorded the statistics of the CPU utilization of the usage with the help 
of the SAR tool on an average of every 10 s. Although we have done the same experiment 
on the worker node as on the master node, we have recorded the stats as shown in Figure 
5, which is with and without eBPF. Similarly, it is revealed that there is no such overhead 
on the utilization of the CPU. 

Figure 4. Master Node CPU Overhead Analysis.

ii. CPU overhead on the Worker Node

The worker node of the Kubernetes cluster also has a VM launched on it. Our proposed
solution also recorded the statistics of the CPU utilization of the usage with the help of the
SAR tool on an average of every 10 s. Although we have done the same experiment on
the worker node as on the master node, we have recorded the stats as shown in Figure 5,
which is with and without eBPF. Similarly, it is revealed that there is no such overhead on
the utilization of the CPU.
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5.2. Memory Overhead

Memory also plays an important role in the use of microservices and has several
impacts on it. To determine the memory utilization on the nodes of the Kubernetes cluster,
i.e., the master node and the worker node, we have used the SAR tool to record the average
10-second stats. To demonstrate that the proposed solution does not create any type of
overhead, we have measured it on the master node and the worker node.

i. Memory overhead on the Master Node

We have executed our proposed solution on the master node of the Kubernetes cluster
and it shows in Figure 6 that our solution does not create any type of overhead on the
memory of the master node. The difference between the recorded values of the programs
running with the eBPF or without it is between 0.1–0.8. This difference shows that there is
no such overhead imposed on the master node.
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ii. Memory overhead on the Worker Node

Our proposed solution gathered all the recorded information using the eBPF program
and without it. In Figure 7, it is shown that, in the initial stage, there is a huge difference
in the execution of the memory with the use of eBPF because of the full utilization of the
memory. However, we have also observed that, after a while, the difference between the
eBPF program and without it became very small. Therefore, it can be easily concluded that
after some time the difference will become near 1–2 and, in some cases, less than 1, so on
the worker node we also have a negligible overhead of memory.
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6. Conclusions

In conclusion, detecting and observing DDoS attacks in Kubernetes using eBPF is a
highly effective way to improve the security of containerized applications. With the in-
creasing popularity of Kubernetes for deploying and managing containerized applications,
the risk of DDoS attacks is also increasing. eBPF provides a powerful way to monitor
and analyze network traffic at the kernel level, allowing for highly granular and real-time
visibility into the behaviour of the system. By using eBPF, we can detect and observe DDoS
attacks in real time, identifying attacks by detecting and observing them before they cause
significant damage to the system. This not only improves the security of the system but also
helps maintain the high availability and uptime of the applications running in Kubernetes.
The use of eBPF can also significantly reduce the workload of security teams, automating
the process of detecting and mitigating attacks and enabling faster incident response times.
Compared to conventional methods, using eBPF for DDoS detection in Kubernetes has
many advantages. The effective execution of programs on live network packets is made
possible by the high-performance technology known as eBPF, which is crucial for real-time
DDoS detection.

Additionally, eBPF has a low overhead, allowing it to be used in production settings
without degrading the cluster’s performance, which we also observe in our results and
discussion sections. Kubernetes’ eBPF for DDoS detection can boost the cluster’s security
and dependability. DDoS attacks can be prevented using eBPF’s real-time detection and
mitigation, which guarantees that users can continue to access services while the cluster is
protected. In this approach, eBPF can significantly contribute to the safety and stability of
Kubernetes clusters.

We have presented the detection and observation of the DDOS attack in Kubernetes
using eBPF, which is based on the cloud. To perform the detection and observation, we have
implemented the BPF script on each node of the Kubernetes cluster, which is running on
different VMs. Afterwards, we evaluated the detection and observation of the DDoS attack
which the help of the implemented scripts. The detection will be done on the incoming
packets on their extrapolated full load toward the targeted victim node. On the behalf of
the results, we have evaluated the evaluation metrics which are based on the overhead of
CPU utilization and memory usage. It is also observed from the evaluation metrics that
using eBPF generates low overhead on CPU and memory and it is more effective while
using detecting and observing DDOS attacks. The proposed solution is quite an effective
technique for microservices like Kubernetes. To the best of our knowledge, no one has
detected and observed DDoS in the research. The technique that is used for the cluster’s
nodes is very effective, and the script does not overburden the nodes working on different
VMs. Our proposed solution is lightweight, efficient, and scalable.
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The proposed solution for the observation and detection of the DDOS attack has some
limitations. While using eBPF to detect and observe DDoS attacks in a Kubernetes cluster
has its benefits, it also has some limitations and areas for future work. Some of these include
the adoption of this technology by organizations may be difficult due to the complexity of
eBPF programs and the lack of standards in the eBPF ecosystem. As Kubernetes clusters
continue to scale, it will be important to ensure that eBPF programs can scale with them.
eBPF can be integrated with other Kubernetes technologies to provide a more complete
picture of network traffic and security and it will help to create easiness to adopt and use.

Overall, the use of eBPF for detecting and observing DDoS attacks in Kubernetes is
a highly effective and scalable solution that can significantly improve the security and
reliability of containerized applications. As containerization continues to gain momentum,
the importance of robust security measures will only increase, and eBPF offers a powerful
tool in the fight against cyber threats.

Author Contributions: Conceptualization, A.S. and H.J.S.; methodology, A.S. and H.J.S.; validation,
A.S., H.J.S. and A.A.A.; investigation, A.O.I., M.A. and M.E.; resources, A.O.I., M.A. and M.E.; data
curation, A.O.I., M.A. and M.E.; writing—original draft preparation, A.S.; writing—review and
editing, A.S., H.J.S. and A.A.A.; visualization, A.O.I., M.A. and M.E.; supervision, H.J.S.; project
administration, A.O.I., M.A. and M.E.; funding acquisition, M.A. and M.E. All authors have read and
agreed to the published version of the manuscript.

Funding: This project is funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R383), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Acknowledgments: This work was supported through Princess Nourah bint Abdulrahman Univer-
sity Researchers Supporting Project number (PNURSP2023R383), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. McCanne, S.; Jacobson, V. The BSD Packet Filter: A New Architecture for User-Level Packet Capture. In Proceedings of the

USENIX Winter, San Diego, CA, USA, 25–29 January 1993; Volume 46.
2. Vieira, M.A.; Castanho, M.S.; Pacífico, R.D.; Santos, E.R.; Júnior, E.P.C.; Vieira, L.F. Fast packet processing with eBPF and XDP:

Concepts, code, challenges, and applications. ACM Comput. Surv. CSUR 2020, 53, 1–36. [CrossRef]
3. Scholz, D.; Raumer, D.; Emmerich, P.; Kurtz, A.; Lesiak, K.; Carle, G. Performance implications of packet filtering with Linux

eBPF. In Proceedings of the 2018 30th International Teletraffic Congress (ITC 30), Vienna, Austria, 3–7 September 2018; Volume 1,
pp. 209–217.

4. Nelson, L.; Van Geffen, J.; Torlak, E.; Wang, X. Specification and verification in the field: Applying formal methods to {BPF}
just-in-time compilers in the Linux kernel. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), Virtual Conference, 4–6 November 2020; pp. 41–61.

5. Bernstein, D. Containers and cloud: From LXC to docker to Kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
6. Høiland-Jørgensen, T.; Brouer, J.D.; Borkmann, D.; Fastabend, J.; Herbert, T.; Ahern, D.; Miller, D. The express data path: Fast

programmable packet processing in the operating system kernel. In Proceedings of the 14th International Conference on Emerging
Networking Experiments and Technologies, Heraklion, Greece, 4–7 December 2018; pp. 54–66.

7. Fan, C.; Kaliyamurthy, N.M.; Chen, S.; Jiang, H.; Zhou, Y.; Campbell, C. Detection of DDoS attacks in software defined networking
using entropy. Appl. Sci. 2021, 12, 370. [CrossRef]

8. Alashhab, Z.R.; Anbar, M.; Singh, M.M.; Hasbullah, I.H.; Jain, P.; Al-Amiedy, T.A. Distributed Denial of Service Attacks against
Cloud Computing Environment: Survey, Issues, Challenges and Coherent Taxonomy. Appl. Sci. 2022, 12, 12441. [CrossRef]

9. Heidari, A.; Jabraeil Jamali, M.A. Internet of Things intrusion detection systems: A comprehensive review and future directions.
Clust. Comput. 2022, 2022, 1–28. [CrossRef]

10. Heidari, A.; Navimipour, N.J.; Unal, M. A Secure Intrusion Detection Platform Using Blockchain and Radial Basis Function
Neural Networks for Internet of Drones. IEEE Internet Things J. 2023, 2023, 3237661. [CrossRef]

http://doi.org/10.1145/3371038
http://doi.org/10.1109/MCC.2014.51
http://doi.org/10.3390/app12010370
http://doi.org/10.3390/app122312441
http://doi.org/10.1007/s10586-022-03776-z
http://doi.org/10.1109/JIOT.2023.3237661


Appl. Sci. 2023, 13, 4700 15 of 15

11. Riadi, I.; Umar, R.; Sugandi, A. Web forensic on Kubernetes cluster services using GRR rapid response framework. Int. J. Sci.
Technol. Res. 2020, 9, 3484–3488.

12. Wang, S.-Y.; Chang, J.-C. Design and implementation of an intrusion detection system by using extended BPF in the Linux kernel.
J. Netw. Comput. Appl. 2022, 198, 103283. [CrossRef]

13. Miano, S.; Bertrone, M.; Risso, F.; Tumolo, M.; Bernal, M.V. Creating complex network services with eBPF: Experience and lessons
learned. In Proceedings of the 2018 IEEE 19th International Conference on High Performance Switching and Routing (HPSR),
Bucharest, Romania, 18–20 June 2018; pp. 1–8.

14. Hohlfeld, O.; Krude, J.; Reelfs, J.H.; Ruth, J.; Wehrle, K. Demystifying the Performance of XDP BPF. In Proceedings of the 2019
IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019.

15. Liu, C.; Cai, Z.; Wang, B.; Tang, Z.; Liu, J. A protocol-independent container network observability analysis system based on eBPF.
In Proceedings of the 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, China,
2–4 December 2020; pp. 697–702.

16. Bertin, G. XDP in practice: Integrating XDP into our DDoS mitigation pipeline. In Proceedings of the Technical Conference on
Linux Networking, Netdev, Montréal, QC, Canada, 6–8 April 2017; Volume 2.

17. Miano, S.; Doriguzzi-Corin, R.; Risso, F.; Siracusa, D.; Sommese, R. Introducing smartnics in server-based data plane processing:
The DDoS mitigation use case. IEEE Access 2019, 7, 107161–107170. [CrossRef]

18. Miano, S.; Risso, F.; Bernal, M.V.; Bertrone, M.; Lu, Y. A framework for eBPF-based network functions in an era of microservices.
IEEE Trans. Netw. Serv. Manag. 2021, 18, 133–151. [CrossRef]

19. Abranches, M.; Michel, O.; Keller, E.; Schmid, S. Efficient Network Monitoring Applications in the Kernel with eBPF and XDP.
In Proceedings of the 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
Heraklion, Greece, 9–11 November 2021; pp. 28–34.

20. Shamim, M.S.I.; Bhuiyan, F.A.; Rahman, A. XI commandments of Kubernetes security: A systematization of knowledge related to
Kubernetes security practices. In Proceedings of the 2020 IEEE Secure Development (SecDev), Atlanta, GA, USA, 28–30 September
2020; pp. 58–64.

21. Minna, F.; Blaise, A.; Rebecchi, F.; Chandrasekaran, B.; Massacci, F. Understanding the security implications of Kubernetes
networking. IEEE Secur. Priv. 2021, 19, 46–56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jnca.2021.103283
http://doi.org/10.1109/ACCESS.2019.2933491
http://doi.org/10.1109/TNSM.2021.3055676
http://doi.org/10.1109/MSEC.2021.3094726

	Introduction 
	Related Work 
	Architecture of the Proposed Solution 
	Generalized Overview of the Proposed Solution 
	Algorithm(s) Used for the Proposed Solution 

	Implementations 
	CPU Overhead 
	Memory Overhead 

	Results and Discussion 
	CPU Overhead 
	Memory Overhead 

	Conclusions 
	References

