
Citation: Zhang, J.; Liu, X.; Zhang, X.;

Xi, Z.; Wang, S. Automatic Detection

Method of Sewer Pipe Defects Using

Deep Learning Techniques. Appl. Sci.

2023, 13, 4589. https://doi.org/

10.3390/app13074589

Academic Editor: Luis Javier

Garcia Villalba

Received: 4 March 2023

Revised: 2 April 2023

Accepted: 3 April 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Automatic Detection Method of Sewer Pipe Defects Using Deep
Learning Techniques
Jiawei Zhang 1, Xiang Liu 1,*, Xing Zhang 2, Zhenghao Xi 1 and Shuohong Wang 3

1 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China

2 Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
3 Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University,

Cambridge, MA 02138, USA
* Correspondence: xliu@sues.edu.cn

Abstract: Regular inspection of sewer pipes can detect serious defects in time, which is significant to
ensure the healthy operation of sewer systems and urban safety. Currently, the widely used closed-
circuit television (CCTV) inspection system relies mainly on manual assessment, which is labor
intensive and inefficient. Therefore, it is urgent to develop an efficient and accurate automatic defect
detection method. In this paper, an improved method based on YOLOv4 is proposed for the detection
of sewer defects. A significant improvement of this method is using the spatial pyramid pooling
(SPP) module to expand the receptive field and improve the ability of the model to fuse context
features in different receptive fields. Meanwhile, the influence of three bounding box loss functions
on model performance are compared based on their processing speed and detection accuracy, and
the effectiveness of the combination of DIoU loss function and SPP module is verified. In addition,
to address the lack of datasets for sewer defect detection, a dataset that contains 2700 images and
4 types of defects was created, which provides useful help for the application of computer vision
techniques in this field. Experimental results show that, compared with the YOLOv4 model, the
mean average precision (mAP) of the improved model for sewer defect detection are improved by
4.6%, the mAP can reach 92.3% and the recall can reach 89.0%. The improved model can effectively
improve the detection and classification accuracy of sewer defects, and has significant advantages
compared with other methods.
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1. Introduction

Sewer systems play an important part in urban infrastructure and usually have a long
service life. However, with the increase in use time, various defects will appear in sewer
pipes, such as deposition, stagger and crack. If these defects cannot be found and dealt
with in a timely manner, they will seriously reduce the lifetime of the sewer system and
threaten urban safety. Studies have found that flooding events in cities can be caused not
only by extreme weather but also by blockages and collapses in sewer pipes [1]. Therefore,
it is necessary to conduct thorough and regular inspections of the sewer pipes, and then
take appropriate measures to deal with these defects.

Currently, closed-circuit television (CCTV) inspection technology has been widely
used for the inspection of sewer pipes [2]. CCTV uses a robot with a camera to enter the
sewer pipes for video shooting, and then provide the collected video data to professional
technicians for evaluation. Although CCTV greatly improves safety by not requiring a
human to enter the sewer pipe, professional technicians are still required to inspect the
video in detail, which is labor intensive, inefficient and difficult to guarantee accuracy [3].
Moreover, due to the large number of sewer pipes and the limited number of professional
technicians [4], it is difficult to conduct a comprehensive inspection of sewer pipes in time.
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Therefore, there is an urgent need to develop an automatic sewer defect detection method,
which can not only speed up the detection process but also eliminate the potential human
bias of technicians [5]. In addition, automatic detection technology does not require a
constant concentration of technicians and can detect some minor and imperceptible defects
in time, such as cracks and fractures [6].

Due to the shortcomings of manual inspection, automated detection methods based
on computer vision (CV) techniques and deep learning techniques are gradually developed
in the field of sewer defect detection. CV-based techniques focus on accurately designing
feature information used to describe pipe defects, such as texture features and shape fea-
tures of the image. However, the process is complicated, inefficient and requires technicians
to design features manually, which depends on the experience level of technicians. In
recent years, deep learning techniques have achieved better results in various computer
vision tasks such as image classification and object detection. By simply feeding a large
amount of raw data into the deep learning network, the complex network structure can
automatically extract feature information of the target, which greatly improves the accuracy
and efficiency of detection. Image classification technology can recognize a single image,
but cannot determine the specific location of the target. Object detection technology can
detect multiple targets in a single image at the same time and can detect the specific location
of the target, which is more suitable for actual sewer defect detection tasks. Therefore, this
paper chooses object detection technology for sewer defect detection research.

Specifically, this paper proposes an improved YOLOv4 model for automatic detection
of sewer pipeline defects, which achieves accurate detection and recognition of four types of
defects. Due to the large differences in morphology and size among different sewer defects,
small defects are easy to lose feature information in the detection process. Moreover, object
detection networks usually pay more attention to the local features of the target and not
enough to the global features of the image, which leads to poor classification performance
of the target. Therefore, this paper introduces the spatial pyramid pooling (SPP) module to
achieve fusion of defect feature information at different scales, enabling models to obtain
richer global and local information. This method is simple and efficient, does not cause a
large amount of computation, and can effectively improve the defect detection accuracy,
especially for small defects.

We evaluated the detection performance of different models on our self-made dataset,
and the experimental results show that our method is superior to the current state-of-the-art
object detection methods. Overall, the main work of this paper is as follows:

(1) To address the shortcomings of existing defect detection methods, an improved
YOLOv4 model is proposed to detect and classify sewer defects. This model has high
detection performance and fast detection speed, which can be better adapted to the
sewer defect detection tasks;

(2) Based on the processing speed and detection accuracy of the model, the influence of
three bounding box loss functions on model performance are compared, including
GIoU, DIoU and CIoU;

(3) To address the lack of datasets for sewer defect detection, this study selects a total of
2700 images from the public dataset Sewer-ML for defect location annotation. The
dataset is labeled in a multi-label form, including four types of the most common
defects such as crack, deposition, root and stagger.

As shown in Figure 1, the overall workflow of this study contains: (1) sewer defect
images collection and annotation; (2) image augmentation; (3) the proposed model training;
and (4) defect detection and model performance evaluation.
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2. Literature Review

Manual inspection methods for sewer defects have a large workload and low accuracy
and can no longer meet the growing demand for pipeline inspection. Therefore, many
studies have combined image processing technology to study the automated detection of
sewer defects. We will discuss related work from the following two aspects, including
traditional computer vision methods and deep learning methods.

2.1. Sewer Defect Detection Based on Computer Vision Techniques

In order to overcome the drawbacks of manual inspection, automatic inspection
methods based on traditional computer vision technology are gradually developed.

Yang et al. [7] used wavelet transform and co-occurrence matrix to extract texture
features of sewer defects and used support vector machine (SVM) to classify defects. Ex-
perimenting on 291 images containing defects, an accuracy of 60% was obtained. However,
this method classifies based on the texture details of the defects, which is easily affected by
the pipe background. When the sewer background is complex or the defect texture features
are not obvious, the detection effect is poor. Halfawy et al. [8] used threshold segmentation
to segment the region of interest containing defects from the sewer images. Following
this, the extracted HOG features are classified using SVM classifier. This method can be
used for the detection of root defects with an accuracy of 91.2%, but it cannot be applied to
the detection of other defects. Hawari et al. [9] detected crack defects by morphological
segmentation method, detected deposition defects based on the Gabor filter, and detected
pipeline deformation by ellipse fitting algorithm. Although a variety of defects can be
detected, the accuracy is low with a maximum of 74%.

It can be seen that the traditional computer vision methods mainly rely on manually
designed features for defect identification. However, the sewer environment is complex
and diverse, and there are many types of sewer defects with different morphological
characteristics. It is difficult for traditional methods to detect multiple defects at the same
time, and the accuracy rate is also affected. Since manual intervention is still required, it
cannot meet the needs of automatic detection of sewer defects.

2.2. Sewer Defect Detection Based on Deep Learning Techniques

The emergence of deep learning techniques has better addressed the drawbacks of
traditional computer vision methods. As the most popular algorithm among them, convo-
lutional neural network (CNN) is most widely used [10]. Compared with the traditional
CV method, CNN can automatically extract image features and perform recognition, with-
out the need for professional technicians with rich work experience and complex feature
design process, which greatly simplifies the detection process. CNN has achieved good
performance in defect classification and defect detection [2].
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2.2.1. Sewer Defect Identification Based on Image Classification Techniques

Kumar et al. [11] presented a method for sewer pipe defect classification based on
multiple binary CNNs, with an average accuracy of 86.2%. The higher classification perfor-
mance proved the feasibility of CNNs in sewer defect detection. Li et al. [12] proposed a
method using Resnet18 to classify defects in CCTV images. This method is divided into two
steps, first distinguishing the defective images from normal images, and then classifying the
defective images individually. The hierarchical classification method significantly improves
the defect detection accuracy, with an accuracy rate of up to 83.2%. Xie et al. [13] designed
a two-level hierarchical CNN method for sewer defect classification. This method was
trained using 40,000 images and achieved an accuracy of 94.96% in classifying 6 defects
such as deposition, stagger, high water level and barrier; it also effectively solved the
problem of data imbalance. The method demonstrates the high accuracy of CNN in sewer
defect classification tasks and has been applied to practical inspection tasks. However, this
method can only detect one type of defect on a single image, whereas sewer pipes may
have multiple types of defects at the same location [10].

2.2.2. Sewer Defect Detection Based on Object Detection Techniques

Object detection technology can classify multiple targets appearing in a single image
and obtain their precise positions, which is more widely applicable. Object detection
techniques are mainly divided into two categories, one is two-stage networks such as
RCNN [14] and Faster R-CNN [15]. The other is one-stage networks such as Single Shot
MultiBox Detector (SSD) [16] and YOLO [17].

Cheng & Wang [2] first applied the two-stage network Faster R-CNN to the CCTV
image detection task. This method uses 3000 images for training and realizes the accurate
detection of four kinds of defects: root, crack, infiltration and deposit. The mean average
precision (mAP) of this method can reach 83%. However, the detection speed of this
method is slow and it is only suitable for offline detection. Kumar et al. [18] used three
methods, SSD, YOLOv3 and Faster R-CNN, to detect sewer pipe defects, and compared the
performance between different methods. Li et al. [19] proposed an improved Faster R-CNN
model, which combines global context features with local defect features to achieve sewer
pipe defect location and fine-grained classification. Yin et al. [6] developed a real-time
automated defect detection system based on YOLOv3, which can detect six types of defects.
Due to the good detection speed of YOLOv3, this method can use CCTV video as input
and generate defect-marked video, with an mAP of 85.37%. Tan et al. [3] proposed an
improved YOLOv3 model with reference to YOLOv5, which achieved accurate detection of
four types of defects, and the mAP can reach 92%. Most current research on sewer defect
detection is based on YOLOv3 or Faster R-CNN algorithm [20]. The detection speed of the
YOLOv3 is fast, but its feature fusion ability is weak; furthermore, it is easy to produce
miss or false detection for small targets. Faster R-CNN usually has high accuracy, but the
detection speed is very slow.

In this work, we focus on improving the detection accuracy of sewer defects. Specif-
ically, we propose an improved YOLOv4 model to detect sewer defects. By introducing
the SPP module to improve the multi-scale feature fusion capability, the improved model
can obtain richer global information and improve the detection accuracy of sewer defects,
especially for small defects such as cracks.

3. Materials and Methods
3.1. Data Collection and Annotation

The sewer defects studied in this paper are four types commonly encountered in
southern China [10,21], namely crack, deposition, root and stagger. The original images
were obtained from the Danish laboratory’s public dataset Sewer-ML [22]. This dataset
contains 1.3 million images, all of which were annotated by professional sewer inspectors
in a multi-label manner.
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Sewer pipe defect detection requires not only classification information but also
accurate location information. As this dataset contains only classification information,
a total of 2700 images which contain at least one of the above four types of defects were
selected from this dataset for defect location annotation. The resolution of all images is
between 352 × 288 and 720 × 576. Table 1 summarizes the number of each defect in the
dataset.

Table 1. Distribution of defect labels.

Defect Number

Crack 749
Deposition 780

Stagger 778
Root 748
Total 3055

In order to ensure the accuracy of annotation information, we invited relevant profes-
sionals to use the graphical annotation tool LabelImg to label the location of defects. These
labeled images will be used to train the model after data enhancement. The original sewer
defect images in the Sewer-ML dataset are shown in Figure 2, and the defect images labeled
with bounding boxes are shown in Figure 3.
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3.2. Data Augmentation

Object detection models may not be sufficiently trained when the number of images is
small. In this paper, data augmentation techniques are used to increase the dataset size.
This technology can increase the variety of sewer defect images, so that the model can
adapt to more complex environments and has higher robustness [3]. In this paper, we
used four methods including random vertical and horizontal flipping, random scaling and
color tuning (adjustment of the brightness, contrast and saturation) for data augmentation.
Figure 4 shows examples of each data augmentation method. After augmentation, all the
defect images are scaled to 416 × 416 pixels.
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3.3. Sewer Pipe Defect Detection Method Based on Improved YOLOv4

Sewer defect images are different from those in traditional target detection datasets in
that they have more obscure features and poor lighting conditions in the pipeline. In order
to make the model better adapted to the defect detection task, this paper first compares the
effects of three different bounding box loss functions on the model performance, including
GIoU, DIoU and CIoU. Secondly, an improved YOLOv4 model is proposed, which effec-
tively increases the receptive field of the network and improves the ability of the model to
fuse spatial features. Details are presented in the following sections.

3.3.1. Overall Architecture of the YOLOv4 Model

The overall structure of YOLOv4 is shown in Figure 5. Compared with YOLOv3,
YOLOv4 has three main innovations in the network structure, including the backbone
feature extraction network CSPDarknet53, the spatial pyramid pooling (SPP) module
and the path aggregation network (PANet). CSPDarknet53 adds the Cross Stage Partial
connections (CSP) module [23] on the basis of Darknet53. The CSP module can reduce
computation and memory costs while improving the accuracy of the model. As shown in
Figure 5, CSPDarknet53 consists of five residual structures CSP_ResBlock_Body, whose
network structure is shown in Figure 6. After the input images pass through the backbone
network, three feature maps of different scales P1, P2 and P3 are obtained, which are
responsible for the detection of large, medium and small targets, respectively. These three
feature maps will be sent to the Neck network for feature fusion.
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YOLOv3 combines semantically rich high-level features with low-level spatial infor-
mation through a top-down path. However, this method may cause the loss of spatial
information due to the long path. For the high-level feature layer used to detect large
objects, the spatial information may need to be propagated through hundreds of layers to
be fused with the high-level semantic information. PANet adds a bottom-up path on the
basis of FPN, which greatly shortens the distance between low-level features and high-level
features, enhancing the fusion ability between different feature layers.

3.3.2. The Improved YOLOv4 Model

Although YOLOv4 applies many improved strategies based on YOLOv3, it does not
perform well when directly applied to the sewer defect detection task, and there will be
missed and wrong detections in some defect types. To address these issues, this paper
proposed an improved model based on YOLOv4.

The original YOLOv4 network feeds the last feature layer P3 of the backbone network
into the SPP module for feature enhancement. This module has many advantages, such
as the ability to solve the target multiscale problem to some extent, obtaining different
important context features to expand the receptive field [3], and not significantly slowing
down the network operation. In this paper, two SPP modules are added to the original
network to enhance the P1 and P2 feature maps of the backbone network. The improved
network structure is shown in Figure 7. The three feature maps (P1, P2 and P3) are
enhanced by the SPP modules and then input to the PANet network for feature fusion. This
method can obtain a richer feature representation, which is expected to further improve the
detection accuracy of the model.
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3.3.3. Different Bounding Box Loss Functions

The effectiveness of the object detection tasks highly depends on the definition of
the loss function. The loss function of YOLOv4 is shown in Equation (1), where Lbox
represents the loss of the bounding box, Lcon f represents the loss of target confidence, and
Lcla represents the loss of the category to which the target belongs.

Loss = Lbox + Lcon f + Lcla (1)

There are several methods to calculate the loss of bounding boxes. YOLOv3 uses the
mean square error (MSE) to calculate the loss of bounding boxes, but this method does
not consider the integrity of the object and cannot continue learning when the predicted
bounding box and ground truth do not overlap, so MSE is not used in this paper for testing.
YOLOv4 uses CIoU to calculate the bounding box loss, which is a helpful solution to the
shortcomings of MSE. However, sewer pipe defect images are different from traditional
nature images. In order to find the most suitable loss function, a total of three different
bounding box loss functions are investigated in this paper for their impact on model
performance, including GIoU [27], DIoU [28] and CIoU [28]. The details of the three loss
functions are as follows:

(1) As shown in Equation (2), in addition to considering the overlap area, GIoU adds
the minimum outsourcing box as a penalty item, which solves the problem that the
learning cannot continue when the predicted bounding box does not overlap the
ground truth;

(2) As shown in Equation (3), DIoU considers the Euclidean distance of the center point
on the basis of GIoU, which solves the problem of large loss values when the distance
between the predicted bounding box and ground truth is great;

(3) As shown in Equation (4), CIoU considers the degree of overlap, Euclidean distance
of the center point and aspect ratio. With the aspect ratio, CioU can distinguish
prediction bounding boxes with the same IOU but different regression effects.

LboxGIoU = 1− GIoU = 1− (IoU − C− (A ∪ B)
C

) (2)
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LboxDIoU = 1− DIoU = 1− (IoU − ρ2(b, bgt)

c2 ) (3)

LboxCIoU = 1− CIoU = 1−
(

IoU − ρ2(b, bgt)

c2 − αυ

)
(4)

IoU =
|A ∩ B|
|A ∪ B| (5)

In Equation (2), A denotes the predicted bounding box, B denotes the ground truth
and C denotes the smallest box which covers A and B. As shown in Equation (5), IoU
denotes the intersection ratio of A and B. In Equation (3), b and bgt denotes the center point
of A and B, respectively, ρ2(b, bgt) denotes the Euclidean distance between b and bgt and c
is the diagonal distance of C as shown in Figure 8. In Equation (4), α is the weighting factor
and υ is used to measure the consistency of the aspect ratio. The calculations of α and υ are
shown in Equations (6) and (7).

α =
υ

1− IoU + υ
(6)

υ =
4

π2 (arctan
ωgt

hgt − arctan
ω

h
) (7)
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In this paper, we compare the influence of three different bounding box loss functions
by replacing Lbox in Equation (1) with LboxGIoU , LboxDIoU and LboxCIoU , respectively.

3.4. Performance Evaluation

Recall, Precision and F1 are usually used as performance evaluation indicator after
models have been trained. The calculations of these indicators are shown in
Equations (8)–(10).

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

F1 = 2× pecision× recall
precision + recall

(10)

In the sewer pipe defect detection task, TP (true positive) denotes the number of sewer
defects that are correctly predicted as defects; FP (false positive) denotes the number of
sewer backgrounds that are incorrectly predicted as defects; and FN (false negative) denotes
the number of sewer defects that are incorrectly predicted as non-defects.

However, using precision and recall individually cannot accurately evaluate the
performance of object detection models. In this paper, average precision (AP) and mean
average precision (mAP) are also used as evaluation metrics. AP is a comprehensive metric
of precision and recall, which is used to calculate the average precision of a class at different
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recall, and mAP is the average of all APs. The calculations of AP and mAP are shown in
Equations (11) and (12).

AP =
∫ 1

0
P(R)dR (11)

mAP =
1

Ncls
∑

i
APi (12)

3.5. Experimental Preparation

In order to ensure comparability among different models, the environment configu-
ration, parameter information and dataset used in this paper are the same for all models.
As shown in Table 2, the sewer pipe dataset contains a total of 2700 images, with 85%
randomly selected for model training, 5% for model validation and 10% for model testing.
The experiments are conducted on Ubuntu system with an Intel(R) Xeon(R) CPU E5-2650 v4
@2.20 GHz (Intel Corporation, Santa Clara, CA, USA) and an NVIDIA GeForce RTX2080Ti
GPU (Nvidia Corporation, Santa Clara, CA, USA).

Table 2. Division of the dataset.

Train Validation Test

Number 2295 135 270
Percentage 85% 5% 10%

The parameters used in the experiments are shown in Table 3. A total of 300 epochs
are trained for each model, with a batch size of 8. During the training process, Adam is
used as the optimizer, and the Cosine Annealing Scheduler is used to adjust the learning
rate [3]. During the model evaluation process, the threshold of NMS is set to 0.5.

Table 3. Experimental configuration.

Class Number. Optimizer Learning Rate Input Size Batch Size Epoch NMS-Threshold

4 Adam Cosine Annealing
Scheduler 416 × 416 8 300 0.5

We did a set of comparative experiments to verify the effectiveness of the Adam and
Cosine annealing Scheduler. The YOLOv4-Adam-CA represents the use of Adam optimizer
and Cosine annealing Scheduler strategy, and YOLOv4-SGD-StepLR represents the use of
SGD optimizer and StepLR strategy. The loss curves of different models during training
are shown in Figure 9. It can be seen that the YOLOv4-Adam-CA model has lower training
loss and better training results when using Adam and Cosine annealing Scheduler.
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4. Results and Discussion

There are three experiments in this study, and the purpose of each experiment is as
follows: (1) Using YOLOv4 as the baseline, study the impact of three bounding box loss
functions on defect detection performance, including GIoU, DIoU and CIoU, so as to select
the most effective loss function for further research; (2) based on Experiment 1, introduce
the SPP module to improve the network structure. By comparing the detection performance
of different loss functions combined with the SPP module, select the best detection model;
and (3) compare our model with other state-of-the-art detection models, and analyze the
actual detection effects of different models to verify the effectiveness of our method.

4.1. Experiment 1 and Results

Experiment 1 used GIoU, DIoU and CIoU to calculate the regression loss of the
prediction bounding box, and the obtained models were named YOLOv4-GIoU, YOLOv4-
DIoU and YOLOv4-CIoU, respectively. The loss curves of the three models during the
training process are shown in Figure 10. Due to the large loss function values in the earlier
period, the figure shows the loss function value starting from the 30th Epoch. It can be
seen from the loss curve that the loss value of YOLOv4-DIoU and YOLOv4-CIoU fluctuates
relatively little during the training process, and the convergence speed is relatively fast.
The loss value of YOLOv4-GIoU fluctuates relatively large.
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Table 4 shows the mAP of each model on the test set and the AP value for each defect
class. As shown in Table 4, YOLOv4-CIoU achieves the highest AP value for crack detection
among all models, and YOLOv4-DIoU achieves the highest AP value for other defects,
which means that YOLOv4-DIoU has higher performance for most classes. YOLOv4-GIoU
has the worst detection performance, with lower AP values for all classes than the other
models. It can be found that YOLOv4-DIoU has achieved the highest mAP of 87.9%, but
the difference with YOLOv4-CIoU is very small, only 0.22%.

Table 4. The mAP and AP of each model for each defect class.

Network mAP (%)
AP50 (%)

Crack Deposition Root Stagger

YOLOv4-GIoU 85.5 79.1 84.3 91.5 87.0
YOLOv4-DIoU 87.9 80.8 87.9 91.8 91.0
YOLOv4-CIoU 87.7 83.5 86.6 91.6 89.0

The experimental results show that both YOLOv4-DIoU and YOLOv4-CIoU have
excellent detection capability for sewer pipe defects. As DIoU and CIoU consider the
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distance between the predicted bounding box and ground truth, they can directly minimize
the distance between two boxes, which makes the model have faster convergence speed
and higher detection accuracy. Due to the comparable performance of YOLOv4-DIoU and
YOLOv4-CIoU, these two models are selected for further study in Experiment 2.

4.2. Experiment 2 and Results

Based on the results of Experiment 1, this paper improves the network structure on
the basis of YOLOv4-DIoU and YOLOv4-CIoU. The improved models are named YOLOv4-
D-SPP3 and YOLOv4-C-SPP3, respectively. As shown in Table 5, YOLOv4-D-SPP3 achieves
the highest AP for all defect classes, in particular the highest AP of 88% for crack. It can be
found that YOLOv4-D-SPP3 improves the mAP by 4.4% compared to YOLOv4-DIoU and
YOLOv4-C-SPP3 improves the mAP by 0.5% compared to YOLOv4-CIoU, which means
that the combination of the improved network structure and DIoU can further improve
the detection performance. Nevertheless, the combination with CIoU only has a tiny
performance improvement for the model.

Table 5. Performance comparison of the original and improved models.

Network mAP (%)
AP50 (%)

FPS (Frame/s)
Crack Deposition Root Stagger

YOLOv4-DIoU 87.9 80.8 87.9 91.8 91.0 13
YOLOv4-CIoU 87.7 83.5 86.6 91.6 89.0 13

YOLOv4-C-SPP3 88.2 79.2 88.7 91.1 93.4 12
YOLOv4-D-SPP3 92.3 88.0 91.8 94.2 95.2 12

Table 5 also shows the detection speed of different models on the test set. Due to the
addition of the SPP modules, the network structure of YOLOv4-D-SPP3 is more complex,
and the detection speed has decreased. Nevertheless, the difference in detection speed is
very tiny and has little effect on practical detection. The above experimental results show
that the improved YOLOv4 model not only improves the defect detection performance but
also does not cause a lot of computational costs. Since the YOLOv4-D-SPP3 model achieves
optimal performance, it is chosen as the final improved model.

4.3. Experiment 3 and Results

In order to further verify the effectiveness of the final improved model, we compared it
with current mainstream object detection models with the same training method. Other de-
tection models include single-stage detection models SSD, YOLOv3, YOLOv7 and YOLOv8,
two-stage detection models Faster-RCNN and transformer-based model, DETR [29] and
Swin-Trans-YOLOv4. The Swin-Trans-YOLOv4 model is to use Swin Transformer [30] as
the backbone of YOLOv4. The experimental results are shown in Table 6, and Figure 11
shows some detection results of these detection models.

As shown in Table 6, YOLOv4-D-SPP3 achieves a mAP of 92.3%, which is higher than
other recent studies and achieves the highest AP on all classes of detection. It should be
noted that due to the more complex network structure and more computing costs, the FPS
of our model is lower than other models, but still higher than Faster R-CNN.

We selected five representative models to detect some defects, and the detection results
are shown in Figure 11, the red boxes are stagger, the purple boxes are root, the blue boxes
are crack and the green boxes are deposition. All five models have the ability to detect
different types of defects in complex environments, but the detection results are different.
The model proposed in this paper can detect more defects under the same conditions and
has the highest degree of overlap between the predicted bounding box and ground truth,
which means that our model has better detection performance. Nevertheless, all other
models have missed or wrong detections. For example, the detection results of YOLOv3
have different degrees of missed detection for stagger and cracks on the first and third
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images. The YOLOv7 model has missed detection for stagger and root on the second and
fourth images. The detection result of Faster R-CNN has many redundant prediction boxes
on the second image and low overlap with ground truth on the fourth image. The detection
result of DETR model have many redundant detections on the third and fourth pictures,
which will greatly interfere with the judgment of technicians.
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Table 6. Performance comparison of the different models.

Methods mAP (%)
AP50 (%) FPS

(frame/s)Crack Deposition Root Stagger

SSD [14] 83.4 70.5 85.5 88.4 89.4 44
Faster R-CNN [2] 79.8 66.2 81.2 82.6 89.1 8

YOLOv3 [6] 85.4 76.8 90.6 80.5 93.5 20
Improved YOLOv3 [3] 88.1 75.2 90.7 93.8 92.8 12

YOLOv7 88.3 80.1 87.1 91.7 94.5 14
YOLOv8 87.0 73.6 88.3 91.1 95.1 14

DETR [29] 86.7 75.5 91.3 88.6 91.1 13
Swin-Trans-YOLOv4 [30] 78.2 54.6 89.3 80.0 88.8 9

Ours 92.3 88.0 91.8 94.2 95.2 12

Table 7 shows the Recall and F1 values for each model on the test set. It can be seen
that our model achieves the highest average recall rate. A higher recall means that the
model misses fewer defects. For sewer defect detection, it is necessary to identify as many
sewer defects as possible, so a higher recall is more important. Although DETR and Faster
R-CNN also have a high average recall rate, their precision and F1 value are much lower
than other models. The reason is that DETR and Faster R-CNN have a large number of
predicted bounding boxes that are incorrectly predicted as defects, which results in a low
precision and F1 value. A large number of incorrect prediction boxes may cause great
interference to the judgment of technicians and seriously affect work efficiency. As shown
in Figure 11, the detection results of DETR and Faster R-CNN also illustrate this problem.
Figure 12 shows the precision–recall curves of the five models on the test set. It can be seen
that our model has the highest curve, which means better detection performance.

Table 7. Recall, Precision and F1 values of different models on the test set.

Methods
Recall (%) Average (%)

Crack Deposition Root Stagger Recall Precision F1

SSD [14] 73.5 84.5 82.9 91.1 83.0 76.2 79.5

Faster R-CNN [2] 83.8 86.9 85.4 96.2 88.1 49.0 62.8

YOLOv3 [6] 70.6 85.7 74.4 91.1 80.5 82.5 81.5

Improved YOLOv3 [3] 69.1 83.3 89.0 93.7 83.8 80.8 81.8

YOLOv7 77.9 78.6 81.7 87.3 81.4 90.9 85.5
YOLOv8 72.1 82.1 85.3 98.7 84.5 79.5 81.7

DETR [29] 79.4 90.4 91.4 94.9 89.0 57.9 70.0
Swin-Trans-YOLOv4 [30] 33.8 79.7 70.7 87.3 67.8 83.5 73.0

Ours 83.8 88.1 90.2 93.7 89.0 90.1 89.5

In conclusion, the improved model proposed in this paper, namely YOLOv4-D-SPP3,
can more effectively detect several different types of defects and accurately label their
locations. In terms of accuracy, our model achieves the best performance among these
methods.

It should be pointed out that our method may be wrong in some special cases. As
shown in Figure 13, the crack in Figure 13a is incorrectly identified as deposition. The
reason may be that the sewer pipe at this location is darker and not smooth like normal
pipes, which are very similar to deposition defects, resulting in model detection errors.
In Figure 13b, the crack is incorrectly identified as a stagger. The reason may be that the
image is very blurry and contains a lot of noise, which causes significant interference to the
detection of the model. In Figure 13c, the crack defect is missed. The location of the crack is
indicated by the red arrow in the figure. The reason may be that this crack occurs at the
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pipe junction, and its color is very similar to the background of sewer, and its features are
not obvious, which causes the model to miss the detection.
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It can be seen that when encountering some extreme situations, such as uneven lighting
or noise interference during image shooting or transmission, the detection effect will be
significantly affected. In addition, when the defect features are not obvious or very similar
to the pipeline background, all of them may cause error cases. Among them, errors in
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The attention mechanism can improve the ability of the model to extract critical
features and suppress the influence of interference information such as noise. Introducing
an attention mechanism in the model may reduce the occurrence of these errors, and further
research will be done in the future.
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5. Sewer Defect Detection System

At present, there are many use cases for applying deep-learning-based detection
technology in the real world [6,31], which demonstrate the practical implementability of
the proposed method.

In this section, we propose a potential sewer defect detection system whose workflow
is shown in Figure 14. Firstly, the CCTV robot collects the video data of the sewer pipes.
Secondly, these videos will be fed directly into the system for the detection of specific defects.
Finally, the system will output the final inspection results and give them to professional
technicians for processing. The output of the system contains two parts, the labeled video
and the defect frames extracted from the video. Figure 15 shows the labeled video and the
extracted defect frames which come from an actual inspection project of an underground
pipeline in Shanghai. It can be seen that in the labeled video, different defects are marked
with bounding boxes of different colors, which makes it easy for technicians to review.
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Defect detection is usually divided into two steps: fieldwork and office work. In
fieldwork, technicians use professional detection equipment to obtain video data of sewer
and save it to storage devices for office personnel to view. In office work, experts watch the
collected sewer videos in detail and manually record information about each defect. The
proposed system is mainly used for office work inspection, so only a personal computer
that can run the system is required and no hardware equipment is required. Of course, the
better the performance of the computer, the faster the detection speed of the system, which
is far higher than the speed of manual defect detection.

When the detection performance of the system is good enough, technicians can directly
evaluate the state of the sewer pipe by watching the labeled video. The defects annotated
using bounding boxes allow the technician to spend less time and effort in reviewing them.
Moreover, the defect frames output by the system allows technicians to produce inspection
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reports without manually capturing and labeling images from the video. As shown in
Figure 13c, the red arrow is manually annotated by technicians, which also takes a lot
of time. Overall, this system can significantly speed up the detection efficiency of sewer
defects, reduce the work intensity of technicians and has high accuracy, which provides a
very important application value.

6. Conclusions and Future Work

Examining the problems of low efficiency and difficulty in ensuring the accuracy of
the traditional CCTV inspection method, we present an improved YOLOv4 model for
the detection of sewer pipe defects. By improving the network structure, the detection
accuracy of sewer defects is effectively improved. By comparing different bounding box
loss functions, the effectiveness of the combination of DIoU loss function and SPP module
is verified.

Overall, the model proposed in this paper has the following advantages: (1) it has a
higher detection performance. Experimental results show that the proposed model achieves
a mAP of 92.3% and an average recall of 89.0% on the test set. Compared with the state-
of-the-art detection models, such as YOLOv7, YOLOv8 and transformer-based models,
our model achieves better performance in detecting multiple sewer defects, not only with
higher mAP and recall rate, but also with better actual detection results, which means that
it can be better adapted to the sewer defect detection tasks. (2) It has good detection speed.
Although the detection speed of our model is lower than that of YOLOv3 and YOLOv7,
it is still much higher than Faster RCNN. Overall, the model has the highest detection
performance and good detection speed, achieving a balance between detection accuracy
and speed. (3) It has better detection accuracy for small defects. Due to the addition of the
SPP module, the detection and recognition effect on small defects such as cracks has been
significantly improved, which avoids the long-term concentration of technicians to detect
these difficult-to-find defects. Compared with the manual detection method, our method
can reduce the work intensity of technicians, speed up the detection process and improve
work efficiency.

In fact, the majority of the sewer pipes are normal with no defects, and it will undoubt-
edly waste a lot of time to directly detect the video. In future work, we will investigate
the extraction of key frames containing defects from sewer videos to reduce the overall
detection time. In addition to the four types of defects studied in this paper, there are many
other types of defects such as fraction and barrier in sewer pipes. These defects can also
seriously affect the healthy operation of the sewer systems. More images of other types of
defects will be collected for future research.
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