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Abstract: Osteoarthritis (OA) of the hip is a degenerative joint disease, which means it causes gradual
damage to the joint, and its incidence rate continues to increase worldwide. Degenerative osteoarthri-
tis can cause significant pain and gait disturbance in walking, affecting daily life. A diagnosis method
for hip OA includes questioning and various walking movements to find abnormalities of gait
patterns based on human observation. However, when multiple gait tests are performed to notice
the gait, it can cause pain continuously, even during the examination. Suppose hip OA could be
diagnosed with only a one-step gait; both patients and medical doctors would be benefited because
the diagnosis time can be reduced and the burden on the patient is decreased dramatically. Therefore,
in this paper, we aimed to propose a method to recognize the abnormality of the hip OA patient with
a one-step gait pattern based on a dynamic time warping (DTW) algorithm through three directional
ground reaction forces (GRFs). After a force plate measured three directional GRFs, the data of
twenty-three hip OA patients and eighteen healthy people were classified using supervised machine
learning algorithms. The results of the classification showed high accuracy and reliability. Then, the
DTW algorithm was applied to compare the data of patients and healthy people to find out when
patients may feel pain during the gait. By applying the DTW algorithm, it was possible to find out in
which gait phase the patient’s gait showed the difference, such as when the heel first contacted the
ground, in the middle of walking, or when the toe came off the ground. Through the results, the data
of the one-step gait on the force plate enabled us to classify patients and healthy people with a high
accuracy of over 70%, recognize the abnormal gait pattern, and determine how to relieve the pain
during the gait.

Keywords: abnormal detection; dynamic time warping; hip osteoarthritis; one-step gait pattern

1. Introduction

The hip joint is one of the largest weight-bearing joints in the body and is commonly
affected by arthritis after the knee joint. Among hip arthritis, degenerative osteoarthritis is
the most common form of arthritis. It can occur when the joint is deformed or damaged due
to congenital or acquired disease or trauma or when it appears with age without a specific
cause. The global incidence rate of hip osteoarthritis (OA) has increased from 740,000 to
1.58 million between 1990 and 2019. This trend is likely to continue due to the rapid aging
of the world population, increased lifespan, and prevalence of arthritis and obesity [1].
Thus, the importance of early treatment and continuous disease management is essential.
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OA in hip joints induces pain in the gait process, thus limiting the range of movement.
While pain and weakened muscles cause abnormal gait on the affected side, the non-
affected side also shows an abnormal gait caused by compensatory motions in other joints.
From these, hip OA patients have a slower gait speed when compared to healthy subjects.
The stride length of the affected side is shortened, the stance duration is lengthened, and the
swing duration is quickened. When comparing the patient’s affected and non-affected
sides, the stance duration of the affected side was shorter. Thus, although there is no severe
problem in classifying the difference in gait pattern between hip OA patients and healthy
subjects, the current methods for evaluation or diagnosis still give patients a high burden.

When diagnosing such hip OA in general, medical doctors ask the patient about
the onset of symptoms, progression pattern, and medical history. Then, they request the
patient to walk in various postures along a line to record the gait pattern based on human
observation. Existing methods for diagnosing degenerative hip arthritis include the gait
in various motions. For example, the squat test can be used to see the patient’s ability to
squat, and the hip flexion and hip scour tests can be used to test the range of motion of
the hip and knee [2]. In addition, the TUG test is an abbreviation of the time up to the test.
It is an evaluation that measures exercise ability and static and dynamic balance ability
when walking for 6 m [3]. However, according to studies, when comparing affected and
non-affected sides, the results of swing duration and step length were inconsistent.

Patients may have different gait patterns despite the same hip OA. For example, some
studies reported the existence of different gait patterns in patients with the same disease
for hereditary spastic paraparesis. Furthermore, these existing methods are problematic
because they can continuously cause pain during diagnosis. It causes pain continuously,
even while examining people with pain. Despite the same patient with hip OA, it is
possible to show a different gait pattern according to the pain symptom at that time. That
means deciding on the kinematic solution with measured angles and angular velocities
seems complicated.

Suppose hip OA could be diagnosed with only a one-step gait. This would be is
excellent for both patients and medical doctors because it would not only reduce the
diagnosis time but also decrease the burden on the patient dramatically. Thus, we aimed
to propose a method to recognize the abnormality of the hip OA patient with a one-step
gait pattern based on a dynamic time warping (DTW) algorithm through three directional
ground reaction forces (GRFs).

2. Human Subjects and Methods
2.1. Human Subjects

The human subjects were twenty-three hip OA patients (eleven female, twelve male)
with a history of previous surgery and eighteen healthy people (nine female, nine male)
without any symptoms. In Table 1, the subjects’ gender, age, height, weight, and BMI
(=body mass index) are shown as average values for each gender. The mean and standard
deviation (SD) are expressed to summarize by gender. For the patients, the average age is
fifty-six years and the SD is thirteen years, and for healthy people, the average is fifty-six
years and the SD is ten years.

Table 1. Human subject (patients with hip osteoarthritis (OA) and healthy subjects (Normal))
information in this experiment: gender, age, height, weight, and body mass index (BMI).

Class Gender Number Age Height [cm] Weight [kg] BMI [kg/m2]

Patient female 11 60.2 ± 14.2 159.7 ± 10.1 65.2 ± 9.7 25.72 ± 4.2
male 12 52 ± 10.3 164.8 ± 8.2 68.8 ± 8.3 25.35 ± 2.9

mean ± SD 55.7 ± 12.5 162.6 ± 9.2 67.2 ± 9.2 25.5 ± 3.4

Normal female 9 55.8 ± 8.4 161.0 ± 4.5 57.1 ± 6.3 22.0 ± 1.7
male 9 55.8 ± 11.9 167.1 ± 5.6 71.4 ± 8.3 25.6 ± 3.5

mean ± SD 55.8 ± 10.0 164.1 ± 5.8 64.3 ± 10.3 23.8 ± 3.2
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For the patients, the average BMI is 25.51 kg/m2 and the SD is 3.42 kg/m2, and for
healthy people, the average is 23.81 kg/m2 and the SD is 3.25 kg/m2. There is no statistically
significant difference in BMI between the patient and control groups (p > 0.05).

All subjects gave their informed consent for inclusion before participating in the study.
The study was conducted under the Declaration of Helsinki. The Ethics Committee of the
Clinical Trial Center at the Kyungpook National University Hospital in the Republic of
Korea approved the study protocol.

2.2. Construction of Dataset
2.2.1. Experimental Environment and System

Figure 1 shows an overview of the experimental environment. All participants walk
indoors at the usual speed on the force plate that can measure three directional ground
reaction forces (GRFs) and moments. Because of the size limitation of force plate hardware
specification, the plate allowed us to measure only one-step gait in this experiment. Thus,
wooden blocks of the same height were placed around the force plate. There was no
inconvenience to the force plate in measuring the subjects’ natural gait. About seven
times per human subject were stored as gait data to determine the gait pattern’s mean and
standard deviation (SD) for each participant.

Figure 1. An overview of the experimental environment: Participants walk on the force plate, which
can measure three directional ground reaction forces (GRFs) and moments. Because of the limitation
of force plate hardware specification, the force plate allows us to measure only one-step gait in
this experiment.

The force plate, in general, is an instrument that measures three directional GRFs and
moments generated by a body standing on or moving across them to quantify balance, gait,
and other biomechanics parameters. The force plate (2EA, AMTI, Watertown, MA, USA)
is utilized to measure GRFs and moments of the human subject’s gait. We used Python
(version 3.8.8, 64bit) with NumPy 1.20.1, Matplotlib 3.3.4, Pandas 1.2.4, and Scikit-learn
0.24.1 API packages for gait data analysis.

2.2.2. Flow Chart

Figure 2 shows a three-step flow chart for rehabilitating patients after the surgery.
The rehabilitation requires personalized training to improve the patient’s gait pattern closer
to the standard group after the surgery. The first step is the data acquisition to measure
data with the force plate. The gait pattern of the healthy group is set to the standard. Then
the second is the data analysis to classify whether the patient’s gait pattern is close to the
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standard group and recognize in which step the abnormality has occurred. The machine
learning model can discriminate between the normal and the patient groups. The DTW
algorithm can make clear in which step the patient feels inconvenient during the gait. The
final is personalized training to improve the gait pattern. Although the training is outside
the scope of this study, the proposed method supports the medical service provider in
evaluating the gait pattern for personalized training.

Figure 2. A three-step flow chart for the rehabilitation of patients after the surgery: first, data
acquisition to measure data with the force plate, then data analysis to classify whether the gait pattern
of the patient is close to the standard group or not and to recognize in which step the abnormality
has occurred, and finally personalized training to improve the gait pattern.

2.3. Analysis
2.3.1. Classification through Machine Learning

Machine learning is a method of measurement data analysis that automates analytical
model building. It is one kind of artificial intelligence based on the concept that systems can
learn from data, determine patterns, and make decisions with minimal human intervention.
Machine learning algorithms are mainly divided into four types: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning. A machine
learning technique is used to classify data from patients with hip OA and healthy people.
We use SVM (support vector machine) [4], LDA (linear discriminant analysis) [5], KNN
(K-nearest neighbor) [6], and random forest [7], which are supervised-learning algorithms
that can be used for classification tasks [8–13].

2.3.2. Similarity through Dynamic Time Warping Algorithm

Figure 3, reproduced with permission from [14], copyright from Professor Romain
Tavenard 2023, shows a comparison between DTW [15] and Euclidean distance. Dynamic
time warping is a method of calculating a more accurate distance than Euclidean distance.
It has an advantage over Euclidean distance if the data points are shifted between each
other, and we want to look instead at its shape. Thus, two time series do not have to be
equal in length. The Euclidean distance takes pairs of data points and compares them.
The DTW calculates the smallest distance between all points, enabling a one-to-many match.
Since the Euclidean distance matches the timestamp regardless of the feature values, we
should note DTW, a method for matching distinctive time-series patterns.
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Figure 3. A comparison between dynamic time warping (DTW) and Euclidean distance, reproduced
with permission from [14], copyright from Professor Romain Tavenard 2023. Note that the two time
series have a similar overall shape but are not aligned on the time axis. Euclidean distance, which
assumes the ith point in one sequence is aligned with the ith point in the other, may produce a
pessimistic dissimilarity measure. The non-linear dynamic time warped alignment allows a more
intuitive distance measure to be calculated.

More formally, the optimization problem writes:

DTWq(x, x
′
) = min

π∈A(x,x′ )
(Σ(i,j)∈πd(xi, x

′
j)

q)
1
q . (1)

Here, an alignment path π of length K index pairs ((i0, j0), · · · , (iK−1, jK−1)) and as
A(x, x

′
) is the set of all admissible paths, a path should satisfy the following conditions in

order to be considered admissible:

• Time series are matched at the beginning:

π0 = (0, 0)
πK−1 = (n− 1, m− 1)

(2)

• The sequence is monotonically increasing in both i and j, and all time-series indexes
should appear at least once, which can be written as:

iK−1 ≤ iK ≤ iK−1 + 1
jK−1 ≤ jK ≤ jK−1 + 1

(3)

Another method, the warping path to minimize the cumulative distance between
two time-series paths is to use a binary matrix whose non-zero entries correspond to
matching between time-series elements. That means that the simple method is to compare
the two paths.

(Aπ)i,j =

{
1 i f (i, j) ∈ π
0 otherwise

(4)

Equation (4) is illustrated in Figure 4, reproduced with permission from [14], copy-
right from Professor Romain Tavenard 2023, where the dots represent non-zero entries in
the binary matrix, and the plot on the right in Figure 4 is generated using the matched
equivalent sequence.

Using matrix notation, DTW can be written as the minimization of a dot product
between matrices:

DTWq(x, x
′
) = min

π∈A(x,x′ )
< Aπ , Dq(x, x

′
) >

1
q (5)

where Dq(x, x
′
) stores distances d(xi, x

′
j) at the power q.
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Figure 4. The warping path to minimize the cumulative distance between two time series is de-
termined by the dynamic time warping (DTW) in the n-by-m matrix, reproduced with permission
from [14], copyright from Professor Romain Tavenard 2023. The dot on Aπ indicates the optimal
alignment of an element in x with an element in x

′
.

The gait data used in this experiment are time-series data obtained during the stance
phase. The DTW algorithm was applied to these data to compare patients’ and healthy
people’s data to confirm whether there was a difference between the two data. For the
patient’s data, the distance values obtained by applying the DTW per patient data based
on the average value of the entire data set of healthy people were obtained and averaged.
For the healthy person’s data, the distance value was obtained by applying DTW to the
average of the rest of the healthy people’s data except for each healthy person’s data
was averaged. The difference between the two data sets was seen by applying the DTW
algorithm to the average of the patient’s data and the average of the healthy people’s data.
Furthermore, the DTW cost matrix can represent in which phase the data of each patient
differed from the average data of healthy people.

3. Results
3.1. Results of Measured Time-Series Data

Figure 5 shows the results of the measured time-series data using the force plate. The
data from the stance phase in the gait cycle are measured during the one-step gait cycle,
and those of the swing phase are not recorded in the experiment. The normalized time
for 0∼25% expresses the initial contact, 25∼80% expresses the midstance, and 80∼100%
expresses the propulsion. The body weight of the participant normalizes the value of GRFs.
The x-axis represents the normalized time for the stance phase, and the y-axis represents
the measured values. The three plots on the top side are three directional ground reaction
forces (GRFs), and the three at the bottom are three directional moments. Blue-colored
curves indicate the patient data, and orange-colored indicate those of the control group.
Soft shades of blue and orange show the standard deviation distribution, and heavy curves
show the mean values.

By visualizing the data as mean and standard deviation, it was found that there was no
significant difference in the measured time-series data between the two groups. However,
we could see a tiny difference when the stage in the stance phase was changed around the
normalized time of 25% and 80%.
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Figure 5. Results of measured time-series data using the force plate. Data from the stance phase
in the gait cycle are measured during the one-step gait cycle, and those of the swing phase are not
recorded in the experiment. The normalized time for 0∼25% expresses the initial contact, 25∼80%
expresses the midstance, and 80∼100% expresses the propulsion.

3.2. Results of Classification through Machine Learning

Data on the x, y, and z axes of the GRF are classified through the machine learning
algorithm. Table 2 shows the accuracy, sensitivity, and specificity obtained through five-fold
cross-validation. The accuracy is how close a given set of measurements are to their actual
ground true value. Comparatively, the results show a high performance. The sensitivity,
the probability of a patient conditioned on being an actual patient, is averaged for each
algorithm to obtain 0.63 in SVM, 0.72 in LDA, 0.69 in KNN, and 0.67 in random forest. The
specificity, the probability of a healthy person conditioned on an actual healthy person, is
averaged to obtain 0.87 in SVM, 0.77 in LDA, 0.83 in KNN, and 0.91 in random forest.

Table 2. Human subject classification results through machine learning.

Model GRF Accuracy Sensitivity Specificity

SVM x 0.785 0.700 0.826
y 0.741 0.588 0.814
z 0.850 0.600 0.970

LDA x 0.753 0.738 0.760
y 0.733 0.688 0.754
z 0.773 0.725 0.796

KNN x 0.753 0.700 0.778
y 0.733 0.625 0.784
z 0.874 0.755 0.922

Random Forest x 0.818 0.662 0.892
y 0.810 0.637 0.892
z 0.862 0.700 0.940

The classification results showed good performance, only possible with a one-step
gait. However, the classification results did not tell us at which stage patients’ gait differs
from that of healthy people.
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3.3. Results of Similarity through Dynamic Time Warping

Figure 6a describes the GRFs and each stage in the stance phase with the normalized
time. Figure 6b,c show the results of the accumulated cost matrices for patient A (b) and
patient B (c) and the warping path, which is expressed by pink-colored curves for each
plot. If there is no difference in the gait cycle between patients with hip OA and healthy
participants, the warping path draws a diagonal line. However, if there is some difference
during the gait, the warping path has curves at different stages.

Figure 6. Results of accumulated cost matrices for patient A (b) and patient B (c) and the warping
path, which is expressed as pink-colored curves for each plot.

We applied the DTW algorithm to see the gait cycle similarity between the two groups.
From the left for each person, three examples are shown along the x, y, and z axes of the
GRF values of the foot of one patient. We can see the description of these directions in
Figure 6a. Looking at the direction in which the subject is walking, the x-axis represents
the medial–lateral direction, the y-axis represents the anterior–posterior direction, and the
z-axis represents the vertical direction, which is the gravity direction. The horizontal axis of
each matrix in Figure 6b,c is the average value of healthy people’s data, and the vertical axis
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is the value of one patient. In the DTW matrix, a lower the cost is represented by a brighter
yellowish color, and the higher the cost, the darker the indigo-based color. Furthermore,
the pink line represents the minimum path in the DTW matrix. This path is a diagonal line
as the two GRF data sets are similar.

The stance phase is divided into three parts, as shown in Figure 6a. Looking at the
GRF_x plot of patient A in Figure 6b, there is a slight difference from a healthy person in the
medial–lateral direction in the initial contact stage and a little difference in the midstance
phase as well. The GRF_y plot shows a difference in the anterior–posterior part in the
initial contact and propulsion stages. Finally, the GRF_z plot shows a big difference in the
midstance. This means that differences in the gait originated from unconscious avoidance
motions to alleviate the produced pain.

In the case of patient B in Figure 6c, it can be seen that the GRF_y plot is similar to
that of healthy people, and the GRF_x plot has much difference overall, with a significant
difference present in the midstance stage. Furthermore, looking at the GRF_z plot, we can
see a significant difference in the midstance stage.

In the GRF_z plot of both patients, the midstance stage is the most different from the
data of healthy people. Unlike the other phases, the midstance stage supported the body
weight with only a single limb. Thus, the midstance, which felt much weight, differed
significantly. All patients walked with reduced body weight in the midstance stage. Data
with reduced body weight came from limping movements to avoid pain.

Figure 7 shows the results of the accumulated cost matrices for all patients, and the
warping path, which is expressed by dark-blue-colored curves: (a) represents the results
of GRF_x, (b) represents that of GRF_y, and (c) represents that of GRF_z. Although a
clear difference exists, it is not easy to find a clear pattern. This means that the pattern of
relieving pain during the gait is expressed in many ways.

Through the DTW algorithm, it was possible to determine which stage differed from
healthy people. However, the most challenging thing in this study was the various ab-
normalities according to each patient. For example, despite the same hip OA, the various
abnormalities from that difference in gait originated from unconscious avoidance motions
to alleviate pain.

Figure 7. Results of accumulated cost matrices for all patients and warping path, which is expressed
by dark-blue-colored curves: (a) represents the results of the x-axis ground reaction force (GRF_x),
(b) represents that of the y-axis GRF_y, and (c) represents that of the z-axis GRF_z.
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4. Discussion

� Advantages

This study proposed a method to recognize the abnormality of the hip OA patient
with a one-step gait pattern based on the DTW algorithm through three directional GRFs.
The experimental results enabled us to verify the usefulness of showing the recognition
of the abnormal gait pattern and how to relieve the pain during the gait. The proposed
method of one-step gait pattern analysis has two main advantages: relief from the burden
of participating and a response to the randomly expressed abnormality.

Most studies have investigated the effect of walking speed on differences in kinematic
trajectories between patients with hip OA and control participants using a wearable sensor
system [16,17]. Data for multiple walking trials at a self-selected speed for 6∼20 m in a flat
corridor are measured for the experiment. If the step length for the one-step gait is 0.5 m,
patients should walk for approximately 40 steps. The maximum force of the hip joint varies
from 1.8 times to 4.3 times the body weight during walking, and so does the maximum
pressure that the hip joint receives from the initial contact with the heel strike to the early
midstance [18]. The experiment, in terms of kinematics, must cause pain to the patient.
Thus, the proposed method of one-step gait pattern analysis enabled patients with hip OA
to relieve the burden of participating in the experiment or medical examination.

Arthritis in the lower part of the body, whether OA or inflammatory arthritis, can
change the gait or how we walk. To understand how arthritis affects the gait, first, we
need to consider the biomechanics of walking. The gait is a complex process in which
well-coordinated mechanical movements occur simultaneously in various joints of the
lower limbs to gently switch the center of gravity of the body, enabling us to move. Medical
doctors instruct that arthritis in the hips and knees affects the gait because of pain, stiffness,
and weakness. Although there are many abnormal gaits, when it hurts to put weight on
the hip or knee, we often unconsciously spend less time bearing weight on that extremity
during the gait cycle, shortening the stance phase, which is usually 60% of the gait. This
is called an antalgic gait. Furthermore, patients with arthritis often have a lot of muscle
weakness around the hip and knee. For example, it is common for patients with OA to have
poor balance and be unable to stand on one leg without pain. Since single-limb support
occurs during the gait, this poor balance affects the gait, often resulting in a waddling
pattern called a Trendelenberg gait. This muscle weakness causes the pelvis to drop on one
side when the opposite leg is lifted. Finally, arthritic joints can lead to a loss of flexibility or
stiffness in the body, changing the way we normally move. Arthritis patients tend to walk
slower due to all these additional challenges. Thus, the proposed method of DTW-based
analysis enabled us to cope with many types of abnormal gait patterns according to the
patient’s symptoms.

In addition, it is possible to numerically compare the patient’s degree of rehabilitation
and postoperative recovery through the DTW matrix, even without professional engineer-
ing knowledge. This is also an advanced point in that it fills the point where previous
studies [19] could not perform more detailed analysis in walking by comparing only data
values, and it allowed us to know in which phase there was a difference.

� Limitations

It is possible that the normalized time can lose the information on the shortened stance
phase under the x-axis condition. Then, one step cannot analyze asymmetries in the step
time between affected and non-affected hips. Two points can be the limitation of this
approach. However, the gait step can be divided into the fixed gait phase despite the
different duration to move the body weight. When we know the body weight, it is possible
to calculate the ratio of the body weight. That means that it is possible to evaluate the
different gait phases with different body weight ratios even though it is difficult to evaluate
the exact duration.
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5. Conclusions

Using machine learning algorithms, we classified the one-step gait data of hip OA
patients and healthy people. Then, we analyzed the patients’ one-step gait data by finding
the difference between each patient’s gait and that of healthy people using the DTW
algorithm. With the classification results through machine learning, we concluded that
it could be discriminated with only a one-step gait. This finding could shorten the time
compared to conventional diagnosis, even for patients with pain, reducing the burden on
the patient and allowing doctors to follow up more quickly. Therefore, it was adequate
for both doctors and patients. In addition, in the DTW matrix, it was possible to check at
which stage the patient’s data differs significantly from that of healthy people.

As a result of the analysis, the gait patterns of patients with hip OA were slightly
similar to or significantly different from those of healthy people according to their abnor-
malities so that we could see various data different from those of healthy people. If doctors
see a patient’s data using this method, it can be used for examination and gait patterns. It is
also possible to numerically compare the degree of recovery through rehabilitation training
to see if the training is going well. Several studies have shown that the pain and function
reported by patients following surgery are better in patients who receive early referral and
treatment before the joint’s functional limitation and pain are severe [20,21]. Accordingly,
if a one-step gait reduces the burden on the patient and allows for a quick diagnosis of hip
OA, inducing early treatment, prevention, and early management is possible before the
symptoms worsen, which will help the patient’s recovery. The values allowed us to know
in which phase there was a difference.
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