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Abstract: With the rapid development of ubiquitous data collection and data analysis, data privacy
in a recommended system is facing more and more challenges. Differential privacy technology can
provide strict privacy protection while reducing the risk of privacy leakage, but it also introduces
unwanted noise, which makes the performance of the recommender system worsen. Among different
users, the degree of their sensitivity to privacy is usually different. Thus, through considering the
impact of users’ personalized requirements, the collaborative filtering algorithm can be designed
to reduce the amount of unwanted noise. Taking the above assertions into account, we propose a
collaborative filtering algorithm based on personalized privacy protection. First, it locally classifies
ratings by privacy sensitivity on the user side, then utilizes the random flip mechanism to protect the
privacy-sensitive ratings. Then, after the server catches the perturbed rating data, we reconstruct
the joint item-item distribution through the Bayesian estimation method. Experimental results
show that our proposed algorithm can significantly improve the recommendation performance of
recommendation systems while protecting users’ privacy.

Keywords: recommendation system; differential privacy; collaborative filtering algorithm;
privacy leakage

1. Introduction

Recommendation systems are widely used in real-life recommendation tasks as an
effective method to solve the issue of information overload.

Collaborative filtering algorithm is the most classic and commonly used in the field of
recommendation system. The basic idea of collaborative filtering algorithm is to recom-
mend items to users based on their previous preferences and the choices of other users
with similar interests, that is, based on users’ historical behavioral data to discover users’
preferences and to predict the items that users may like. It does not rely on any items’
additional information (e.g., their own characteristics) or any users’ additional information
(e.g., age, gender, etc.). Currently, the most widely used collaborative filtering algorithm is
the neighborhood-based method, which includes two main types of algorithms. One type
is the user-based collaborative filtering algorithm (UserCF), which recommends products
to users according to others has the similar interests as them, the other is the item-based
collaborative filtering algorithm (ItemCF), which recommends items which are similar
to their previously preferred items. Additionally, recommender systems usually need to
collect users’ personal information and interaction records to train models and perform
high-quality product recommendations [1,2]. Traditional recommender systems assume
that platform parties and users are completely trustworthy with each other. However, the
reality is often not as ideal as we think, there often exists the risk of privacy leakage in real
scenarios, and this risk exists in multiple ways, including between users and platforms,
between users and users, and between platforms and platforms. This leads to the risk
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of leakage of users’ private information. Collaborative filtering algorithms are widely
applied in various fields; however, these algorithms extensively use users’ historical in-
formation in the process of preference calculation, which may lead to the risk of privacy
leakage [3–5]. Therefore, privacy protection in recommendation algorithms is of great
concern to users. To address the issue of privacy leakage during recommendation, many
studies have tried to bring the differential privacy-preserving strategy into collaborative
filtering algorithms [6]. Some typical algorithms include one designed by Zhu et al. [7],
which is an item-based differential privacy recommendation algorithm and a user-based
differential privacy recommendation algorithm, which can effectively solve the issue of
privacy leakage of collaborative filtering algorithms, but due to its neglect of the sensitivity
of user rating data, a large amount of noise data is introduced, resulting in unsatisfactory
algorithm efficiency, and at the same time, the user-based strategy and the project-based
strategy are independent to each other, so advantages of algorithms are not fully released.
Wang et al. [8] combined the Bhattacharyya similarity with the K-medoids clustering to im-
prove the accuracy of the similarity measure of the differential privacy-based collaborative
filtering algorithms. Meanwhile, the differential privacy mechanism also introduces a lot of
noise data that impairs the performance of the recommendation system. How to trade-off
between algorithmic performance and the privacy security has become one of the hot spots
in the field of differential privacy-preserving recommendation algorithms.

To better protect users’ privacy security, many scholars have tried to introduce the
method of data reconstruction, which is an evaluation algorithm based on the probabilis-
tic perturbation mechanism. Traditional evaluation algorithms can only reconstruct the
distribution of a single vector; thus, Rade et al. [9] proposed a joint cardinality estimation
method to reconstruct the joint distribution of multiple vectors. Then, Chen et al. [10]
introduced the joint cardinality estimation method into the neighbor-based collaborative
filtering algorithm, which effectively improved the performance of the recommendation
system while protecting the security of users’ privacy. Guo et al. [11,12] proposed a joint
frequency estimation algorithm based on the random response mechanism, and applied it
to the neighbor-based collaborative filtering algorithm to protect the security of users’ pri-
vacy. However, the estimation results of these joint estimation algorithms mentioned above
are sometimes negative, which can seriously affect the accuracy of the distribution of rating
prediction. Furthermore, Ren et al. [13] proposed a distributed reconstruction method
for the high-dimensional crowdsourced data based on the random response mechanism,
which could greatly improve the release accuracy of the high-dimensional crowdsourced
data. However, there exists great differences in structure between the crowdsourced data
and the rating data, resulting in the reconstruction method based on high-dimensional
crowdsourced data cannot be directly applied to the recommendation system. In ad-
dition, different users have different sensitivity to privacy, and ignoring differences be-
tween users not only does not meet the user’s personalized privacy requirements, but
also introduces additional noise into the data, thereby reducing the performance of the
recommendation system.

To address the issue of user privacy leakage, this paper proposes a collaborative
filtering algorithm based on personalized privacy protection. Our main contributions
include: (1) providing a personalized privacy sensitivity classification and coding method,
which can effectively reduce the noise added by the privacy protection; and (2) propose a
Bayesian joint distribution estimation method through creatively applying the Bayesian
algorithm to the similarity calculation of recommendation systems.

2. Collaborative Filtering Algorithm Based on Personalized Privacy Protection

To better protect the security of users’ privacy, while reducing the impact of noise
on the performances of the recommendation algorithms, this paper proposes a personal-
ized collaborative filtering-based recommendation algorithm with the differential privacy
protection, and the algorithmic architecture is shown in Figure 1.
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From Figure 1, each user locally classifies the privacy sensitivity of ratings and encodes
it, then perturbs the ratings and sends the vector of perturbed ratings to the server. Accord-
ing to all the perturbed ratings, the server first utilizes the Bayesian estimation to reconstruct
the joint distribution of items, then calculates the item-item similarity and sends the results
to users. Finally, it locally completes the high-quality, personalized recommendation.

2.1. Evaluation and Encoding of the Privacy Sensitivity of User Ratings

For recommendation systems, malicious attackers often rely on users’ rating data to
infer and obtain user privacy. Numerous studies [14–16] have proved that there exists
a certain correlation between the size of the ratings and user privacy, and too high and
too low ratings tend to be more favorable for malicious attackers to infer users’ private
information, such as user preferences. On the other side, from the user’s perspective, both
users’ rating habits and the degree of the sensitivity to privacy protection are different.
Based on the above two factors, the classification rules of the privacy sensitivity towards
users’ ratings are proposed as follows:

rui =

{
sensitive rating, when rui ∈ [rmin, ru − γu] ∪ [ru + γu, rmax];

weakly− sensitive rating, when rui ∈ (ru − γu, ru + γu);
(1)

where rmin and rmax represent the maximum and minimum values specified by the rating
rules, respectively; ru denotes the average score of user u; γu is an adjustable variable to
adjust the range of intervals classified.
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Depending on the sensitivity type of ratings, the encoding function E is

E(rui) =


bs+

ui , when rui ∈ (ru + γu, rmax);
bns

ui , when rui ∈ (ru − γu, ru + γu)
bs−

ui , when rui ∈ (rmin, ru − γu);
; (2)

where bs+
ui , bns

ui , and bs−
ui are 1, 0, and −1, respectively, that is, the encoding function encodes

the high-sensitivity score as 1, the low-sensitivity score as −1, and the weakly sensitive
score as 0.

The rating of u constitutes the rating vector of Ru. = {ru1, ru2, ru3, . . . , run}. According
to the function E, Ru. is encoded to be the sensitive rating vector Bs

u. and weakly sensitive
rating vector Bns

u.
Bs

u. =
{

bs
ua1

, bs
ua2

, bs
ua3

, . . . , bs
uax

}
Bns

u. =
{

bns
uc1

, bns
uc2

, bns
uc3

, . . . , bns
ucn−x

}
where a = {a1, a2, a3, . . . , ax} represents the collection of items corresponding to the sensi-
tive rating, and c = {c1, c2, c3, . . . , cn−x} represents the collection of items corresponding to
the weakly sensitive rating. Additionally, bs

uai
∈
{

bs+
uai

, bs−
uai

}
.

2.2. Differential Privacy Protection for Rating Data

To protect the security of the encoded rating data, users need to locally perturb them.
Based on the random flip mechanism, the perturbation function for the sensitive ratings is
shown below:

bŝ
uai

= ∅
(

bs
uai

)
=

{
bs

uai
, i f y > p;

bs̃
uai

, i f y ≤ p;
(3)

where p = 1
1+eε , q = 1 − p, and ε represents the privacy budget, respectively, and y

represents one random number evenly distributed within [0, 1]. The variable bs̃
uai

is the
result of the inverse operation on bs

uai
. bŝ

uai
is the output of bs

uai
being perturbed. In the

perturbation function of ∅, bs
uai

flips with the probability of p and does not flip with the
probability of q, i.e.,

pr
(

bs+
uai
→ bs+

uai

)
= pr

(
bs−

uai
→ bs−

uai

)
= q

pr
(

bs−
uai
→ bs+

uai

)
= pr

(
bs+

uai
→ bs−

uai

)
= p

Based on the encoding function E and the perturbation function ∅, Figure 2 shows the
privacy protection operation for the local rating data. First, encode the rating vector Ru. of
user u to be Bs

u. and Bns
u. through the function E. Second, use the perturbation function ∅

to perturb each element within Bs
u. to get the perturbed sensitive rating vector B̂s

u.. Finally,
stitch B̂s

u. and Bns
u. into B̂u., and send B̂u. to the server.
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2.3. Item-Item Similarity

After the server receives the perturbed rating data B̂u.(u = 1, 2, . . . , m) from each user,
the perturbation matrix B̂ of ratings can be obtained as shown in Figure 3. B̂.α and B̂.β
represent the perturbation rating vectors for item α and item β, respectively. According
to the type of common ratings stemming from item α and item β, divide the common
ratings into the collection Os

αβ including all the sensitive rating pairs and the collection Ons
αβ,

including all the weakly sensitive rating pairs, where

Os
αβ =

{
b̂s

.α, b̂s
.β

}

Ons
αβ =

{(
b̂s

.α, b̂ns
.β

)
,
(

b̂ns
.α , b̂s

.β

)
,
(

b̂ns
.α , b̂ns

.β

)}
Furthermore, IUs(α, β) and IUns(α, β) represent the collections of users corresponding

to Os
αβ and Ons

αβ, respectively, then calculate the similarity of each rating pair, then obtain
the item-item similarity between α and β with the weighted sum, i.e.,

sim(α, β) = λ× sim1 + (1− λ)× sim2 (4)

where sim1 represents the similarity of the sensitive rating pair; sim2 represents the similar-
ity of the weakly sensitive rating pair; the parameter λ denotes the weight coefficient.
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2.3.1. Similarity of the Sensitive Rating Pair

To improve the performance of the recommendation system, we use the Bayesian
algorithm to reconstruct the joint distribution of the sensitive rating pair within B̂. For B̂s

.α
and B̂s

.β, W and Ŵ represent the collection of pre-perturbation sensitive rating pairs and
the collection of post-perturbation sensitive rating pairs.

W =
{(

bs−
.α , bs−

.β

)
,
(

bs−
.α , bs+

.β

)
,
(

bs+
.α , bs−

.β

)
,
(

bs+
.α , bs+

.β

)}

Ŵ =
{(

b̂s−
.α , b̂s−

.β

)
,
(

b̂s−
.α , b̂s+

.β

)
,
(

b̂s+
.α , b̂s−

.β

)
,
(

b̂s+
.α , b̂s+

.β

)}
The joint distribution estimation algorithm based on Bayesian algorithm is shown as

follows.
First, initialize the rating pairs in W to be uniformly distributed, then calculate the

prior probability through Bayesian method, i.e.,

P
(

ŵ ∈ Ŵ
∣∣∣w ∈W

)
=

len(w)

∏
i=1

pw[i]⊕ŵ[i] × q1−w[i]⊕ŵ[i] (5)

where p and q represent the random flip probability, respectively; len(w) denotes the
number of elements in the collection of w; w[i], and ŵ[i] represent the i-th element in the
collections of w and ŵ, respectively.

Furthermore, iteratively update the value of the posterior probability estimation for
W, i.e.,

Piter

(
w
∣∣∣(b̂s

uα, b̂s
uβ

)
∈ Ŵ

)
=

Piter(w)× P
(

b̂s
uα, b̂s

uβ

∣∣∣w)
∑t∈W Piter(t)× P

(
b̂s

uα, b̂s
uβ

∣∣∣t) (6)

Piter+1(w ∈W) =
∑u∈IUs(α,β) Piter

(
w
∣∣∣(b̂s

uα, b̂s
uβ

)
∈ Ŵ

)
NIUs(α,β)

(7)

where iter represents the times of iterations. In addition, the algorithm stops iterating under
the following condition, i.e.,

max
W

Piter(w ∈W)−max
W

Piter−1(w ∈W) ≤ δ (8)
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where δ is used to control the number of iterations. Finally, Algorithm 1 outputs the
Bayesian estimation distribution P(w ∈W). According to P(w ∈W), the similarity of the
sensitive rating pair can be obtained as follows, i.e.,

sim1 = P
(

w =
(

b̂s−
.α , b̂s−

.α

))
+ P =

((
b̂s+

.α , b̂s+
.α

))
(9)

Algorithm 1: Joint distribution estimation algorithm based on Bayesian method

Input: p,q; B̂.α, B̂.β;δ; W,Ŵ; IUs(α, β)

Output: P(w ∈W)
1. Initialize P0(w ∈W) = 0.25;
2. for w in W
3. for ŵ in Ŵ
4. Calculate the prior probability P(ŵ|w) according to Formula 5;
5. end for
6. end for
7. Initialize iter = 0;//The number of iteration executions
8. while (max

W
Piter(w ∈W)−max

W
Piter−1(w ∈W) > δ)

9. for u in IUs(α, β)
10. for w in W
11. Calculate the posteriori probability Piter

(
w
∣∣∣(b̂s

uα, b̂s
uβ

)
∈ Ŵ

)
according to Formula 6;

12. end for
13. end for
14. Calculate Piter+1(w ∈W) according to Formula 7;
15. Update iter = iter + 1;
16. return P(w ∈W) = Piter(w ∈W);//Return after the while loop ends

2.3.2. Similarity of the Weakly Sensitive Rating Pair

The weakly sensitive rating pair remains the same in similarity as the original rating
pair, and the detailed theoretical analysis can be seen in Section 3.1. The similarity of the
weakly sensitive rating pair can be calculated by:

sim2 =
1

NIUns(α,β)
× ∑

u∈IUns(α,β)

2−
∣∣∣b̂uα − b̂uβ

∣∣∣
2

(10)

where
(

b̂uα, b̂uβ

)
∈ Ons

αβ.

2.4. Local Top-N Recommendation

Users can obtain the collection N(α) of item α′s neighbors according to the similarity
results in the server. The local prediction formula for the user u’s rating of the item α is
shown below.

r(u, a) =
∑v∈N(α) sim(a, v)× ruv

∑v∈N(α) sim(a, v)
(11)

where ruv denotes the original rating of item v from user, u, and v is an element of the collec-
tion of N(α). Finally, the top N items with the highest predicted ratings are recommended
to users.

3. Algorithmic Analysis
3.1. Analysis on Efficiency

In this paper, we mainly use the following two methods to ensure the validity of
the rating data, reducing the impact stemming from the privacy noise on the recommen-
dation process.
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First, controlling the impact of privacy protection noise on recommendation results
through classifying rating data according to its sensitivity. Specifically, for the weakly
sensitive rating pair, its similarity is the same as the similarity when the rating data is not
perturbed. This is because when encoding the rating data, the weakly sensitive rating is
encoded as 0 and the sensitive score is ±1. The difference between the sensitive rating
and the weakly sensitive rating, whether before or after the random flip operation, is
always 1. Therefore, the sensitivity classification and the encoding strategy adopted in
this paper can effectively reduce the influence of noise on the similarity calculation, thus
substantially improving the accuracy of the recommendation system.

Second, for the sensitive scoring pair, we utilize the Bayesian algorithm to reconstruct
its distribution. Given the distribution of the random flip probability and the distribution
of the rating pairs having been randomly flipped, the distribution of the original rating pair
can be estimated. The accuracy of the estimation result obtained by Algorithm 1 is affected
by the initial value of P0 and the iteration times of δ. In this paper, initialize the original
distribution be the uniform distribution, and through adjusting the times of iterations
to ensure the accuracy of the estimation results. Reconstructing the distribution of the
sensitive rating pair can reduce the impact of noisy data on the similarity calculation results
of the sensitive rating pair, thereby further improving the performance of the recommen-
dation system.

3.2. Analysis on Security

The proposed algorithm uses the random flip mechanism to perturb the encoded
privacy-sensitive ratings and accomplish differential privacy protection for the sensitive
rating. The proof that the proposed algorithm can satisfy the differential privacy security is
as follows.

Assume Bs
u. and Bs′

u. be two different collections of neighbor data for user, u, and there
exists one different sensitive rating element between the two collections, i.e.,

Bs
u. =

[
bs

ua1
, bs

ua2
, bs

ua3
, . . . , bs

uai
, . . . , bs

uax

]

Bs′
u. =

[
bs

ua1
, bs

ua2
, bs

ua3
, . . . , bs′

uai
, . . . , bs

uax

]
∅ represents the random flip operation. Assume Xu = [xua1 , xua2 , xua3 , . . . , xuax ] de-

note the random output of ∅. Then,

pr(∅(Bs
u. = Xu))

pr(∅(Bs
u.
′ = Xu))

=
∏x

t=1 pr
(
bs

uat → xuat

)
∏x

t=1 pr
(
bs

uat
′ → xuat

) =
pr
(
bs

uat → xuat

)
pr
(
bs

uat
′ → xuat

) ≤ q
p
= eε

Therefore, it can be proved that the proposed algorithm can satisfy the requirements
of the ε-differential privacy.

4. Experimental Analysis

In this paper, the analysis of performance is carried out on the publicly available
datasets MovieLens 1M and Yahoo Music, and the details of the two datasets are shown
in Table 1. To better observe the experimental effect, MovieLens 1M and Yahoo Music are
both divided into the training set and the test set in the ratio of 8:2.

Table 1. Basic information on datasets.

Dataset Number of
Users

Number of
Items

Number of
Ratings

Range of
Ratings Sparsity (%)

MovieLens
1M 6000 4000 1,000,000 {1,2,3,4,5} 95.83

Yahoo Music 8089 1000 270,121 {1,2,3,4,5} 96.66
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Here, we use the mean absolute error (MAE) and the root mean square error (RMSE)
as the evaluation indicators, and detailed definitions of MAE and RMSE are:

MAE =
∑u∈U,v∈V |ruv − r′uv|

n
(12)

RMSE =

√
∑u∈U,v∈V(ruv − r′uv)

2

N
(13)

where ruv and r′uv represent the real rating and the predictive rating of user, u, on item,
v, respectively. U and V represent the collection of users and the collection of items,
respectively.

4.1. Algorithms for Comparison

To further illustrate the performance of the algorithm in this paper, the following
mainstream algorithms are selected.

(1) IBCF-DS [1], which is a collaborative filtering algorithm based on item similarity.
Similar to PPPCF, it also adopts the rating encoding method [12] to ensure the consistency of
the comparison. However, IBCF-DS does not adopt any data privacy protection measures,
so it can be used as a baseline for the performance comparison.

(2) PNCF [7], which is an item-based collaborative filtering algorithm. It brings the
exponential mechanism and the Laplace mechanism to protect the privacy of data [13–16],
and introduces the recommendation perception sensitivity and truncated similarity to
improve the utility of the algorithm.

(3) DPLCF [10], which is a distributed recommendation algorithm. Similar to PPPCF,
it uses the random flip mechanism to locally protect the privacy security of the implicit
data on the user side, then uses the cardinality estimation mechanism [17,18] on the server
side to reconstruct the joint cardinality between items and through reducing the Jekaard
similarity error between projects to optimize the accuracy of recommendations.

(4) LDP item-base CF [11], which uses the UE encoding strategy to flip data with a
certain probability to locally protect the privacy of data on the user side. On the server
side, it uses the frequency estimation and the joint frequency estimation [19–22] to recon-
struct data to reduce the error of privacy noise on similarity and ensure the accuracy of
recommendations.

(5) Truncated PPPCE, which is constructed through removing the Bayesian estimation
module from PPPCF, in order to illustrate the influence of the Bayesian estimation module
on PPPCE.

4.2. Parameter Settings

In this paper, assign 0.05 to the iteration threshold δ of the Bayesian estimation, and
assign 0.2 to the similarity adjustment parameter λ. However, assign 0.5 to the similarity
adjustment parameter λ in Equation 2 and Equation 3, and refer to the literature [11], assign
0.5 to the parameter of conditional probability similarity in the LDP item-base CF algorithm.
To observe the algorithm performance under different privacy budgets, the range of the
privacy budget is assigned to [0.1, 1] with the step size of 0.1. To observe the effect of the
number of neighbors on the algorithm, the number N of neighbors of items is assigned to
[20, 100] with the step size of 20.

4.3. Parameter Settings
4.3.1. Effect of N on Experimental Results

Assign 1 to the privacy budget ε, and Table 2 shows the performance of each algorithm
with different numbers of neighbors, i.e., N.
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Table 2. Comparison of the algorithm performance with different values of N.

Dataset Indicator Algorithm N = 20 N = 40 N = 60 N = 80 N = 100

MovieLens
1M

MAE

IBCF-DS 0.7219 0.7176 0.7169 0.7170 0.7171
DPLCF 0.8912 0.8722 0.8718 0.8726 0.8694

LDP
item-base CF 0.8666 0.8484 0.8407 0.8361 0.8330

PNCF 0.9600 0.9290 0.9110 0.8960 0.8870
Truncated

PPPCE 0.8582 0.8527 0.8537 0.8502 0.8498

PPPCE 0.7911 0.7830 0.7783 0.7781 0.7798

RMSE

IBCF-DS 0.9288 0.9220 0.9208 0.9207 0.9208
DPLCF 1.1284 1.1050 1.1049 1.1050 0.1021

LDP
item-base CF 1.1217 1.0983 1.0888 1.0825 01.0784

PNCF 1.2470 1.2040 1.1790 1.160 1.1480
Truncated

PPPCE 1.0944 1.0868 1.0883 1.0840 1.0837

PPPCE 1.0071 0.9974 0.9220 0.9913 0.9932

Yahoo Music

MAE

IBCF-DS 0.9482 0.9484 0.9484 0.9485 0.9486
DPLCF 1.0218 1.0243 1.0228 1.0235 1.0213

LDP
item-base CF 1.0461 1.0438 1.0427 1.0433 1.0414

PNCF 1.0700 1.0620 1.0530 1.0389 1.0339
Truncated

PPPCE 1.0052 1.0038 1.0014 1.0037 1.0026

PPPCE 0.9981 0.9980 0.9996 0.9989 0.9987

RMSE

IBCF-DS 1.2464 1.2449 1.2447 1.2446 1.2445
DPLCF 1.2842 1.2827 1.2813 1.2813 1.2790

LDP
item-base CF 1.3298 1.3257 1.3265 1.3260 1.3247

PNCF 1.5120 1.4950 1.4790 1.4500 1.4290
Truncated

PPPCE 1.2830 1.2777 1.2756 1.2765 1.2751

PPPCE 1.2727 1.2689 1.2713 1.2699 1.2685

Table 2 shows that with the increasing value of N, both MAE and RMSE of each
algorithm continue to decrease, indicating that the increase in the number of neighbors will
improve the accuracy of the recommendation system. PNCF performed poorly because it
did not have the data reconstruction module. Among these differential privacy protection-
based algorithms, PPPCE performed best in terms of MAE and RMSE, which were closest
to the baseline algorithm IBCF-DS. Meanwhile, comparing with Truncated PPPCE, the
average MAE of PPPCE is reduced by 8.2% (0.07) and the average RMSE of PPPCE is
reduced by 8.3% (0.09) on the dataset of MovieLens 1M; the average MAE of PPPCE is
reduced by 8.2% (0.07) and the average RMSE of PPPCE is reduced by 8.3% (0.09) on
the dataset of Yahoo Music, indicating that the Bayesian estimation module has a good
reconstruction effect on the perturbated data and can effectively improve the performance
of the recommendation algorithm. Additionally, seen from Table 2, PPPCE outperforms
DPLCF and LDP item-base CF on the two datasets, indicating that the Bayesian estimation
method and the data sensitivity division method adopted in PPPCE perform better than
the cardinality estimation method and frequency estimation method used in those two
algorithms in terms of the data reconstruction.

4.3.2. Effect of ε on Experimental Results

To ensure the effectiveness of privacy protection, we set the value of the privacy
budget to be in the range of [0.1,1]. Figures 4 and 5, respectively show the changes of MAE
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and RMSE on the dataset as the value of ε changes. Due to the lack of the differential
privacy protection mechanism, the curve of IBCF-DS remains unchanged.
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With the increase in ε of the two datasets, both MAE and RMSE show a downward
trend. This is because as ε increases, the noise of data decreases and the availability of data
increases. Seen from the above figures that PPPCF outperforms other algorithms except
IBCF-DS on both datasets. First, each algorithm performs in terms of MAE on the dataset of
MovieLens 1M, PPPCF is 9.2% (0.083) less than the Truncated PPPCE, 9.7% (0.089) less than
DPLCF, 3.3% (0.028) less than LDP item-base CF, and 5.1% (0.044) less than PNCF. Then,
each algorithm performs in terms of RMSE on the dataset of MovieLens 1M, PPPCF is 9.3%
(0.106) less than the Truncated PPPCE, 10.6% (0.123) less than DPLCF, 4.2% (0.046) less
than LDP item-base CF, and 5.7% (0.063) less than PNCF. Second, due to the data on the
dataset of Yahoo Music is sparser, causing the effect of the Bayesian estimation mechanism,
the cardinality estimation mechanism, and the frequency estimation mechanism is not
obvious, but compared with PNCF without the data reconstruction module, these three
data reconstruction algorithms can still bring obvious improvement in utility. Among the
three algorithms with data reconstruction, the prediction error of PPPCF still performs best,
indicating that PPPCF can indeed improve the accuracy of the recommendation algorithm.

4.3.3. Algorithmic Efficiency

PPPCF mainly consists of three operations: local data processing, similarity calculation,
and rating prediction. The local data processing operation can be further divided into two
parts, one is the classification and encoding of ratings, the other is the differential privacy
protection for ratings. As the local operation needs to traverse all the user-rating vectors in
the dataset, its time complexity is O(n).
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The item-item similarity calculation includes the similarity calculation of the sensitive
rating pairs and the similarity calculation for the weakly sensitive rating pairs. Assuming
that the number of sensitive rating pairs is k, according to the execution process of BBBCF,
when calculating the similarity of an item-item pair, it should traverse the weakly sensi-
tive rating pairs once and the sensitive rating pairs iter times, so the time complexity is
O(((k− 1)·iter) + m), and the time complexity of the similarity calculation on the server
side is O

(
((k− 1)·iter + m)·n2). From Equation (11), the time complexity of the user’s local

prediction for all items is O(n). Choose the DPLCF and LDP item-based CF algorithms,
which also apply the localized differential privacy frameworks, for the comparative analy-
sis. According to the calculation process of these two algorithms, the time complexity of
their local data processing is also O(n), and the time complexity of the similarity calcula-
tion is O

(
m·n2). Additionally, since the rating prediction model used in the comparison

algorithms is the same as PPPCF, so their time complexities of the rating prediction are
O(n). Compared with all the comparison algorithms, the time complexity of the local data
processing section and the rating prediction section of PPPCF is the same as others, but in
the similarity calculation section, the time complexity of PPPCF is higher due to the need to
iteratively reconstruct the distribution of rating data. However, since k� m and iter � m,
it is still in the same range as all the comparison algorithms.

To further verify the results of the complexity analysis, taking the Movielens 1M and
Yahoo Music datasets for example, assign ε and N be 1, 100, then evaluate the time overhead
of each algorithm on the two datasets, experimental results are shown in Table 3. Each
algorithm spends about the same amount of time on local data processing operations, with
the PPCF algorithm having the least time overhead. This is because the PPPCF algorithm
classifies the data sensitivity before perturbing the data, which greatly reduces the amount
of data that needs to be perturbed.

Table 3. Comparison of the time overhead.

Dataset Runtime/s DPLCF LDP Item-Base CF Truncated PPPCE PPPCF

Yahoo Music

Local Data Processing 2.36 2.55 1.78 1.83

Similarity Calculation 32.79 41.25 22.71 382.54

Rating Prediction 53.47 52.80 47.59 57.39

MovieLens 1M

Local Data Processing 8.22 8.62 7.79 7.71

Similarity Calculation 652.23 833.37 507.95 5497.68

Rating Prediction 464.94 488.14 467.07 475.33

In the process of the similarity calculation, PPPCF is affected by k (i.e., number of the
sensitive rating pairs) and iter (i.e., times of iterations), so multiple iterations are required
to ensure a lower prediction error, causing its time overhead for the similarity calculation
is greater than the other comparison algorithms. Meanwhile, the benefit of high time
overhead is that its prediction error is lower than others.

Additionally, PPPCF utilizes the Hamming distance to measure the similarity, and
in the actual operation process, the Hamming distance between vectors can be obtained
through XOR operation, which can improve the operation efficiency of PPPCF algorithm.
This is confirmed by the fact that the Truncated PPPCE has a smaller time overhead in
calculating similarity in Table 3. For the recommendation algorithm, the efficiency of the
rating prediction calculation is particularly important, and the time taken to predict ratings
for a single user on the Yahoo Music and Movielens 1M datasets is 6~7 ms and 78~81 ms,
respectively, which can meet the actual needs.

In summary, although the PPPCF increases the time overhead caused by the similarity
calculation on the server side, it does not affect the efficiency of the rating prediction,
and the recommendation error of PPPCF is superior to other algorithms for comparison
on datasets of different sparsity. This shows that under the interaction of the privacy
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sensitivity classification module and the Bayesian data reconstruction module, the similarity
calculation is less affected by the perturbed data to achieve higher data availability and
recommendation accuracy.

5. Conclusions

Based on the random flip mechanism, this paper proposes a collaborative filtering
algorithm with differential privacy-preserving protection. In order to trade off the relation-
ship between privacy protection and performance of recommendation, it classifies ratings
into privacy-sensitive and weakly sensitive privacy ratings according to user’s personalized
needs for privacy. Then, it brings a coding rule for ratings to effectively reduce unwanted
noise resulting from privacy protection. Furthermore, it reconstructs the distribution of the
perturbated data through the Bayesian joint estimation model. Experimental results on two
public datasets verify that the proposed algorithm has better performance in trading off
between the performance of recommendation system and the security of privacy, and it
is of certain practical value. Due to the privacy protection reduces the recommendation
efficiency of the system to a certain extent, in our future work, we will focus on the data
pre-processing strategies, such as cleaning and classification of rating data to further reduce
time consumption. Additionally, we will also consider doing some exploration in hybrid
recommendation algorithms.
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