
Citation: George, P.; Cheng, C.-T.;

Pang, T.Y.; Neville, K. Task

Complexity and the Skills Dilemma

in the Programming and Control of

Collaborative Robots for

Manufacturing. Appl. Sci. 2023, 13,

4635. https://doi.org/10.3390/

app13074635

Academic Editors: Zoran Jurković,

David Ištoković and Janez Gotlih

Received: 3 March 2023

Revised: 4 April 2023

Accepted: 4 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Task Complexity and the Skills Dilemma in the Programming
and Control of Collaborative Robots for Manufacturing
Peter George, Chi-Tsun Cheng * , Toh Yen Pang and Katrina Neville

School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
* Correspondence: ben.cheng@rmit.edu.au

Abstract: While traditional industrial robots participate in repetitive manufacturing processes from
behind caged safety enclosures, collaborative robots (cobots) offer a highly flexible and human-
interactive solution to manufacturing automation. Rather than operating from within cages, safety
features such as force and proximity sensors and programmed protection zones allow cobots to
work safely, close to human workers. Cobots can be configured to either stop or slow their motion
if they come in contact with a human or obstacle or enter a protection zone, which may be a
high pedestrian traffic area. In this way, a task can be divided into sub-processes allocated to the
cobot or the human based on suitability, capability or human preference. The flexible nature of the
cobot makes it ideal for low-volume, ‘just-in-time’ manufacturing; however, this requires frequent
reprogramming of the cobot to adapt to the dynamic processes. This paper reviews relevant cobot
programming and control methods currently used in the manufacturing industry and alternative
solutions proposed in the literature published from 2018 to 2023. The paper aims to (1) study the
features and characteristics of existing cobot programming and control methods and those proposed
in the literature, (2) compare the complexity of the task that the cobot is to perform with the skills
needed to program it, (3) determine who is the ideal person to perform the programming role, and
(4) assess whether the cobot programming and control methods are suited to that person’s skillset or
if another solution is needed. The study is presented as a guide for potential adopters of cobots for
manufacturing and a reference for further research.

Keywords: cobot; collaborative robot; programming; control; skills; task complexity; teach pen-
dant; manufacturing

1. Introduction

Cobots are an integral part of modern manufacturing, destined to become the leading
form of robotics technology in the future [1]. While most mechanical equipment currently
used in manufacturing is mono-functional, cobots can assist with a wide variety of tasks,
including some standard operations listed in Table 1, along with many more custom
applications. As systems incorporate self-learning capabilities of artificial intelligence
and auto-correction [2] into cobot operations, the subsequent autonomous behaviour can
provide unprecedented collaborative assistance to human workers [3,4]. Evolving from
traditional industrial robots [5], cobots have additional programming requirements to feed
a collaborative functionality, as shown in Table 2.

Table 1. Typical cobot tasks (Adapted from [6]).

Cobot Task General Application Description

Welding Joining of metal parts, typically with a MIG welding (automatic
welding wire feed) process

Machining Precision surfacing process involving a milling or cutting tool

Appl. Sci. 2023, 13, 4635. https://doi.org/10.3390/app13074635 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074635
https://doi.org/10.3390/app13074635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3306-6148
https://orcid.org/0000-0002-4766-3042
https://doi.org/10.3390/app13074635
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074635?type=check_update&version=1

Appl. Sci. 2023, 13, 4635 2 of 26

Table 1. Cont.

Cobot Task General Application Description

Deburring Removal of waste material from casting or machining processes
with an abrasive tool

Polishing Treatment to remove surface irregularities or attain a lustre to
coated or machined surfaces

Spray Painting Part coating, applied to protect or otherwise enhance
surface appearance

Sorting Practical categorisation of unsorted parts for kitting, classification
or other organisational operation

Pick & Place Moving components from a starting point to an endpoint for
assembly or other processes

Stacking Moving finished products from a production line to a pallet or
other storage location

Machine Tending Inserting billets or parts into a milling machine, lathe, etc. and
retrieving machined or processed components

Inspection/Measurement

Analysis or quality assurance process where parts and other
sub-assemblies or components are measured with sensors or by

other means to ensure they are within an acceptable
tolerance range

Table 2. Comparison between industrial robot and cobot capabilities [7–9].

Feature Traditional Industrial Robot Collaborative Robot

Engagement with humans
Segregated. Operates within a

protective barrier, away
from humans

Interactive. Operates
collaboratively with humans

Safety near humans Not safe. Must
work separately Safe to work with humans

Environmental awareness Cannot dynamically
adapt behaviour

Can adapt to changes in
the environment

Programming flexibility and
complexity

Fixed, rudimentary use case
programs. Typically

reprogrammed infrequently

Flexible, customised use case
programs. Potentially

reprogrammed frequently

Ease of implementation Arduous. Requires
fixed infrastructure

Fast set-up and
easy deployment

Operational behaviour Fast and repetitious, mainly
task focused

Slow and varied. Focus on
task and environment

Footprint/Portability Large footprint, fixed location Small footprint, mobile

Purchase cost Relatively expensive
to purchase

Relatively inexpensive
to purchase

Profitability Needs medium to
large-volume production

Profitable at
low-volume production

Investment prospect Slow return on investment Fast return on investment

Traditional industrial robots were designed to perform simple, repetitious tasks (refer
to Table 2), typically operating within human protective enclosures [10]. These tasks often
form part of a mass production process, where the robot is engaged in the same task for
long periods [7]. As such, industrial robots are typically programmed infrequently. In
contrast, cobots were designed primarily to assist humans with, among other things, low-
volume, customised production [2,11]. Due to the constantly changing task requirements,

Appl. Sci. 2023, 13, 4635 3 of 26

cobots are typically reprogrammed on a more regular basis [12] as a consequence of their
operational flexibility.

Identifying the need for a simplified cobot programming method, Dmytriyev et al. [12]
proposed the implementation of a flowchart-based programming environment. El Zaatari et al. [13]
found that to increase cobot autonomy, the complexity of the industrial application and
the worker’s knowledge of the task should be considered when choosing programming
features. Schou et al. [14] presented a task-level programming solution using a skill-based
system, with the instruction of cobots by operators with no previous robotic experience.
The skills, in this context, refer to generic controls related to cobot capabilities rather
than operator skills. To narrow the skills gap between robotics experts and workers who
lack programming expertise, a system using expert frames, which focus on specific cobot
operational aspects, was proposed. One of these frames relates to program quality and
identifies syntax errors, unused code and missing parameters or code segments. An
interactive interface allows operators to visualise a cobot operation and modify behaviour
in response to feedback data received [15].

Understanding the contributing elements would be beneficial to systematically analyse
the effectiveness of existing cobot programming and control methods. However, reviews on
foundation data, including existing and proposed cobot programming and control methods
in the literature, their intended users and the types of programmable cobot tasks, appear
deficient. Furthermore, research on the relationship between cobot programming skills
requirements and task complexity is lacking. These are the research gap questions this
study intends to address:

1. What are the common programming and control methods for cobots in the existing
market and literature?

2. What bearing does the complexity of a cobot task have on the skills required to
program the cobot to perform that task?

3. How effective are cobot programming and control methods in the existing market
and literature? Who is the most appropriate worker to implement the methods, and
have the methods been suitably developed for that worker?

2. Technical Readiness for Cobot Deployment

Industry perspectives showed that the most significant cobot adoption hurdle is a
deficiency among their staff in the knowledge required to program and interact with
a cobot [14,16]. Within the knowledge gap, understanding general cobot technologies,
application methods, and practical programming is prominent [17]. Employees with prior
knowledge of robot programming are considered a key asset in robotic task allocation,
ostensibly due to the wide variety of tasks cobots are capable of performing, such as
those listed in Table 3. However, the programming of these tasks was more complex
than practitioners expected [18]. This apparent misconception about the ease of cobot
programming may well be generated from the marketing promises presented by the cobot
vendors in general. This premise will be analysed in Section 5 of this paper. Augmenting
the programming skills problem, a fear of programming and technology in general among
potential operators has been identified as a possible barrier to cobot adoption [19].

Although there is a significant role for cobots to play in low-volume manufacturing [2,11,20],
the time spent programming cobots for small batch runs is often not economically viable [21].
This suggests that developing a simpler and more efficient programming method would
significantly increase cobot utilisation, especially within the varied tasks associated with
low-volume manufacturing operations.

Traditional industrial robots have typically been programmed by dedicated engineers,
who may be located off-site and have limited operational knowledge of the task being
performed by the robot [14]. Due to the smaller job runs and requirement for faster and
more frequent reprogramming of cobots, it may be more efficient to shift the focus from the
skills required to program a cobot to the knowledge of the task a cobot is carrying out [7].
There seems to be a disparity in programming a cobot to perform a particular task. In most

Appl. Sci. 2023, 13, 4635 4 of 26

practical scenarios, it is often the person who knows the task well who is not competent
with programming, and the person who is competent with programming does not know the
task well [22]. A possible solution is that the person with knowledge of the task could also
program the cobot [23,24]. Operators with task expertise provide substantial improvements
in the precision and efficiency of cobot operations when compared to non-experts [22]. An
aim of adaptive task-sharing design principles is that cobot programming should be part
of the workers’ and assembly planners’ duties [25]. Substituting a program engineer for
a worker skilled with the task being conducted but without cobot technical skills would
require a simplified programming tool.

Table 3. Cobot tasks and related operations (Adapted from [6]).

Cobot Task Category Related Cobot Operations

Assembly Screwdriving, Part Insertion, Pick and Place

Dispensing Gluing, Sealing, Lubricating, Painting, Coating, Dipping

Finishing Sanding, Polishing

Material Handling Packaging, Palletising, Bin Picking, Kitting

Material Removal Grinding, Deburring, Trimming, Milling, Routing, Drilling

Welding Mig, Soldering

Quality Inspection Testing, Inspecting, Measuring

Machine Tending CNC, Injection Moulding, Automated Machining

3. Existing Cobot Programming and Control Methodologies

Depending on the complexity of the task to be undertaken by the cobot, a range
of proprietary and third-party solutions are available. For more straightforward cobot
tasks, such as the first and second tasks listed in Table 4, teach pendant (also known as
Lead through programming), teach or program by demonstration, and offline/simulation
programming are commonly available options [23,26]. Figure 1 shows the teach pendants
produced by ABB and Universal Robots. A variety of other programming options are
provided by cobot vendors, as detailed in Table 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 26

out [7]. There seems to be a disparity in programming a cobot to perform a particular task.
In most practical scenarios, it is often the person who knows the task well who is not
competent with programming, and the person who is competent with programming does
not know the task well [22]. A possible solution is that the person with knowledge of the
task could also program the cobot [23,24]. Operators with task expertise provide substan-
tial improvements in the precision and efficiency of cobot operations when compared to
non-experts [22]. An aim of adaptive task-sharing design principles is that cobot program-
ming should be part of the workers’ and assembly planners’ duties [25]. Substituting a
program engineer for a worker skilled with the task being conducted but without cobot
technical skills would require a simplified programming tool.

Table 3. Cobot tasks and related operations (Adapted from [6]).

Cobot Task Category Related Cobot Operations
Assembly Screwdriving, Part Insertion, Pick and Place

Dispensing Gluing, Sealing, Lubricating, Painting, Coating, Dipping
Finishing Sanding, Polishing

Material Handling Packaging, Palletising, Bin Picking, Kitting
Material Removal Grinding, Deburring, Trimming, Milling, Routing, Drilling

Welding Mig, Soldering
Quality Inspection Testing, Inspecting, Measuring
Machine Tending CNC, Injection Moulding, Automated Machining

3. Existing Cobot Programming and Control Methodologies
Depending on the complexity of the task to be undertaken by the cobot, a range of

proprietary and third-party solutions are available. For more straightforward cobot tasks,
such as the first and second tasks listed in Table 4, teach pendant (also known as Lead
through programming), teach or program by demonstration, and offline/simulation pro-
gramming are commonly available options [23,26]. Figure 1 shows the teach pendants
produced by ABB and Universal Robots. A variety of other programming options are pro-
vided by cobot vendors, as detailed in Table 5.

Figure 1. Teach pendants from ABB (left) and Universal Robots (right) [Image by authors].

For more complex tasks, such as the last two levels in Table 4, there are proprietary
scripts, graphical user interface (GUI) programming applications, and the option of pro-
gramming in a traditional programming language such as Python, C, C++, C# or Java, or
a dedicated robotics language such as Robot Operating System (ROS). ABB’s RAPID [27]
and Universal Robot’s URScript [28] are two typical examples of this category, which re-
quire a relatively higher level of programming skill. The collaborative nature of a cobot
allows it to perform a greater range of tasks compared with an industrial robot, as shown
in Table 2. Many of the programming methods developed for industrial robots could re-
strict the range of operations and be less adaptable if applied directly to a cobot [29].

Figure 1. Teach pendants from ABB (left) and Universal Robots (right) [Image by authors].

For more complex tasks, such as the last two levels in Table 4, there are proprietary
scripts, graphical user interface (GUI) programming applications, and the option of pro-
gramming in a traditional programming language such as Python, C, C++, C# or Java, or a
dedicated robotics language such as Robot Operating System (ROS). ABB’s RAPID [27] and
Universal Robot’s URScript [28] are two typical examples of this category, which require
a relatively higher level of programming skill. The collaborative nature of a cobot allows
it to perform a greater range of tasks compared with an industrial robot, as shown in
Table 2. Many of the programming methods developed for industrial robots could restrict

Appl. Sci. 2023, 13, 4635 5 of 26

the range of operations and be less adaptable if applied directly to a cobot [29]. Because of
this programming rigidity, legacy programming methods may be less intuitive than those
developed specifically for cobots.

3.1. Programming of Industrial and Collaborative Robots

Traditional industrial robots have fulfilled manufacturers’ automation needs since their
introduction in the 1950s [5]. Relieving human workers from repetitious and laborious tasks,
these robots have been segregated from humans for safety reasons. Resolutely devoted to its
assigned task, the industrial robot blindly follows assigned orders, unable to accommodate
sudden changes in circumstances. Requiring relatively infrequent reprogramming, tasks
assigned to industrial robots are typically simple, repetitive operations designed to be
performed from a fixed location [29]. While some industrial robots are mounted on sliding
rails or mobile platforms to increase their mobility, most are stationary because of their bulk
and requirement to be housed within protective cages [30]. Their ability to operate at high
speed allows them to excel at high-volume manufacturing in the mass production era [31].

A cobot is designed to perform precision tasks at relatively slower speeds while
demonstrating high flexibility and interactiveness and allowing a much more diverse
range of operational tasks than industrial robots [7]. In summary, both industrial and
collaborative robots are practical but have different roles to play in the industry. Directly
comparing attributes between the two, such as speed, without considering these different
roles [32] can potentially result in misguided conclusions. If applied to cobots, similar
programming techniques for industrial robots may not make sufficient allowance for the
differences between the two, which are comparably outlined in Table 2.

As modern technology progresses, many manufactured products become more com-
plex, as do their manufacturing processes [33]. Today’s intricate manufacturing assemblies
and processes are generally beyond the scope of industrial robots, especially where part of
the workload must be shared with human workers. With a more compact and streamlined
form and the addition of sensors and other safety features, cobots can operate outside
protective cages and work safely and collaboratively with humans. This allows a level of
automated task flexibility and functional expansion, opening up new opportunities for
product diversity in manufacturing [34]. As a result, a much wider variety of low-volume,
on-demand product manufacturing is now possible, which is the embodiment of agile
manufacturing [7,35]. Accompanying this more flexible and adaptive capability, however,
is the need for more frequent reprogramming of cobots [7].

3.2. Cobot Task Complexity

Cobots are one of the most utilised machines within manufacturing automation,
capable of implementing a broad range of application tasks [11]. The level of complexity
among tasks may vary according to the type of task and the object or workforce being
manipulated. For example, a sanding task on an object with a flat surface may be considered
less complex than if the object was of a complicated design. Similarly, screwdriving, parts
insertion and assembly may be deemed complex tasks due to the fine movements and
precision required. Still, the level of complexity may vary depending on the configuration,
degree of precision and other specific requirements of that task. Universal Robots has
defined a common range of cobot task categories [6], outlined in Table 3. Some examples of
tasks for each category are also provided in the table.

Cobots are expected to autonomously manage task complexity, especially as it in-
creases beyond human capacity during collaborative operations [13]. The execution of less
complex tasks is often considered an automated process, while for tasks of higher complex-
ities, there is an expectation that they will be conducted autonomously by robots [36]. Fur-
thermore, task complexity can be reduced by sharing the task among multiple cobots [37]
or by task reduction, cooperatively solved by multiple robots [38]. For instance, some
researchers have explored different ways of coordinating multiple cobots’ movements
and actions [39], while others have focused on developing new algorithms to improve

Appl. Sci. 2023, 13, 4635 6 of 26

communication and cooperation among cobots [40]. This paper focuses on the complexity
of the task overall to be undertaken by a cobot or cobots with respect to the programming
effort required. While multiple-robot systems (MRS) can reduce the overall complexity of a
task, their need for collaboration and accurate coordination [41] can add significantly to
the programming workload. Further compounding the technical complexity of MRS is the
need to select a suitable task allocation strategy that is robust, scalable and can be optimised
for a specific task [42]. A cluster-based approach, centred around the location of tasks
relative to team members, allocates tasks by training a binary classifier to nominate one of
two task allocation mechanisms through an auction bidding process [43]. Another model,
using k-means clustering, works to solve the balanced multi-robot task allocation problem
by minimising travel distance while optimising utilisation, which relates to task completion
time [44]. Intended for use within a Cyber-Physical System such as a warehouse manage-
ment system, task execution is asynchronously assigned to multiple robots in an ordering
mechanism to allocate interdependent Human–Robot Collaboration (HRC) tasks [45]. The
model uses mutual exclusion to allocate tasks, dynamically promoting system accuracy and
robustness. A Fuzzy Logic System can coordinate multiple robots to fulfil a common task.
Robots, trained using a Genetic Fuzzy System, derive a functional strategy to jointly execute
a nominated task [46]. MRS that rely on communication mechanisms, such as decentralised
planning algorithms, need complex programs to manage alignment coordination between
interacting agents accurately [47].

Adapted from the Universal Robots task definitions, an empirical list of task com-
plexity levels, with associated indicative category examples, is presented in Table 4. The
levels have been selected based on the amount of robotic and programming effort required
to perform a typical task at the proposed complexity level rather than on the computa-
tional resources consumed by a robot during the execution of the task [38]. The degrees
of effort have been determined empirically based on a range of programming tests con-
ducted primarily with a UR5e, a cobot representative of the Universal Robots eSeries cobot
range [48]. Robotic input refers to the range of manipulator and end-effector actions per
task, including:

• Type of joint movement (joint or linear motion)
• Number of movements
• Number of waypoints
• Number of end-effector engagements
• Degree of positional precision required
• Sensor input required (force, proximity, gyroscopic, etc.)
• Ease of end-effector to grip (owing to the surface or shape of parts, etc.)
• Payload handling

Table 4. Task complexity levels.

Task Complexity Level Types of Associated Tasks

1 (Low) Simple Gluing, Sealing, Dipping, Sanding, Polishing

2 (Low–medium) Pick and Place, Lubricating, Painting, Coating, Injection Moulding

3 (Medium) Material Handling, Simple Assembly, Grinding, Deburring,
Trimming, Drilling, Screwdriving

4 (Medium–high) Parts Insertion, CNC, Automated Machining

5 (High) Complex Assembly, Precise Milling, Routing, Quality Inspection

Programming input refers to the quantity and complexity of the programming ele-
ments required per task, as discussed in Section 5.3. Within the types of associated tasks,
each task can vary significantly in complexity (see Table 4). For example, while a sanding
task conducted on a single flat surface could be considered a task with low complexity,
the precision sanding of a spherical object may well place the task at a higher level. It is,

Appl. Sci. 2023, 13, 4635 7 of 26

therefore, impossible to be definitive with the assignment of the input levels, nor is it the
intention within the scope of this study. Instead, the objective is to assign input levels based
on the task complexity levels presented, with the types of associated tasks being indicative of
those levels.

3.3. Task Allocation in Human–Robot Collaboration

A vital step in the optimisation of Human–Robot Collaboration (HRC) is the assign-
ment of tasks to individual collaborators (agents) to maximise the efficient utilisation of
the cobot [49]. Within a manufacturing operation, sub-processes can be instinctively al-
located to the cobot or the human, based on considerations such as suitability, capability,
or human preference. To increase efficiency in a collaborative production environment, a
systematic resolution process must be applied to determine which tasks should be con-
ducted by the cobot and which tasks would be best left to a human [50,51]. The individual
skillsets of both the cobot and human involved are considered. Tasks are dynamically
assigned in a skill-based HRC system, which provides a graphical programming interface
and pre-programmed macros to simplify the cobot programming operation [52]. A task
allocation model, which maps task characteristics to agent capability, was proposed by [53]
and exploited human operators’ adaptability and cognitive prowess, along with cobots’
efficiency, accuracy, and consistency. Designed to manage tasks allocated to a human
and two robots in a heavy part handling HRC assembly operation, a solver based on
the Genetic Algorithm [54] is used to optimise both operation time and selection based on
agent capability. Considering human contentment in HRC, a two-staged capability-based
task allocation process was proposed [55]. In the first stage, task elements that align with
human capabilities are identified to assess whether humans can perform these safely or are
automated to preserve human safety. The remaining tasks are then allocated according to
suitability in the second stage based on agent capability, time efficiency, cost, and quality
outcomes. Allocation of tasks in HRC assembly operations is based on the classification
of the task complexity level and assigned to humans or robots in a complexity-based task
allocation method [56]. Agent skills, along with environmental aspects such as component
properties, presentation and feeding, are considered in the selection process, which affects
efficient handling in an assembly environment. A hierarchical HRC framework proposed
by [57] separates task allocation into abstraction and allocation layers in an assembly envi-
ronment. The abstraction layer defines the planning phase of the collaborative assembly,
considering the specific attributes of each element, including human and robot agents and
the real-time communication capabilities of each, while the allocation layer manages the
skills implementation requirements for the task.

An action scheduling framework using Artificial Intelligence (AI) contains a schedul-
ing algorithm that generates task allocations, which was proposed by [58]. The system
considers the sequence of operations, tools required, resource availability, positioning and
time efficiency in its optimisation process. Within this human-centric framework, there
is a focus on the safety of human operators, and operations are blocked if prerequisite
operations have not been completed. Task completion time rewards motivate a Markov
game model developed by [59], using deep multi-agent reinforcement learning to determine
the optimal cobot task allocation schedule. This model evaluates cobot and human agent
availabilities and determines the optimal task scheduling policy for the operation within a
chessboard structure that minimises all assembly task completion times as its objective.

3.4. Leading Cobot Vendors’ Programming and Control Methodologies

To provide readers with an overview of the landscape of existing cobot programming
and control methodologies, Table 5 lists seven leading cobot vendors and details of their
programming and control solutions. A selection of generic programming applications,
which provide an alternative to many proprietary developments, are also included.

Appl. Sci. 2023, 13, 4635 8 of 26

Table 5. Programming methods for leading cobot vendors.

Cobot Manufacturer Programming
Interface/Type Programming Method Intended User Level Intended Task

Complexity Limit
Source Language/Related

Language (If Known)

Universal Robots
[28,60,61]

PolyScope GUI/Hand guide Unskilled Low Proprietary (URP)

URScript Textual (Script) Skilled High Python, C++, C#, VB, Java

URSim GUI/Simulation Unskilled Low Proprietary (URP)

ABB [62–64]

Wizard GUI/Hand guide Unskilled Low Block-based RAPID

FlexPendant GUI/Simulation Semi-skilled Medium

RAPID Textual Skilled High Visual Basic

RobotStudio GUI/Simulation Semi-skilled Medium to High Proprietary (RAPID)

Fanuc [65]

TP (Teach Pendant) GUI/Hand guide Unskilled Low Proprietary (TP)

Karel Textual Skilled High Pascal

Roboguide GUI/Simulation Semi-skilled Medium to High

Festo [66]

BionicCobot GUI Unskilled Low to Medium ROS

Festo Robotic Suite GUI Semi-skilled Medium Python/ROS

RoboCIM GUI/Simulation Semi-skilled Medium Proprietary

Kuka [67]

iiOKA OS GUI/Hand guide Unskilled Low Linux kernel

KUKA Work.Visual GUI/Textual Skilled High

KRL (KUKA
Robot Language) GUI/Textual Skilled High Pascal

Kuka Sunrise Textual Skilled High Java

Kuka Sim/SimPro GUI/Simulation Semi-skilled Medium to High Proprietary

Yaskawa [68–70]

Direct Teach (DT) Hand guide Unskilled Low Proprietary

Smart Pendant GUI/Hand guide Unskilled Low Proprietary

INFORM II GUI/Textual Skilled High C

Omron [71]

ACE (Automatic Control
Environment) GUI/Hand guide Unskilled Low C#

eV+ Textual Skilled High MS-DOS/Unix Script

ACE Emulation Mode GUI/Simulation Unskilled Low C#

Generic cobot
programming
applications

(RoboDK, ArtiMinds,
Wandelbot, Pickit,

Robomaster, G-Code,
ROS, Traditional

languages)

RoboDK GUI [72] GUI/Hand guide Unskilled Low RDK

RoboDK API [72] Textual Skilled Medium–High Python (default), C, C++, . . .

ArtiMinds RPS [73] Modular Semi-skilled Medium–High Proprietary (RPS)

ArtiMinds RPS [73] Modular Semi-skilled Medium–High Proprietary (RPS)

Wandelbot Tracepen [74] Input device/App Unskilled Medium–High Proprietary

Pickit robot vision
system [75] GUI/3D vision Semi-skilled Medium

Robotmaster [76] GUI/Simulation Semi-skilled Medium–High

G-Code [77] (CAD/CAM)/Textual Skilled (CNC) Medium–High G-Code

ROS/ROS2 [78] Textual Skilled High C++/Python

Traditional prog
languages: Python, C,

C++, C#, Java, [79]
Textual Skilled High Proprietary

The ‘Intended User Level’ and ‘Intended Task Complexity Limit’ fields in Table 5 are
broadly based on cobot vendors’ statements, including those in Section 4.1 of this paper,
and practical reviews of the various applications. The aforementioned fields will be the
subject of the comparative analysis presented in Section 6. In addition, Intended User Level
references the general skill level definitions stated in [80], with unskilled work requiring
little to no independent judgement or previous experience to perform simple tasks; semi-
skilled may require close attention and coordination abilities for tasks with some complexity,
with decisions made by others; and skilled work, which requires judgement and decision-
making abilities while performing more complex tasks.

Appl. Sci. 2023, 13, 4635 9 of 26

3.5. Controlling Cobots without Formal Programming

Recognising the need for frequent reprogramming and flexible, collaborative operation,
cobot vendors compete to find the most intuitive and efficient method of controlling
their cobots.

3.5.1. Existing Cobot Control Methods

A common easy-to-navigate control method offered by cobot vendors is ‘Guiding’
(sometimes referred to as the Teach method/Easy programming/Basic programming),
which involves human manipulation to ‘teach’ the cobot the required sequence of operation.
Typically, user interfaces combine a pendant, tablet or PC-based display with the user
positionally hand guiding the cobot, as shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 26

complexity, with decisions made by others; and skilled work, which requires judgement
and decision-making abilities while performing more complex tasks.

3.5. Controlling Cobots without Formal Programming
Recognising the need for frequent reprogramming and flexible, collaborative opera-

tion, cobot vendors compete to find the most intuitive and efficient method of controlling
their cobots.

3.5.1. Existing Cobot Control Methods
A common easy-to-navigate control method offered by cobot vendors is ‘Guiding’

(sometimes referred to as the Teach method/Easy programming/Basic programming),
which involves human manipulation to ‘teach’ the cobot the required sequence of opera-
tion. Typically, user interfaces combine a pendant, tablet or PC-based display with the
user positionally hand guiding the cobot, as shown in Figure 2.

Figure 2. Programming UR5e with the teach pendant and hand guiding by a human operator.

3.5.2. Proposed Cobot Control Methods in Recent Literature
The benefits of assigning cobots to small-batch agile production [81] can be eroded

by the requirement for more frequent reprogramming [7], especially if there is a need to
continuously hire skilled programmers [12]. However, by simplifying programming and
control methods sufficiently, workplace operators, rather than dedicated programmers,
could intuitively program the cobots [82]. In this case, there would be greater potential for
increased cobot utilisation since the programming role would be open to a broader range
of workers.

Skill Based System
Since cobots are designed to interact closely with human workers, who have exten-

sive knowledge of the task being undertaken, programming the cobots by the same work-
ers would seem to be a logical part of the collaboration. With an emphasis on the task
rather than the program, a Skill Based System (SBS) allows a robotic novice worker to use
a graphical interface to map skills relating to a task, which equates to individual robotic
actions. As shown in Figure 3, these skill entities are used as parameters to initiate the
kinaesthetic configuration of a cobot’s joints [14]. For some prospective programmers,
however, the first step will be to overcome their fears of programming and technology
and accept cobots as collaborative partners rather than their future replacement [19].

Figure 2. Programming UR5e with the teach pendant and hand guiding by a human operator.

3.5.2. Proposed Cobot Control Methods in Recent Literature

The benefits of assigning cobots to small-batch agile production [81] can be eroded
by the requirement for more frequent reprogramming [7], especially if there is a need to
continuously hire skilled programmers [12]. However, by simplifying programming and
control methods sufficiently, workplace operators, rather than dedicated programmers,
could intuitively program the cobots [82]. In this case, there would be greater potential for
increased cobot utilisation since the programming role would be open to a broader range
of workers.

Skill Based System

Since cobots are designed to interact closely with human workers, who have extensive
knowledge of the task being undertaken, programming the cobots by the same workers
would seem to be a logical part of the collaboration. With an emphasis on the task rather
than the program, a Skill Based System (SBS) allows a robotic novice worker to use a
graphical interface to map skills relating to a task, which equates to individual robotic
actions. As shown in Figure 3, these skill entities are used as parameters to initiate the
kinaesthetic configuration of a cobot’s joints [14]. For some prospective programmers,

Appl. Sci. 2023, 13, 4635 10 of 26

however, the first step will be to overcome their fears of programming and technology and
accept cobots as collaborative partners rather than their future replacement [19].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 26

Figure 3. An example of a skills-based system with 3 abstraction layers is used to configure cobot
joint settings [14] (by permission).

Block-Based Interface
One approach in the quest for a more comprehensible programming experience is a

block-based interface, where pre-programmed modules can be selected and placed in a
desired sequence by novice users, as shown in Figure 4 [83]. This type of drag-and-drop
interface has two key advantages over text-based programs. Firstly, the blocks, written in
simple language, are designed to be intuitively arranged by a novice while providing vis-
ual cues as the program develops. This allows the user to focus on the task’s workflow
rather than the program’s syntax, which relates to the second advantage. Each block can
be considered a pre-programmed function, which is syntactically correct and, along with
the other blocks in a sequence, collectively compilable [84].

Figure 4. Block-based programming editor with a virtual industrial robot (Adapted from [83]).

Layered Block-Based Interface
A layered approach to block-based programming provides users with different skill

levels and the flexibility to carry out programming tasks with a complexity level that
matches their ability. From workers with little technical skill generating basic assembly
workflows to those experienced in programming and robotics undertaking more complex
programming tasks, a three-layered approach caters for a broad range of user abilities and
task complexities in a single system (refer to Table 6) [24].

Figure 3. An example of a skills-based system with 3 abstraction layers is used to configure cobot
joint settings [14] (by permission).

Block-Based Interface

One approach in the quest for a more comprehensible programming experience is a
block-based interface, where pre-programmed modules can be selected and placed in a
desired sequence by novice users, as shown in Figure 4 [83]. This type of drag-and-drop
interface has two key advantages over text-based programs. Firstly, the blocks, written
in simple language, are designed to be intuitively arranged by a novice while providing
visual cues as the program develops. This allows the user to focus on the task’s workflow
rather than the program’s syntax, which relates to the second advantage. Each block can be
considered a pre-programmed function, which is syntactically correct and, along with the
other blocks in a sequence, collectively compilable [84].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 26

Figure 3. An example of a skills-based system with 3 abstraction layers is used to configure cobot
joint settings [14] (by permission).

Block-Based Interface
One approach in the quest for a more comprehensible programming experience is a

block-based interface, where pre-programmed modules can be selected and placed in a
desired sequence by novice users, as shown in Figure 4 [83]. This type of drag-and-drop
interface has two key advantages over text-based programs. Firstly, the blocks, written in
simple language, are designed to be intuitively arranged by a novice while providing vis-
ual cues as the program develops. This allows the user to focus on the task’s workflow
rather than the program’s syntax, which relates to the second advantage. Each block can
be considered a pre-programmed function, which is syntactically correct and, along with
the other blocks in a sequence, collectively compilable [84].

Figure 4. Block-based programming editor with a virtual industrial robot (Adapted from [83]).

Layered Block-Based Interface
A layered approach to block-based programming provides users with different skill

levels and the flexibility to carry out programming tasks with a complexity level that
matches their ability. From workers with little technical skill generating basic assembly
workflows to those experienced in programming and robotics undertaking more complex
programming tasks, a three-layered approach caters for a broad range of user abilities and
task complexities in a single system (refer to Table 6) [24].

Figure 4. Block-based programming editor with a virtual industrial robot (Adapted from [83]).

Layered Block-Based Interface

A layered approach to block-based programming provides users with different skill
levels and the flexibility to carry out programming tasks with a complexity level that
matches their ability. From workers with little technical skill generating basic assembly
workflows to those experienced in programming and robotics undertaking more complex
programming tasks, a three-layered approach caters for a broad range of user abilities and
task complexities in a single system (refer to Table 6) [24].

Appl. Sci. 2023, 13, 4635 11 of 26

Table 6. A three-layer block-based cobot programming model [24] (by permission).

Programming Layer Roles and expertise Required Training Support Techniques

Layer 1: Basic
assembly workflows
(robot movements
and tool actuation)

Assembly workers
and laypersons with

some assembly
experience

Some technical
training (e.g.,

professional school)

Mounting and
assembly devices,

multimodal teach-in

Layer 2: Block-based
programs (task blocks,

variables and
control structures)

Industrial engineers
with computational

thinking abilities and
technical intuition

Formal technical
training and a

programming course

CAD-modelling, 3D
printing, laser cutting

Layer 3: Advanced
functionality
(databases,

connectivity, etc.)

Software engineers
with advanced

programming skills

Formal software
engineering training

Internet/intranet,
databases, cloud,
Manufacturing

Execution System
(MES)

Chat-Assisted Block-Based Interface

By enhancing block-based programming with natural language chat functionalities,
non-technical users can more intuitively assign programmed tasks to cobots. Furthermore,
this flexible hybrid approach can allow users to implement more complex tasks more easily
than block-based programming alone while building user acceptance of the technology
and confidence with cobot programming over time [85].

Artificial Intelligence

Artificial Intelligence (AI) can also assist a programmer with specific language code
suggestions offered in real-time, generated through the Natural Language Processing
(NLP) functionality of OpenAI Codex [86]. However, programming expertise would be
required for each suggestion as part of the accept/reject/edit decision-making process.
Developing autonomous cobots motivates many researchers, and they are exploring specific
areas of AI that are more suited to efficient cobot management. For instance, Reinforcement
Learning has been effectively used to train robots to conduct complex tasks; while modifying
their behaviour in response to changes in their environments, which they continuously
monitor. In contrast, Deep Learning (DL) could restrict dynamic response behaviour due
to time-inefficient data processing requirements [87]. According to [87], DL may not be
suitable for differentiating objects of similar appearance, which may be the case with
some electronic components used in assembly processes. In addition, DL is a complex
area of AI that requires significant experience and skills to implement [88], a notion that
opposes the objective of the current study. To improve cobot adaptivity and intelligence
in HRC, an AI-based 3D perception system, which incorporates RGB colour scan cameras
to generate 3D representations of a cobot’s operational environment, contains an anti-
collision function and allows a human operator to control cobot movement with natural
gestures [89]. Furthermore, a path planning architecture establishes a predetermined
path for Unmanned Aerial Vehicle robots, using the Hungarian algorithm to optimise cost
efficiencies. A 3D occupancy map of the cobot’s operational environment is generated to
ensure a collision-free path [90].

Voice and Gesture Control

A more instinctive cobot control measure that alleviates the need to formally program
allows a user to guide a cobot through a task using voice commands and physical gestures.
An image and sound processor comprises a camera, a depth sensor (for human movement
tracking) and a set of microphones that capture the relevant human speech and gesture
inputs. These are converted in the software program into corresponding coordinates for
the cobot joints [91]. Figure 5 shows the testing station for the speech and gesture system,
depicting the operator, graphical interface and ABB IRB120 robot.

Appl. Sci. 2023, 13, 4635 12 of 26

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 26

gesture inputs. These are converted in the software program into corresponding coordi-
nates for the cobot joints [91]. Figure 5 shows the testing station for the speech and gesture
system, depicting the operator, graphical interface and ABB IRB120 robot.

Figure 5. A testing platform for cobot voice and gesture control system, proposed by [91], 1. ABB
IRB120 robot, 2. the operator, 3. graphical interface (by permission).

A validation process is used between gestures in a task-managed system to prevent
undesired sequences from executing. In their work, users can decide to return to a previ-
ous save point of the program by way of a predefined human gesture [92]. In these sys-
tems, operators would need to be suitably trained on the range of valid speech and gesture
commands.

Virtual Reality Systems
Moving further away from traditional programming and closer to a gaming plat-

form, there is an immersive cobot control method. Controlling a physical cobot from a
virtual environment is a concept that replaces a standard cobot interface console with a
virtual reality (VR) system, which is connected to the cobot’s controller mechanism. From
within the virtual environment, a human can control a virtual cobot (a virtual representa-
tion of a physical cobot), with the inputs stored in a dedicated database so that the cobot’s
trajectories can be visualised in real-time or reproduced from stored values [93]. In addi-
tion, cobot control includes safety precautions in human–cobot interaction, which can be
achieved in a VR environment. Cobot behaviour is dynamically modified to anticipate
human movement using a motion tracker [94].

Augmented Reality Systems
Combining the virtual environment with the real world, augmented reality (AR) sys-

tems can provide a more realistic human experience than VR systems. AR systems allow
a faster and more user-friendly approach for humans to interact with cobots, with users
preferring an AR system over traditional teaching pendants or console options [95]. Users
with no previous programming experience can perform a range of cobot motion tasks
through an AR interface. However, as the complexity of the cobot task increases, so does
the difficulty experienced by the user. For example, pick and place tasks are more easily
conducted than welding tasks. Overall, the AR experience positively affects the novice
user’s confidence to accurately and safely carry out the assigned tasks [96].

Figure 5. A testing platform for cobot voice and gesture control system, proposed by [91], 1. ABB
IRB120 robot, 2. the operator, 3. graphical interface (by permission).

A validation process is used between gestures in a task-managed system to prevent
undesired sequences from executing. In their work, users can decide to return to a pre-
vious save point of the program by way of a predefined human gesture [92]. In these
systems, operators would need to be suitably trained on the range of valid speech and
gesture commands.

Virtual Reality Systems

Moving further away from traditional programming and closer to a gaming platform,
there is an immersive cobot control method. Controlling a physical cobot from a virtual
environment is a concept that replaces a standard cobot interface console with a virtual
reality (VR) system, which is connected to the cobot’s controller mechanism. From within
the virtual environment, a human can control a virtual cobot (a virtual representation of a
physical cobot), with the inputs stored in a dedicated database so that the cobot’s trajectories
can be visualised in real-time or reproduced from stored values [93]. In addition, cobot
control includes safety precautions in human–cobot interaction, which can be achieved in a
VR environment. Cobot behaviour is dynamically modified to anticipate human movement
using a motion tracker [94].

Augmented Reality Systems

Combining the virtual environment with the real world, augmented reality (AR)
systems can provide a more realistic human experience than VR systems. AR systems allow
a faster and more user-friendly approach for humans to interact with cobots, with users
preferring an AR system over traditional teaching pendants or console options [95]. Users
with no previous programming experience can perform a range of cobot motion tasks
through an AR interface. However, as the complexity of the cobot task increases, so does
the difficulty experienced by the user. For example, pick and place tasks are more easily
conducted than welding tasks. Overall, the AR experience positively affects the novice
user’s confidence to accurately and safely carry out the assigned tasks [96].

4. The Cobot Programming and Control Sales Pitch

With the global cobot market expected to exceed USD 9 billion by 2024 [9], competition
is fierce among cobot vendors as they vie for dominance in this lucrative industry. One of
the cobot vendors’ prime objectives is to simplify the human–cobot interaction method.

Appl. Sci. 2023, 13, 4635 13 of 26

Furthermore, to alleviate the need for robotic or formal programming skills, cobot vendors
attempt to present users with the most intuitive interface to control the cobot.

4.1. Cobot Vendors’ Perspectives on Their Programming Applications

In this section, a selection of claims and statements in the leading cobot vendors’
product description material has been quoted on the program and control attributes of
their cobot interfaces aimed at untrained users (refer to Table 7). The claims made by the
cobot vendors will be used to estimate programming effectiveness and intuitiveness from
the perspective of the intended user.

Table 7. Cobot vendors’ marketing claims.

1. Universal Robots (PolyScope) [60]

“Use your process expertise and PolyScope’s graphical interface to create a robust automation
system. No Code? No Problem.”

“PolyScope connects operators to robots for efficient and productive automation. You don’t need
coding experience to automate your processes.”

“Build programs by selecting nodes from a menu and placing them in order of operation. Each
node represents an instruction for the robot and its parameters can be configured.”

2. ABB (Wizard) [62]

“Wizard easy programming—An easy and intuitive way to program cobots and
Industrial robots.”

“Program your robot application within minutes! Wizard is an easy graphical programming
interface for ABB Cobots.”

“With Wizard, anyone and everyone can program their robot application.”
“Only a few minutes after the installation you will be able to operate your robot. With Wizard’s

easy drag and drop blockly based programming software, no specialized training or
programming skills are required.”

3. Fanuc (TP) [65]

“But the CRX’s #1 “Ease of Use” benefit is its Simple Drag and Drop Programming. 30 years ago,
robot programming was a high-level structured language like Fortran or C++. An engineer or

maintenance technician went to school to learn how to learn the programming language. Both are
very powerful, but not easy to use. With the all new FANUC CRX Tablet Teach Pendant–simple

programming becomes reality. Easily program and teach points with the CRX Tablet Teach
Pendant. The drag and drop interface for lead-through teaching and simple programming is easy

with no prior robotic experience needed.”

4. Festo (Festo Robotic Suite for BionicCobot) [66]

“Programming a robot is child’s play”
“The BionicCobot is operated intuitively via a graphic user interface developed in-house.”

“Commissioning and programming are intuitive, quick and easy with the “Robotic
Suite” software.”

“The developers were focusing specifically on making the Robotic Suite, the actual heart of the
cobot, as simple to operate as possible so there is no need for prior programming knowledge.”

“When it comes to programming, most of us probably think about complicated lines of code with
lots of abbreviations, brackets and other symbols. But programming a robot can actually be very

easy, as is shown by the software that Festo developed for its pneumatic lightweight robot,
the BionicCobot.”

5. Kuka (iiQKA OS) [67]

“iiQKA allows you to put together your individual automation package, without any prior
knowledge or programming experience.”

“The intuitive graphical interface allows for fully autonomous control of the system without any
programming knowledge.”

“Designed for quick start-up with little to no expertise, iiQKA offers incredible speed to
integrate robots.”

Appl. Sci. 2023, 13, 4635 14 of 26

Table 7. Cont.

6. Yaskawa (DT) [68,69]

“Quick and easy programming.”
“Simple and intuitive operator control, short learning curve.”

“Ideal for users who need to carry out frequent reprogramming and thus appreciate simple
operator control.”

“Ideal for novice robot users, this pendant simplifies INFORM programming for
easy-to-understand operation and fast implementation of the robot system.”

“The perfect entry into programming. Simply move the robot flange by hand, record the motion
points and operate the gripper actuation by pressing the respective DT buttons. The code is

automatically generated in the background on your pendant.”

7. Omcron (ACE) [71]

“The Automation Control Environment (ACE) software allows you to build applications, such as
Pack Manager packaging applications, which can be basic pick-and-place cells or complex cells
with multiple cameras, conveyors, and robots. You can create and configure these cells without
having to write any programming code. For applications that require greater control, you can

override the default V+ program code and make changes as needed.”

4.2. Epitomising the Marketing Message

Regarding user interaction with their products, the general message from cobot ven-
dors is that neither robotics nor programming experience is required, at least for the less
complicated cobot tasks. However, the complexity level is not explicitly referred to in
their marketing blurbs. Furthermore, many instructional videos released by cobot ven-
dors [97,98] tend to emphasise the simplicity of their user interfaces, while limitations, in
terms of task complexity, have generally been concealed. Marketing cobots as “simple to
program” can lead to the assumption that skilled programmers are no longer required [20].
This assumption makes no allowance for the complexity of the task to be programmed,
nor does it consider the variation in the skillset required to do so. Despite cobot vendors’
assurances that unskilled personnel can program their cobots, others have a different
perspective. A leading cobot tool manufacturer views cobot programming as a job for an
engineer with mechanical, electronics, electrical and programming skills and an under-
standing of combined system functionality and associated theory [99]. Manufacturers in the
industry, who operated cobots, revealed that of the total time employees spent with their
cobots, automation engineers accounted for 48%. Approximately half of the automation
engineers’ cobot duties were dedicated to programming [100]. In Section 6, the cobot
vendors’ claims will be compared with the observed skills required to program a cobot, to
establish the validity of their claims and the effectiveness and suitability of the programs
for their intended purposes and at their intended user levels.

5. The Underlying Skillset

There are three key elements involved in the process of cobot task allocation [101].

I. The cobot and its environment
II. Cobot programming steps
III. Cobot task implementation

For a human tasked with implementing the process, these elements correspond to the
knowledge and skills that must be acquired or provided extrinsically. Regarding cobots, a
conceptual knowledge of the hardware and technical skills in cobot operation and problem-
solving would be necessary, along with knowledge of the assembly line or other cobot
environments. To program cobots, knowledge of the programming application is essential,
along with skills in programming within the context and capabilities of a specific cobot.
Finally, knowledge of the task the cobot is to perform, optimisation characteristics, and
the skills to carry out the steps of the task would typically be required [101]. An aim of
adaptive task-sharing design principles is that cobot programming should be part of the
workers’ and assembly planners’ duties [25]. Substituting a program engineer for a worker

Appl. Sci. 2023, 13, 4635 15 of 26

skilled with the task being conducted, but without cobot technical skills, would require a
simplified programming tool.

5.1. Fundamental Technical Aspects of Cobot Control

To highlight the complexities potentially experienced by the user of a typical cobot
programming interface, robotics and programming concepts and keywords are presented.
Table 8 relates to the robotic (hardware) elements, while Table 9 contains the program-
ming (software) elements. The reference source for both tables was the Universal Robots
PolyScope graphical interface [60], used to program a UR eSeries cobot [102]. The list is not
intended to be exhaustive but rather a selection of representative fields more relevant to
the programming than the setting up of a cobot.

It is acknowledged that in Tables 8 and 9, not every listed entity would need to
be configured for each program. However, it could be argued that in support of sound
judgement, a knowledge of the purpose and functionality of each would be required to
determine when they should or should not be configured. For example, there is a view
in the cobot tool manufacturing industry that cobot programmers should have adequate
knowledge of advanced programming functions [99], such as those listed in Table 9.

5.2. Robotics (Hardware)

A selection of robotic control elements, along with corresponding robotic entities, is
listed in Table 8.

Table 8. Robotic control elements.

Robotic Element Specific Robotic Entity

General Fundamental kinematics and dynamics principles

Limits
Safety limits, including power, momentum, stopping time and distance,

tool speed and force and elbow speed and force limits

Joint position range limits and maximum speeds

Orientation and
positioning

Tool Centre Point (TCP), Tool Offset, Tool Position and Tool Rotational
Vector settings (all represented as three-dimensional cartesian

coordinate frames)

Relationship between base and tool coordinate frames

Direction for linear movement (expressed as positive or negative cartesian
coordinates or direction vector)

Waypoints (with options of fixed, relative or variable position)

Joints

Joint positions (in degrees) for the base, shoulder, elbow and three wrist
joints (pitch, yaw and roll).

Linear, non-linear and circular joint movements

Joint speed and acceleration values

Communication I/O Signals (Digital, Analog, Tool, Configurable, Boolean Register, Integer
Register, Float Register)

5.3. Programming (Software)

A selection of programming elements, along with corresponding cobot programming
entities, are displayed in Table 9.

5.4. Skills Required to Program and Control a Cobot

An empirical list of the skills required to program and control a cobot has been created
to analyse the relationship between these skills and the complexity of the tasks they are used
to conduct. Descriptions have been provided for each pair to clarify the assignment of skill
values and levels. TACOM [103], a task complexity measure, was used to guide the selection

Appl. Sci. 2023, 13, 4635 16 of 26

of cobot task complexity categories. The metric is based on the quantity of information
an operator must process about the task, the number of actions and logical sequence a
task contains, current knowledge of the task and available cognitive resources for decision-
making. TACOM calculates task complexity with respect to the task’s procedural steps. The
information density and composition that define a task and the number of actions and order
of operation required to execute it affect the complexity level of a task. A certain amount of
system knowledge is required to carry out an action and to understand the complications of
the task. The capacity of an operator, in terms of the precision and cognitive effort, during
the execution of a task, along with the specific resources required by the task, contribute to
the performance level of a human operator [104].

Table 9. Cobot programming requirements.

Programming Element Specific Cobot Programming Entity

General syntax Program structure and sequencing

Data Constants, variables, variable assignment

Conditionals/selections If, ElseIf, Else, Until, Switch statements, Boolean

Program loops/iterations For, While, Do-While

Functions/procedures Thread, Subroutine call

Control points Event, Wait, Set, Halt, Timer

Table 10 outlines a proposed user skill level paradigm. Each skill level designation has
a range from a low to a high skill level listed, followed by a suffix, which indicates the skill
type (R = Robotics, P = Programming). For example, ‘1 R’ indicates a skill level on the low
end of basic robotics knowledge, while ‘3 R’ refers to the high end of the same level. There
is a slightly broader range (7–10) in the higher levels of both skill types to accommodate
the greater range of advanced technical concepts.

Table 10. User skill levels for the programming and control of cobots.

Skill Level Designation Description of Skill Level

0: Unskilled No knowledge of robotic operation or programming

1–3 R: Basic Robotics

Basic knowledge of robotic concepts, such as the difference
between collaborative and industrial robots, the joint structure of

a manipulator (robotic arm) and basic understanding of end
effectors such as a gripper or suction cup

4–6 R: Mid Robotics

Familiar with robotic movement and functionality, including
linear and non-linear joint movement, consequences of joint

speed and acceleration settings (collision prevention) and
coordinate frames

7–10 R: High Robotics

In-depth knowledge of robotics, with practical skills in cobot
installation, tool configuration with respect to coordinate frames,
precise joint configuration, I/O signals, sensors and configuration

of safety elements such as protection zones

1–3 P: Basic Programming Basic knowledge of programming concepts, such as data types,
data inputs, computations and outputs

4–6 P: Mid Programming Familiar with basic programming techniques involving common
elements such as variables, loops and conditionals

7–10 P: High Programming Competent in structured programming, using functions, different
loop and conditional types, switch statements and classes

Although cobot programming methods range from those that are easier to use, for
less complex tasks, to those requiring higher skills for more complex tasks, there is some

Appl. Sci. 2023, 13, 4635 17 of 26

common ground between them. Following some targeted programming comparisons, it
was found that some tasks of medium complexity could be programmed at the higher end
of a Teach Pendant’s capability, for example, or at the lower end of a script-based method,
as indicated with the Venn diagram in Figure 6. The choice of method would be subject to
the skill level or discretion of the person programming the task. This further complicates
mapping task complexity to the corresponding required skill level for tasks within that
intersecting zone.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 26

7–10 R: High Robotics

In-depth knowledge of robotics, with practical skills in cobot
installation, tool configuration with respect to coordinate

frames, precise joint configuration, I/O signals, sensors and
configuration of safety elements such as protection zones

1–3 P: Basic
Programming

Basic knowledge of programming concepts, such as data types,
data inputs, computations and outputs

4–6 P: Mid
Programming

Familiar with basic programming techniques involving common
elements such as variables, loops and conditionals

7–10 P: High
Programming

Competent in structured programming, using functions,
different loop and conditional types, switch statements and

classes

Although cobot programming methods range from those that are easier to use, for
less complex tasks, to those requiring higher skills for more complex tasks, there is some
common ground between them. Following some targeted programming comparisons, it
was found that some tasks of medium complexity could be programmed at the higher end
of a Teach Pendant’s capability, for example, or at the lower end of a script-based method,
as indicated with the Venn diagram in Figure 6. The choice of method would be subject to
the skill level or discretion of the person programming the task. This further complicates
mapping task complexity to the corresponding required skill level for tasks within that
intersecting zone.

The extent of the skills and knowledge required will vary based on the complexity of
the task being programmed. In addition, the broad range of approaches available to pro-
gram a specific task can further complicate the job. For example, the kinematic flexibility
of a cobot, while allowing great freedom in tool orientation and position, also increases
the programming complexity [93]. Considering the robotics and programming skills re-
quired, Figure 7 shows a graphical representation of the skills required to program a cobot
by different methods based on task complexity.

Figure 6. Cobot programming methods according to task complexity.

From a skill requirement perspective, the transition from programming a cobot with
a teach pendant to write a script-based program to do so is significant. Using the Universal
Robots URScript or ABB RAPID programming methods as examples, a programmer must
1. Establish a connection to the cobot controller from a remote console. Some

knowledge of computer networks would be required to communicate with a host
over a socket connection.

2. Compose a syntactically correct control program. At least a moderate level of skill in
programming, with an understanding of program structure and syntax, would be

Figure 6. Cobot programming methods according to task complexity.

The extent of the skills and knowledge required will vary based on the complexity
of the task being programmed. In addition, the broad range of approaches available to
program a specific task can further complicate the job. For example, the kinematic flexibility
of a cobot, while allowing great freedom in tool orientation and position, also increases the
programming complexity [93]. Considering the robotics and programming skills required,
Figure 7 shows a graphical representation of the skills required to program a cobot by
different methods based on task complexity.

From a skill requirement perspective, the transition from programming a cobot with a
teach pendant to write a script-based program to do so is significant. Using the Universal
Robots URScript or ABB RAPID programming methods as examples, a programmer must

1. Establish a connection to the cobot controller from a remote console. Some knowl-
edge of computer networks would be required to communicate with a host over a
socket connection.

2. Compose a syntactically correct control program. At least a moderate level of skill
in programming, with an understanding of program structure and syntax, would
be required. For this study, URScript test programs were written in Python, so an
understanding of the relevant formal language for the client program is also necessary.

3. Choose:

• Individual cobot joint positional coordinates and orientation parameters
• Motor speed and acceleration settings
• Tool selection
• Delay timing
• Other aspects depend on the complexity of the task being programmed.

Sound knowledge of robotic functionality, particularly about coordinate frames and
joint movement, would be mandatory.

Appl. Sci. 2023, 13, 4635 18 of 26

5.5. Skills Versus Task Complexity Testing Methodology and Results

A UR5e cobot was programmed to simulate representative tasks from the associated
task categories outlined in Table 4. Four tasks with complexity levels ranging from 1 to 8
were programmed with the Teach Pendant, while two tasks with complexity levels ranging
from 7 to 10 were programmed in Python through URScript, for comparison. The range of
technical skills utilised during the configuration of each programmed task was recorded.
These related to the robotic and programming elements, as defined in Tables 8 and 9,
respectively, are used to describe the user skill levels outlined in Table 10. The results of the
recorded program tasks are shown in Table 11 and represented graphically in Figure 7. The
programmed tasks listed in Table 11 were selected to represent each of the task complexity
levels in Table 4. The aggregate skill levels in the table are the product of the corresponding
robotic and programming skill levels defined in Table 10.

Table 11. Task complexity versus skill level.

Task Complexity Level Programmed Task Programming
Method

Robotic Skill
Level

Programming
Skill Level

Aggregate Skill
Level

1–2 (Low) Simple Polishing Teach Pendant 2 1 2

2–4 (Low–medium) Simple Pick and Place Teach Pendant 4 2 8

5–6 (Medium) Simple Assembly Teach Pendant 6 4 24

7–8 (Medium–high) Parts Insertion Teach Pendant 6 4 24

7–8 (Medium–high) Parts Insertion Script-based 9 9 81

9–10 (High) Complex Assembly Script-based 10 10 100
Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26

Figure 7. Robotics and programming skills required versus task complexity.

The effectiveness of the teach pendant as a programming tool is demonstrated in Fig-
ure 7, with a low level of skills required to program cobot tasks in the lower complexity
range. However, from the medium task complexity level, the required skill level is three
times higher than the previous one. When using the teach pendant, the required robotics
skills are 1.5 times higher than programming skills for all complexity levels. This is be-
cause of the greater precision and finer tool positioning typically associated with more
complex tasks. At the same time, there is a more gradual increase in skills required with
the simplified graphical programming interface of the teach pendant. As task complexity
enters the medium to high band, for tasks beyond the capability of the teach pendant, the
required skills are 3.3 times higher for script-based programming. Because of the need to
precisely define joint coordinates and other cobot parameters within the syntax of a tex-
tual programming language, the required robotic and programming skills increase at the
same rate. The lack of skills issue has imposed constraints on the programming of complex
tasks.

6. Analysis of the Findings of This Review
An analysis was undertaken into the relationship between the complexity of the task

to be executed by the cobot and the relative skill levels required of the programmer. More-
over, a mapping of this relationship was established. In the quest to find the most suitable
candidate for the cobot programming role, consideration was given to the frequency of
cobot reprogramming, knowledge of the task to be performed by the cobot, economic ef-
ficiency and organisational logistics. Finally, the existing cobot programming and control
methods and those proposed in the literature were evaluated to determine if they were ap-
propriate for the person with the programming role or whether another solution was
needed. Section 6.1 evaluates the effectiveness of existing cobot programming and control
methodologies, while Section 6.2 presents the practicalities of the main cobot program-
ming and control proposals in the literature. A summary of the findings, including re-
sponses to the research questions, is provided in Section 6.3.

6.1. Effectiveness of Existing Cobot Program and Control Methodologies
Cobot tasks programmed with script-based methods require some expertise in for-

mal programming, an understanding of the specific cobot functionality and a sound
knowledge of robotics in general. Proprietary Teach Pendants, however, are typically mar-
keted as user-friendly tools designed for programming a cobot without the need for ro-
botic or programming skills. While the graphical interface of the teach pendant is easier
to use than a script-based alternative, this study has found that some foundation skills in
robotics and programming are still required. Basic programming and robotics knowledge

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ag
gr

eg
at

e
sk

ill
s

Task complexity

Task complexity versus skill requirement

Teach Pendant Script-Based

Figure 7. Robotics and programming skills required versus task complexity.

The effectiveness of the teach pendant as a programming tool is demonstrated in
Figure 7, with a low level of skills required to program cobot tasks in the lower complexity
range. However, from the medium task complexity level, the required skill level is three
times higher than the previous one. When using the teach pendant, the required robotics
skills are 1.5 times higher than programming skills for all complexity levels. This is because
of the greater precision and finer tool positioning typically associated with more complex
tasks. At the same time, there is a more gradual increase in skills required with the
simplified graphical programming interface of the teach pendant. As task complexity
enters the medium to high band, for tasks beyond the capability of the teach pendant, the
required skills are 3.3 times higher for script-based programming. Because of the need to

Appl. Sci. 2023, 13, 4635 19 of 26

precisely define joint coordinates and other cobot parameters within the syntax of a textual
programming language, the required robotic and programming skills increase at the same
rate. The lack of skills issue has imposed constraints on the programming of complex tasks.

6. Analysis of the Findings of This Review

An analysis was undertaken into the relationship between the complexity of the task to
be executed by the cobot and the relative skill levels required of the programmer. Moreover,
a mapping of this relationship was established. In the quest to find the most suitable
candidate for the cobot programming role, consideration was given to the frequency of
cobot reprogramming, knowledge of the task to be performed by the cobot, economic
efficiency and organisational logistics. Finally, the existing cobot programming and control
methods and those proposed in the literature were evaluated to determine if they were
appropriate for the person with the programming role or whether another solution was
needed. Section 6.1 evaluates the effectiveness of existing cobot programming and control
methodologies, while Section 6.2 presents the practicalities of the main cobot programming
and control proposals in the literature. A summary of the findings, including responses to
the research questions, is provided in Section 6.3.

6.1. Effectiveness of Existing Cobot Program and Control Methodologies

Cobot tasks programmed with script-based methods require some expertise in formal
programming, an understanding of the specific cobot functionality and a sound knowledge
of robotics in general. Proprietary Teach Pendants, however, are typically marketed as
user-friendly tools designed for programming a cobot without the need for robotic or
programming skills. While the graphical interface of the teach pendant is easier to use than
a script-based alternative, this study has found that some foundation skills in robotics and
programming are still required. Basic programming and robotics knowledge will contribute
to a more accurate and safer outcome, even when programming a relatively simple cobot
task. Knowledge of coordinate frames, for example, can allow more positional precision of
joints and an understanding of efficient joint and linear movements, along with motor speed
and acceleration settings, could help with collision avoidance. Furthermore, programming
fundamentals such as sequences and loops can add vital insights into program structure and
process iteration. When marketing their teach pendants, cobot vendors tend to highlight
the ease of use for non-experts without emphasising the extent to which task complexity
may complicate the process. The teach pendant, therefore, does require both robotic and
programming skills, which increase as the task becomes more complex. It is, however, a
significantly more intuitive cobot programming tool than a script-based language, which
requires a high level of competency in robotics and formal programming. Some computer
networking knowledge may also be required, depending on the method of connection
between a terminal and its host.

6.2. The Practicality of the Primary Cobot Program and Control Methodologies Proposed in
the Literature

The main cobot programming and control methods proposed in recent literature and
reviewed in Section 3.5.2 are critiqued in this section.

6.2.1. Block-Based Interface

While alleviating syntax errors, programming with a block-based graphical inter-
face [83] requires some knowledge of program flow control and an understanding of
robotic movement when using it to control a cobot. There is also the potential for runtime
errors if, for example, unattainable values have been entered as joint position, speed, or
acceleration parameters.

Appl. Sci. 2023, 13, 4635 20 of 26

6.2.2. Voice and Gesture Control

Although they present an intuitive approach to controlling cobots, gesture and voice
control have their limitations. Gestures can be misinterpreted by the image processor
or incorrectly posed by the human operator. An example of where such errors could
occur is in the subtle pose differences between ‘Axis Y move forward’ and ‘Axis Z move
forward’, where only a slight difference in left arm position separates the two commands. Voice
control is affected by noise variation and also human error in the case of an incorrect
command or poor diction [91], which could be challenging in a production environment.
Collectively, this method may be difficult for a human to orchestrate, having to coordinate
the correct gestures and voice commands, especially when sequencing the cobot through
a complex task. In addition, task parameterising is time-consuming, some of the more
difficult gestures to pose cause fatigue and while the gesture recognition rate is generally
high, instances of false positives and false negatives occur, of which the user is notified,
following a validation process [92].

6.2.3. Virtual and Augmented Reality Systems

Work in virtual and augmented environments is progressing; however, VR [93] and
AR [95,96] systems for cobot operations do not currently appear to be developed and
tested to the point of practical deployment for the industry. What has been proposed
in the literature are VR systems that allow users to simulate robotic movement in an
immersive environment. However, each use case often requires creating a new virtual
environment and current capability is limited to simulation rather than functioning as a
practical programming method [93]. AR systems produce tracking inaccuracies, which
can misdirect the cobot, and there are also visual constraints. A reduced field of view
from the AR wearable devices and occlusion problems restrict the user’s perspective of
the computer-generated content and could impose risks when deployed in workplaces. In
addition, users can be distracted as they continuously swap between augmented and real
environments, disrupting the AR system’s fluidity [95].

6.3. Summary of Findings and Responses to Research Questions

Section 3 of this paper describes the common programming and control methods for
cobots, existing and proposed in the literature. Solutions from seven leading cobot vendors
were evaluated, and systems proposed in the literature were critiqued. The impact of a
cobot’s task complexity on the skills required to program it was addressed in Section 5,
with a graphical representation and summary of the analysis provided at the end of that
section. The effectiveness of existing cobot programming and control methods and the
practicality of methods proposed in the literature were assessed in Sections 6.1 and 6.2,
which focused on existing and proposed programming and control methods, respectively.
The final considerations were to determine the most appropriate candidate for the role of
cobot programmer and assess whether the current or proposed solutions can be matched
to that person’s skillset. In Section 2, it was argued that rather than focusing on the skills
required to program a cobot, the knowledge of the task should be the focal point. The view
was that it is often the case that the person who knows the task well, is not competent with
programming and the person who is competent with programming does not know the task
well. Operators with knowledge of and experience with a task that a cobot is intended to
assist with possess valuable insights into precision and efficiency, details of which may be
difficult to relay to a contracted programmer. Moreover, adaptive task-sharing principles
aim to embed cobot programming into workers’ duties. Based on these findings, a task-
experienced worker would be the most appropriate programmer, but the programming
methods analysed have not been specifically developed for a novice, as discussed in
Section 5. Compounding this problem, the scale in Figure 7 indicates that existing cobot
programming and control methods require more skill as cobot task complexity increases.
In addition, the investigation in Section 6.2 revealed that the methods proposed in the
literature were impractical or not sufficiently developed for reliable deployment. In general,

Appl. Sci. 2023, 13, 4635 21 of 26

these current cobot programming and control methods and those proposed in the literature
require more advanced skills or are underdeveloped to be used by a worker with no robotic
or programming experience. In the absence of a designated cobot programmer, therefore,
either the upskilling of cobot novices, who are task-savvy operators or the development
of a new generation of simplified cobot programming and control methods are the only
viable options.

7. Discussion and Future Work

Several elements restrict the establishment of a complete, accurate, and clearly defined
cobot task complexity to skill requirement matrix. Cobot task complexity is difficult
to define due to variations in the definers’ perceptions of complexity, which in turn, is
conceivably shaped by their levels of skill and approaches to the programming of the task.
For example, someone with more programming expertise may see a task as less complex,
which could seem daunting to a less skilled programmer. Another key issue is that of the
programming method used, especially concerning the tentative selection area between
programming methods of different complexity, as discussed in Section 5.4 and summarised
in Figure 6. Within that discretionary zone, a task may require more skills if programmed
with a script-based method and less with a Teach Pendant.

The ramifications of an incorrectly programmed cobot can be severe, regardless of
the programmer’s skill level, although programming errors might be more likely with a
less skilled programmer. Consequences of a poorly programmed cobot could range from
a delay in a manufacturing process, damage to or destruction of the cobot, equipment or
products, to human injury or even fatality, particularly if manipulator speed or force settings
are not constrained. In addition, companies expose themselves to possible legal action
due to injuries caused by their robots, with significant financial claims filed, especially if
negligence is a factor [105].

The purpose of this paper was to review cobot programming and control methods and
present a broad view of the complexity of the methods and cobot tasks from the perspective
of a user skill level. Considerably more research and analysis should be conducted in cobot
programming and control methods, focusing on flexibility and ease of use. Humans are the
principal collaborators with cobots, so there should be a close connection to the human skills
required to interact with a cobot partner. With further development, existing, proposed or
hybrid systems could lead to a new generation of human-centric cobot smart control.

8. Conclusions

In a collaborative environment, there is an interaction between humans, who know the
task, and cobots, who have been programmed to perform their part. Such an environment
consists of many variables, from the type of cobot and programming method used and
the programmer’s skillset to the complexity of the task. Task and program complexity,
along with programming skill levels, have been considered in broad terms and compared
with existing and proposed programming and control methods in the literature to evaluate
the relationship between task complexity and the skills required to program cobots. This
analysis was then used to assess the claims made by the leading cobot vendors about the
skills required to program their cobots. Cobot vendors typically emphasise the ease of
programming their cobots without reference to task complexity. The findings of this study
have revealed that even for tasks of relatively low complexity, some level of robotic and
programming skill is required to ensure a safe and effective outcome. As task complexity
increases, so do the required robotics and programming skills, contributing to a skills
dilemma. Furthermore, to complete highly complex tasks, the programming skills required
often exceeded those of the robotics skills. A task-focused approach highlights the benefit
of the cobot programming role being performed by the worker with the best knowledge of
the task rather than an expert with the best programming knowledge. The worker’s lack of
programming experience adds to the skills dilemma. Existing and proposed solutions are

Appl. Sci. 2023, 13, 4635 22 of 26

not currently suitable for that type of deployment. The solution is a programming system
requiring no technical expertise, regardless of the task complexity level.

Author Contributions: Conceptualization, P.G., C.-T.C. and T.Y.P.; methodology, P.G.; validation,
P.G.; formal analysis, P.G.; investigation, P.G.; resources, C.-T.C. and T.Y.P.; writing—original draft
preparation, P.G., C.-T.C. and T.Y.P.; writing—review and editing, P.G., C.-T.C., T.Y.P. and K.N.;
visualisation, P.G.; supervision, C.-T.C., T.Y.P. and K.N.; project administration, C.-T.C. T.Y.P. and K.N.;
funding acquisition, C.-T.C. and T.Y.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to acknowledge the support of RMIT University for providing
resources and facilities to conduct this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bloss, R. Collaborative robots are rapidly providing major improvements in productivity, safety, programming ease, portability

and cost while addressing many new applications. Ind. Robot. Int. J. 2016, 43, 463–468. [CrossRef]
2. De Backer, K.; DeStefano, T.; Menon, C.; Suh, J.R. Industrial robotics and the global organisation of production. OECD Sci. Technol.

Ind. Work. Pap. 2018, 3, 1–44.
3. Benotsmane, R.; Kovács, G.; Dudás, L. Economic, social impacts and operation of smart factories in Industry 4.0 focusing on

simulation and artificial intelligence of collaborating robots. Soc. Sci. 2019, 8, 143. [CrossRef]
4. Bryndin, E. Collaboration Robots with Artificial Intelligence (AI) as digital doubles of person for communication in public life

and space. Bp. Int. Res. Exact Sci. 2019, 1, 1–11.
5. Gasparetto, A.; Scalera, L. A brief history of industrial robotics in the 20th century. Adv. Hist. Stud. 2019, 8, 24–35. [CrossRef]
6. Collaborative Robot Applications. Available online: https://www.universal-robots.com/applications (accessed on

10 December 2022).
7. Knudsen, M.; Kaivo-Oja, J. Collaborative robots: Frontiers of current literature. J. Intell. Syst. Theory Appl. 2020, 3, 13–20.

[CrossRef]
8. Bi, Z.M.; Luo, C.; Miao, Z.; Zhang, B.; Zhang, W.J.; Wang, L. Safety assurance mechanisms of collaborative robotic systems in

manufacturing. Robot. Comput.-Integr. Manuf. 2021, 67, 102022. [CrossRef]
9. Fischer, S. Robotics—Market Data Analysis & Forecasts. Statista Technology Market Outlook. 2022. Available online: https:

//www.statista.com/study/116601/robotics-market-data-analysis-and-forecasts (accessed on 2 October 2022).
10. Roehl, C. Know Your Machine: Traditional Industrial Robots vs. Cobots. 2022. Available online: https://www.universal-robots.

com/blog/know-your-machine-traditional-industrial-robots-vs-cobots (accessed on 12 January 2023).
11. Vojić, S. Applications of collaborative industrial robots. Mach. Technol. Mater. 2020, 14, 96–99.
12. Dmytriyev, Y.; Carnevale, M.; Giberti, H.; Todeschini, G. On cobot programming in industrial tasks: A test case. In Proceedings of

the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Ankara, Turkey, 9–11
June 2022; IEEE: New York, NY, USA, 2022; pp. 1–9.

13. El Zaatari, S.; Marei, M.; Li, W.; Usman, Z. Cobot programming for collaborative industrial tasks: An overview. Robot. Auton.
Syst. 2019, 116, 162–180. [CrossRef]

14. Schou, C.; Andersen, R.S.; Chrysostomou, D.; Bøgh, S.; Madsen, O. Skill-based instruction of collaborative robots in industrial
settings. Robot. Comput.-Integr. Manuf. 2018, 53, 72–80. [CrossRef]

15. Schoen, A.; White, N.; Henrichs, C.; Siebert-Evenstone, A.; Shaffer, D.; Mutlu, B. CoFrame: A System for Training Novice Cobot
Programmers. In Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction, Sapporo,
Japan, 7–10 March 2022; IEEE: New York, NY, USA, 2022; pp. 185–194.

16. Kildal, J.; Tellaeche, A.; Fernández, I.; Maurtua, I. Potential users’ key concerns and expectations for the adoption of cobots.
Procedia CIRP 2018, 72, 21–26. [CrossRef]

17. Aaltonen, I.; Salmi, T. Experiences and expectations of collaborative robots in industry and academia: Barriers and development
needs. Procedia Manuf. 2019, 38, 1151–1158. [CrossRef]

18. Kopp, T.; Baumgartner, M.; Kinkel, S. Success factors for introducing industrial human-robot interaction in practice: An
empirically driven framework. Int. J. Adv. Manuf. Technol. 2021, 112, 685–704. [CrossRef]

http://doi.org/10.1108/IR-05-2016-0148
http://doi.org/10.3390/socsci8050143
http://doi.org/10.4236/ahs.2019.81002
https://www.universal-robots.com/applications
http://doi.org/10.38016/jista.682479
http://doi.org/10.1016/j.rcim.2020.102022
https://www.statista.com/study/116601/robotics-market-data-analysis-and-forecasts
https://www.statista.com/study/116601/robotics-market-data-analysis-and-forecasts
https://www.universal-robots.com/blog/know-your-machine-traditional-industrial-robots-vs-cobots
https://www.universal-robots.com/blog/know-your-machine-traditional-industrial-robots-vs-cobots
http://doi.org/10.1016/j.robot.2019.03.003
http://doi.org/10.1016/j.rcim.2018.03.008
http://doi.org/10.1016/j.procir.2018.03.104
http://doi.org/10.1016/j.promfg.2020.01.204
http://doi.org/10.1007/s00170-020-06398-0

Appl. Sci. 2023, 13, 4635 23 of 26

19. Giannopoulou, G.; Borrelli, E.M.; McMaster, F. “Programming-It’s not for Normal People”: A Qualitative Study on User-
Empowering Interfaces for Programming Collaborative Robots. In Proceedings of the 2021 30th IEEE International Conference
on Robot & Human Interactive Communication, Vancouver, BC, Canada, 8–12 August 2021; IEEE: New York, NY, USA, 2021;
pp. 37–44.

20. Bogue, R. Europe continues to lead the way in the collaborative robot business. Ind. Robot. Int. J. 2016, 43, 6–11. [CrossRef]
21. Schumacher, S.; Hall, R.; Waldman-Brown, A.; Sanneman, L. Technology Adoption of Collaborative Robots for Welding in Small

and Medium-sized Enterprises: A Case Study Analysis. In Proceedings of the Conference on Production Systems and Logistics,
Vancouver, BC, Canada, 17–20 May 2022; Publish-Ing: Hannover, Germany, 2022; pp. 462–471.

22. Fantini, P.; Pinzone, M.; Sella, F.; Taisch, M. Collaborative robots and new product introduction: Capturing and transferring
human expert knowledge to the operators. In Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future,
Proceedings of the AHFE 2017 International Conference on Human Aspects of Advanced Manufacturing, Los Angeles, CA, USA, 17–21 July
2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 8, pp. 259–268.

23. Pieskä, S.; Kaarela, J.; Mäkelä, J. Simulation and programming experiences of collaborative robots for small-scale manufacturing.
In Proceedings of the 2018 2nd International Symposium on Small-scale Intelligent Manufacturing Systems, Cavan, Ireland, 16–18
April 2018; IEEE: New York, NY, USA, 2018; pp. 1–4.

24. Ionescu, T.B.; Schlund, S. A participatory programming model for democratizing cobot technology in public and industrial
Fablabs. Procedia CIRP 2019, 81, 93–98. [CrossRef]

25. Schmidbauer, C.; Schlund, S.; Ionescu, T.B.; Hader, B. Adaptive task sharing in human-robot interaction in assembly. In
Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore,
14–17 December 2020; IEEE: New York, USA, 2020; pp. 546–550.

26. Owen-Hill, A. What Are the Different Programming Methods for Robots? Available online: https://blog.robotiq.com/what-are-
the-different-programming-methods-for-robots (accessed on 19 October 2022).

27. ABB Robotics Operating Manual Introduction to RAPID. Available online: http://rovart.cimr.pub.ro/docs/OpIntroRAPID.pdf
(accessed on 4 October 2022).

28. Universal Robots. The URScript Programming Language. Available online: https://s3-eu-west-1.amazonaws.com/ur-support-
site/18383/scriptmanual_en_1.3.pdf (accessed on 4 October 2022).

29. Gusan, V.; T, ît,u, M.A.; Oprean, C. Industrial robots versus collaborative robots—The place and role in non-conventional
technologies. Acta Tech. Napoc.-Ser. Appl. Math. Mech. Eng. 2022, 65, 101–110.

30. Michaelis, J.E.; Siebert-Evenstone, A.; Shaffer, D.W.; Mutlu, B. Collaborative or simply uncaged? understanding human-cobot
interactions in automation. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI,
USA, 25–30 April 2020; pp. 1–12.

31. Tilley, J. Automation, Robotics, and the Factory of the Future; McKinsey & Company: Los Angeles, CA, USA, 2017.
32. Simoes, A.C.; Lucas Soares, A.; Barros, A.C. Drivers impacting cobots adoption in manufacturing context: A qualitative study. In

Advances in Manufacturing II: Volume 1— Solutions for Industry 4.0; Springer: Cham, Switzerland, 2019; pp. 203–212.
33. Trattner, A.; Hvam, L.; Forza, C.; Herbert-Hansen, Z.N.L. Product complexity and operational performance: A systematic

literature review. CIRP J. Manuf. Sci. Technol. 2019, 25, 69–83. [CrossRef]
34. Transeth, A.A.; Stepanov, A.; Linnerud, Å.S.; Ening, K.; Gjerstad, T. Competitive high variance, low volume manufacturing with

robot manipulators. In Proceedings of the 2020 3rd International Symposium on Small-Scale Intelligent Manufacturing Systems,
Gjovik, Norway, 10–12 June 2020; IEEE: New York, USA, 2020; pp. 1–7.

35. Kootbally, Z. Industrial robot capability models for agile manufacturing. Ind. Robot. Int. J. 2016, 43, 481–494. [CrossRef]
36. Harbers, M.; Peeters, M.M.; Neerincx, M.A. Perceived autonomy of robots: Effects of appearance and context. In Proceedings of

the A World with Robots: International Conference on Robot Ethics, Lisbon, Portugal, 23–24 October 2017; Springer International
Publishing: Berlin/Heidelberg, Germany, 2017; pp. 19–33.

37. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. Coop. Robot. Sens. Netw. 2015,
2015, 31–51.

38. Ho, M.; Farid, A.; Majumdar, A. Towards a Framework for Comparing the Complexity of Robotic Tasks. In Proceedings of the
Algorithmic Foundations of Robotics XV: Proceedings of the Fifteenth Workshop on the Algorithmic Foundations of Robotics.
University of Maryland, College Park, MD, USA, 22–24 June 2022; Springer International Publishing: Cham, Switzerland, 2022;
pp. 273–293.

39. Bengoa, P.; González-Ojeda, I.D.; Ibarguren, A.; Goenaga, B.; Martínez-De-Lahidalga, S.; Gkournelos, C.; Lotsaris, K.; Angelakis,
P.; Makris, S.; Antolín-Urbaneja, J.C. Coordination of Two Robots for Manipulating Heavy and Large Payloads Collaboratively:
SOFOCLES Project Case Use. In Advances and Applications in Computer Science, Electronics, and Industrial Engineering, Proceedings
of the Conference on Computer Science, Electronics and Industrial Engineering (CSEI 2021), Ambato, Ecuador, 26 May 2022; Springer
International Publishing: Cham, Switzerland, 2022; pp. 255–271.

40. Chromjakova, F.; Trentesaux, D.; Kwarteng, M.A. Human and cobot cooperation ethics: The process management concept of the
production workplace. J. Compet. 2021, 13, 21–38. [CrossRef]

41. Alitappeh, R.J.; Jeddisaravi, K. Multi-robot exploration in task allocation problem. Appl. Intell. 2022, 52, 2189–2211. [CrossRef]
42. Seenu, N.; Kuppan Chetty, R.M.; Ramya, M.M.; Janardhanan, M.N. Review on state-of-the-art dynamic task allocation strategies

for multiple-robot systems. Ind. Robot. Int. J. Robot. Res. Appl. 2020, 47, 929–942.

http://doi.org/10.1108/IR-10-2015-0195
http://doi.org/10.1016/j.procir.2019.03.017
https://blog.robotiq.com/what-are-the-different-programming-methods-for-robots
https://blog.robotiq.com/what-are-the-different-programming-methods-for-robots
http://rovart.cimr.pub.ro/docs/OpIntroRAPID.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/18383/scriptmanual_en_1.3.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/18383/scriptmanual_en_1.3.pdf
http://doi.org/10.1016/j.cirpj.2019.02.001
http://doi.org/10.1108/IR-02-2016-0071
http://doi.org/10.7441/joc.2021.03.02
http://doi.org/10.1007/s10489-021-02483-3

Appl. Sci. 2023, 13, 4635 24 of 26

43. Schneider, E.; Sklar, E.I.; Parsons, S. Mechanism selection for multi-robot task allocation. In Proceedings of the Towards
Autonomous Robotic Systems: 18th Annual Conference, TAROS 2017, Guildford, UK, 19–21 July 2017; Springer International
Publishing: Berlin/Heidelberg, Germany, 2017; pp. 421–435.

44. Murugappan, E.; Subramanian, N.; Rahman, S.; Goh, M.; Chan, H.K. Performance analysis of clustering methods for balanced
multi-robot task allocations. Int. J. Prod. Res. 2022, 60, 4576–4591. [CrossRef]

45. Semwal, T.; Jha, S.S.; Nair, S.B. On ordering multi-robot task executions within a cyber physical system. ACM Trans. Auton. Adapt.
Syst. (TAAS) 2017, 12, 1–27. [CrossRef]

46. Sathyan, A.; Ma, O. Collaborative control of multiple robots using genetic fuzzy systems. Robotica 2019, 37, 1922–1936. [CrossRef]
47. Johnson, L.B.; Choi, H.L.; How, J.P. The role of information assumptions in decentralized task allocation: A tutorial. IEEE Control.

Syst. Mag. 2016, 36, 45–58.
48. Cutting Edge Industrial Collaborative Robots, Built to Do More. Available online: https://www.universal-robots.com/e-series/

(accessed on 15 December 2022).
49. Karami, H.; Darvish, K.; Mastrogiovanni, F. A task allocation approach for human-robot collaboration in product defects inspection

scenarios. In Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN), Naples, Italy, 31 August–4 September 2020; IEEE: New York, NY, USA, 2020; pp. 1127–1134.

50. Lee, M.L.; Behdad, S.; Liang, X.; Zheng, M. Task allocation and planning for product disassembly with human–robot collaboration.
Robot. Comput.-Integr. Manuf. 2022, 76, 102306. [CrossRef]

51. Roncone, A.; Mangin, O.; Scassellati, B. Transparent role assignment and task allocation in human robot collaboration. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
IEEE: New York, NY, USA, 2017; pp. 1014–1021.

52. Müller, R.; Vette, M.; Geenen, A. Skill-based dynamic task allocation in human-robot-cooperation with the example of welding
application. Procedia Manuf. 2017, 11, 13–21. [CrossRef]

53. Liau, Y.Y.; Ryu, K. Task allocation in human-robot collaboration (HRC) based on task characteristics and agent capability for mold
assembly. Procedia Manuf. 2020, 51, 179–186. [CrossRef]

54. Liau, Y.Y.; Ryu, K. Genetic algorithm-based task allocation in multiple modes of human–robot collaboration systems with two
cobots. Int. J. Adv. Manuf. Technol. 2022, 119, 7291–7309. [CrossRef]

55. Ranz, F.; Hummel, V.; Sihn, W. Capability-based task allocation in human-robot collaboration. Procedia Manuf. 2017, 9, 182–189.
[CrossRef]

56. Malik, A.A.; Bilberg, A. Complexity-based task allocation in human-robot collaborative assembly. Ind. Robot. Int. J. Robot. Res.
Appl. 2019, 9, 182–189. [CrossRef]

57. Johannsmeier, L.; Haddadin, S. A hierarchical human-robot interaction-planning framework for task allocation in collaborative
industrial assembly processes. IEEE Robot. Autom. Lett. 2016, 2, 41–48. [CrossRef]

58. Evangelou, G.; Dimitropoulos, N.; Michalos, G.; Makris, S. An approach for task and action planning in human–robot collaborative
cells using AI. Procedia Cirp 2021, 97, 476–481. [CrossRef]

59. Yu, T.; Huang, J.; Chang, Q. Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement
learning. J. Manuf. Syst. 2021, 1, 487–499. [CrossRef]

60. Make the Simple Tasks Easy and the Complex Tasks Possible. Available online: https://www.universal-robots.com/products/
polyscope (accessed on 15 December 2022).

61. Offline Simulator—E-Series—URSim for non Linux 5.12.5. Available online: https://www.universal-robots.com/download/
software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-5125/ (accessed on 30 November 2022).

62. Wizard Easy Programming. Available online: https://new.abb.com/products/robotics/application-software/wizard (accessed
on 15 December 2022).

63. Technical Reference Manual. RAPID Instructions, Functions and Data Types. Available online: https://library.e.abb.com/
public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf (accessed on
15 December 2022).

64. RobotStudio. Available online: https://new.abb.com/products/robotics/robotstudio/robotstudio-desktop (accessed on 15
December 2022).

65. 5 Key Reasons Why the Fanuc CRX Collaborative Robot Is Right for Everyone. Available online: https://crx.fanucamerica.com/
why-cobots-collaborative-robots/ (accessed on 15 December 2022).

66. Programming a Robot Is Child’s Play. Available online: https://www.festo.com/us/en/e/journal/programming-a-robot-as-
child-s-play-id_28594/ (accessed on 16 December 2022).

67. iiQKA: Robots for the People. Available online: https://www.kuka.com/en-au/future-production/iiqka-robots-for-the-people
(accessed on 16 December 2022).

68. User-Friendly Touchscreen Teach Pendant for Novice Robot Users. Available online: https://www.motoman.com/en-us/
products/programming/smart-pendant (accessed on 16 December 2022).

69. HC Series Cobots—Your New Work Assistants. Available online: https://www.yaskawa.eu.com/products/robots/cobot
(accessed on 16 December 2022).

70. Motoman NX100 Controller. Inform II User’s Manual. Available online: http://www.wtech.com.tw/public/download/manual/
yaskawa/NX100/YASKAWA%20NX100%20INFORM%20II%20USER%20Manual.pdf (accessed on 3 January 2023).

http://doi.org/10.1080/00207543.2021.1955994
http://doi.org/10.1145/3124677
http://doi.org/10.1017/S0263574719000353
https://www.universal-robots.com/e-series/
http://doi.org/10.1016/j.rcim.2021.102306
http://doi.org/10.1016/j.promfg.2017.07.113
http://doi.org/10.1016/j.promfg.2020.10.026
http://doi.org/10.1007/s00170-022-08670-x
http://doi.org/10.1016/j.promfg.2017.04.011
http://doi.org/10.1108/IR-11-2018-0231
http://doi.org/10.1109/LRA.2016.2535907
http://doi.org/10.1016/j.procir.2020.08.006
http://doi.org/10.1016/j.jmsy.2021.07.015
https://www.universal-robots.com/products/polyscope
https://www.universal-robots.com/products/polyscope
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-5125/
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-5125/
https://new.abb.com/products/robotics/application-software/wizard
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
https://new.abb.com/products/robotics/robotstudio/robotstudio-desktop
https://crx.fanucamerica.com/why-cobots-collaborative-robots/
https://crx.fanucamerica.com/why-cobots-collaborative-robots/
https://www.festo.com/us/en/e/journal/programming-a-robot-as-child-s-play-id_28594/
https://www.festo.com/us/en/e/journal/programming-a-robot-as-child-s-play-id_28594/
https://www.kuka.com/en-au/future-production/iiqka-robots-for-the-people
https://www.motoman.com/en-us/products/programming/smart-pendant
https://www.motoman.com/en-us/products/programming/smart-pendant
https://www.yaskawa.eu.com/products/robots/cobot
http://www.wtech.com.tw/public/download/manual/yaskawa/NX100/YASKAWA%20NX100%20INFORM%20II%20USER%20Manual.pdf
http://www.wtech.com.tw/public/download/manual/yaskawa/NX100/YASKAWA%20NX100%20INFORM%20II%20USER%20Manual.pdf

Appl. Sci. 2023, 13, 4635 25 of 26

71. Automation Control Environment (ACE) Version 4 User Manual. Available online: https://www.edata.omron.com.au/eData/
Robotics/I633-E-04.pdf (accessed on 10 December 2022).

72. RoboDK Basic Guide. Available online: https://robodk.com/doc/en/Basic-Guide.html (accessed on 4 January 2023).
73. Why Is It Worth Using . . . ArtiMinds Robot Programming Software Solutions? Available online: https://www.artiminds.com/

robot-programming-software/ (accessed on 18 December 2022).
74. Wandelbots. Everyone Can Work with Robots. Available online: https://wandelbots.com/en/ (accessed on 5 January 2023).
75. Pickit. Guide your Robot. Available online: https://www.pickit3d.com/en (accessed on 5 January 2023).
76. Robotmaster Offline Programming Software for Robots. Available online: https://www.robotmaster.com/en (accessed on

6 January 2023).
77. Universal Robots. Simplify Robot Programming with G-Code. Available online: https://www.universal-robots.com/blog/

simplify-robot-programming-with-g-code/ (accessed on 5 January 2023).
78. ROS—Robot Operating System. Available online: https://www.ros.org/ (accessed on 7 January 2023).
79. Plant Automation Technology. Different Types of Robot Programming Languages. Available online: https://www.

plantautomation-technology.com/articles/different-types-of-robot-programming-languages (accessed on 12 December 2022).
80. U.S. Social Security Administration. Code Of Federal Regulations. 404.1568. Skills Requirements. Available online: https:

//www.ssa.gov/OP_Home/cfr20/404/404-1568.htm (accessed on 2 February 2023).
81. Schou, C.; Madsen, O. A plug and produce framework for industrial collaborative robots. Int. J. Adv. Robot. Syst. 2017,

14, 1729881417717472. [CrossRef]
82. Heimann, O.; Guhl, J. Industrial robot programming methods: A scoping review. In Proceedings of the 2020 25th IEEE

International Conference on Emerging Technologies and Factory Automation, Vienna, Austria, 8–11 September 2020; IEEE: New
York, NY, USA, 2020; Volume 1, pp. 696–703.

83. Weintrop, D.; Afzal, A.; Salac, J.; Francis, P.; Li, B.; Shepherd, D.C.; Franklin, D. Evaluating CoBlox: A comparative study
of robotics programming environments for adult novices. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12.

84. Codejig. Block Coding. Available online: https://www.codejig.com/en/block-based-coding (accessed on 10 January 2023).
85. Fogli, D.; Gargioni, L.; Guida, G.; Tampalini, F. A Hybrid Approach to User-Oriented Programming of Collaborative Robots.

Robot. Comput.-Integr. Manuf. 2022, 73, 102234. [CrossRef]
86. GitHub. Your AI Pair Programmer GitHub Copilot. Available online: https://github.com/features/copilot/ (accessed on 17

February 2023).
87. Borboni, A.; Reddy, K.V.; Elamvazuthi, I.; AL-Quraishi, M.S.; Natarajan, E.; Azhar Ali, S.S. The Expanding Role of Artificial

Intelligence in Collaborative Robots for Industrial Applications: A Systematic Review of Recent Works. Machines 2023, 11, 111.
[CrossRef]

88. Hiltner, J. Self-learning Intelligence for Object Recognition. Quality, 1 July 2019.
89. De Marchi, M.; Gualtieri, L.; Rojas, R.A.; Rauch, E.; Cividini, F. Integration of an Artificial Intelligence Based 3D Perception

Device into a Human-Robot Collaborative Workstation for Learning Factories. In Proceedings of the 11th Conference on Learning
Factories (CLF), Graz, Austria, 31 June–2 July 2021.

90. Bai, Y.; Lindqvist, B.; Karlsson, S.; Kanellakis, C.; Nikolakopoulos, G. Multi-Robot Task Allocation Framework with Integrated
Risk-Aware 3D Path Planning. In Proceedings of the 2022 30th Mediterranean Conference on Control and Automation (MED),
Athens, Greece, 28 June–1 July 2022; IEEE: New York, NY, USA, 2022; pp. 481–486.

91. Kaczmarek, W.; Panasiuk, J.; Borys, S.; Banach, P. Industrial robot control by means of gestures and voice commands in off-line
and on-line mode. Sensors 2020, 20, 6358. [CrossRef]

92. Mendes, N.; Safeea, M.; Neto, P. Flexible programming and orchestration of collaborative robotic manufacturing systems. In
Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics, Porto, Portugal, 18–20 July 2018; IEEE:
New York, NY, USA, 2018; pp. 913–918.

93. Pérez, L.; Diez, E.; Usamentiaga, R.; García, D.F. Industrial robot control and operator training using virtual reality interfaces.
Comput. Ind. 2019, 109, 114–120. [CrossRef]

94. Psarakis, L.; Nathanael, D.; Marmaras, N. Fostering short-term human anticipatory behavior in human-robot collaboration. Int. J.
Ind. Ergon. 2022, 87, 103241. [CrossRef]

95. De Pace, F.; Manuri, F.; Sanna, A.; Fornaro, C. A systematic review of Augmented Reality interfaces for collaborative industrial
robots. Comput. Ind. Eng. 2020, 149, 106806. [CrossRef]

96. Ong, S.K.; Yew, A.W.W.; Thanigaivel, N.K.; Nee, A.Y. Augmented reality-assisted robot programming system for industrial
applications. Robot. Comput.-Integr. Manuf. 2020, 61, 101820. [CrossRef]

97. Introducing Wizard Easy Programming. Available online: https://youtu.be/2l-IKmdcJsM (accessed on 18 December 2022).
98. Omron Adept Robot Programming: It’s That Easy! Available online: https://www.youtube.com/watch?v=9Y-3i0I07Bc (accessed

on 18 December 2022).
99. Robotiq. Skills to Integrate a Robot. Available online: https://blog.robotiq.com/skills-to-integrate-a-robot?_ga=2.195912812.17

84018681.1676172069-1475687650.1676171346 (accessed on 30 January 2023).
100. Doyle-Kent, M.; Kopacek, P. Adoption of collaborative robotics in industry 5.0. An Irish industry case study. IFAC-Pap. 2021, 54,

413–418. [CrossRef]

https://www.edata.omron.com.au/eData/Robotics/I633-E-04.pdf
https://www.edata.omron.com.au/eData/Robotics/I633-E-04.pdf
https://robodk.com/doc/en/Basic-Guide.html
https://www.artiminds.com/robot-programming-software/
https://www.artiminds.com/robot-programming-software/
https://wandelbots.com/en/
https://www.pickit3d.com/en
https://www.robotmaster.com/en
https://www.universal-robots.com/blog/simplify-robot-programming-with-g-code/
https://www.universal-robots.com/blog/simplify-robot-programming-with-g-code/
https://www.ros.org/
https://www.plantautomation-technology.com/articles/different-types-of-robot-programming-languages
https://www.plantautomation-technology.com/articles/different-types-of-robot-programming-languages
https://www.ssa.gov/OP_Home/cfr20/404/404-1568.htm
https://www.ssa.gov/OP_Home/cfr20/404/404-1568.htm
http://doi.org/10.1177/1729881417717472
https://www.codejig.com/en/block-based-coding
http://doi.org/10.1016/j.rcim.2021.102234
https://github.com/features/copilot/
http://doi.org/10.3390/machines11010111
http://doi.org/10.3390/s20216358
http://doi.org/10.1016/j.compind.2019.05.001
http://doi.org/10.1016/j.ergon.2021.103241
http://doi.org/10.1016/j.cie.2020.106806
http://doi.org/10.1016/j.rcim.2019.101820
https://youtu.be/2l-IKmdcJsM
https://www.youtube.com/watch?v=9Y-3i0I07Bc
https://blog.robotiq.com/skills-to-integrate-a-robot?_ga=2.195912812.1784018681.1676172069-1475687650.1676171346
https://blog.robotiq.com/skills-to-integrate-a-robot?_ga=2.195912812.1784018681.1676172069-1475687650.1676171346
http://doi.org/10.1016/j.ifacol.2021.10.483

Appl. Sci. 2023, 13, 4635 26 of 26

101. Gjeldum, N.; Aljinovic, A.; Crnjac Zizic, M.; Mladineo, M. Collaborative robot task allocation on an assembly line using the
decision support system. Int. J. Comput. Integr. Manuf. 2022, 35, 510–526. [CrossRef]

102. Universal Robots. The UR5e. Available online: https://www.universal-robots.com/products/ur5-robot/ (accessed on
10 October 2022).

103. Park, J.; Jung, W. A study on the development of a task complexity measure for emergency operating procedures of nuclear
power plants. Reliab. Eng. Syst. Saf. 2007, 92, 1102–1116. [CrossRef]

104. Park, J.; Jang, I. Can we determine the complexity level of a proceduralized task? In Proceedings of the Transactions of the Korean
Nuclear Society Virtual Spring Meeting, Jeju, Korea, 13–14 May 2021.

105. Kirschgens, L.A.; Ugarte, I.Z.; Uriarte, E.G.; Rosas, A.M.; Vilches, V.M. Robot hazards: From safety to security. arXiv 2018,
arXiv:1806.06681.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/0951192X.2021.1946856
https://www.universal-robots.com/products/ur5-robot/
http://doi.org/10.1016/j.ress.2006.03.009

	Introduction
	Technical Readiness for Cobot Deployment
	Existing Cobot Programming and Control Methodologies
	Programming of Industrial and Collaborative Robots
	Cobot Task Complexity
	Task Allocation in Human–Robot Collaboration
	Leading Cobot Vendors’ Programming and Control Methodologies
	Controlling Cobots without Formal Programming
	Existing Cobot Control Methods
	Proposed Cobot Control Methods in Recent Literature

	The Cobot Programming and Control Sales Pitch
	Cobot Vendors’ Perspectives on Their Programming Applications
	Epitomising the Marketing Message

	The Underlying Skillset
	Fundamental Technical Aspects of Cobot Control
	Robotics (Hardware)
	Programming (Software)
	Skills Required to Program and Control a Cobot
	Skills Versus Task Complexity Testing Methodology and Results

	Analysis of the Findings of This Review
	Effectiveness of Existing Cobot Program and Control Methodologies
	The Practicality of the Primary Cobot Program and Control Methodologies Proposed in the Literature
	Block-Based Interface
	Voice and Gesture Control
	Virtual and Augmented Reality Systems

	Summary of Findings and Responses to Research Questions

	Discussion and Future Work
	Conclusions
	References

