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Abstract: In recent years, the application of knowledge graphs to alleviate cold start and data
sparsity problems of users and items in recommendation systems, has aroused great interest. In
this paper, in order to address the insufficient representation of user and item embeddings in
existing knowledge graph-based recommendation methods, a knowledge-aware enhanced network,
combining neighborhood information recommendation (KCNR), is proposed. Specifically, KCNR
first encodes prior information about the user–item interaction, and obtains the user’s different
knowledge neighbors by propagating them in the knowledge graph, and uses a knowledge-aware
attention network to distinguish and aggregate the contributions of the different neighbors in the
knowledge graph, as a way to enrich the user’s description. Similarly, KCNR samples multiple-hop
neighbors of item entities in the knowledge graph, and has a bias to aggregate the neighborhood
information, to enhance the item embedding representation. With the above processing, KCNR can
automatically discover structural and associative semantic information in the knowledge graph, and
capture users’ latent distant personalized preferences, by propagating them across the knowledge
graph. In addition, considering the relevance of items to entities in the knowledge graph, KCNR has
designed an information complementarity module, which automatically shares potential interaction
characteristics of items and entities, and enables items and entities to complement the available
information. We have verified that KCNR has excellent recommendation performance through
extensive experiments in three real-life scenes: movies, books, and music.

Keywords: attention network; graph neural network; knowledge graph; recommender systems

1. Introduction

In the era of the internet of everything, the amount of data in real life has grown
exponentially. Recommender systems have become one of the most effective methods to
solve data overload. Among them, the classic collaborative filtering [1–3] recommendation
method is widely used. It obtains the preferences of the target user, by finding the set of
users who have the same preferences as the target user, to perform the recommendation.
However, due to the dramatic increase in the number of users and items in a recommenda-
tion system, collaborative filtering-based approaches often suffer from insufficient prior
information about users or items, resulting in lower user satisfaction with recommenda-
tions. Therefore, some researchers have proposed to introduce auxiliary information (e.g.,
social network [4], user/item attributes [5], multimodal features [6], etc.), to complement
the representation of users or items and enhance the recommendation effect.

In recent studies, researchers have used the correlation between items and item at-
tributes [7–9] to construct a knowledge graph (KG) for the recommendation, with good
results. A KG is a heterogeneous information network, containing multiple nodes and
multiple connected edges between nodes, where the nodes are different entities in the KG,
and the edges are relationships between entities. In a recommendation scenario, the entity
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can be an item (movie) or an attribute of the item (movie’s director). Compared with
other recommendation methods, introducing a KG into recommender systems has three
advantages [10]. (1) We can use the extensive item and item attribute information in the KG
to supplement the item representation and improve recommendation accuracy. (2) We can
use various types of relationships in the KG to propagate user preferences and increase the
diversity of recommendation results. (3) We can use the user’s historical behavior in the KG
for the recommendation, which brings certain interpretability to the recommender system.
Figure 1 shows the KG in a movie recommendation scenario. The movie KG in Figure 1,
contains related entities, such as the movie’s stars, genre, and production company. We use
various relationships between entities to connect them, to form the movie KG. For example,
the “genre” relation in the figure, can associate a movie with its genre entity. Then, we
recommend unwatched movies that the user is expected to like, for the user in the KG,
based on the user’s history of watching movies. For example, assuming that user u1 has
watched movies A, B, and C, we can recommend unwatched movie F to the user, because
movies F and A have the same movie genre and production company.

Movie A

Movie B

Movie C

Movie D

Movie E

Movie F

Movie G

Movie H

1
u

2
u

Figure 1. A movie recommendation knowledge graph.

A KG, introduces more associated semantic information into the recommender system,
and we can dig deeper into the user’s personalized preferences in the connection between
items and item attributes, thereby improving the performance of the recommender system.
For example, Wang et al. [11] designed a DKN network, which combines different semantic
and knowledge information for news recommendation tasks, through a designed convolu-
tional neural network framework. However, DKN requires embedding entities before they
can be used. This results in a lack of an end-to-end training approach. Another drawback
of DKN, is that it can only make use of text-based auxiliary information, making it highly
limited in its applicability to scenarios. Yu et al. [12] proposed the PER model, which uses
the heterogeneous network structure of a KG to characterize the connectivity of users and
items, in terms of the potential features of the different types of relationships extracted. It
is important to note that PER relies heavily on the design of meta-paths, a design that re-
quires significant domain expertise, which limits the application of PER in general-purpose
scenarios. Zhang et al. [13], proposed the collaborative knowledge embedding model, that
combines collaborative filtering with entity embedding in the KG, but the knowledge graph
embedding (KGE) module in its model, is better for entity completion or link prediction
in the KG, and it is difficult to achieve feature interaction between the explicit semantics
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of the KG and the implicit semantics of the user. Wang et al. [10] designed a RippleNet
model, which combines entity embedding with entity path connectivity, introducing the
concept of user preference propagation in a KG, for the first time. However, RippleNet
relies heavily on the representation of attributes, which largely weakens the importance of
edges in the KG. In addition, the set of user preferences will change in unknown ways as the
size of the KG increases, and most likely cause a large memory overhead. Wang et al. [14]
also designed and proposed a multi-task learning framework based on KG and MKR,
which allows the user preference prediction recommendation task and the KGE task to be
performed separately, and uses a specially designed interaction unit to associate the two
tasks. However, MKR ignores the richer information of users and items in KG, resulting in
the insufficient embedding of users and items in the recommendation system.

To address the limitations of existing KG-based recommendation algorithms, inspired
by MKR, a knowledge-aware enhanced network combining neighborhood information
for recommendation (KCNR), is proposed, which is an end-to-end model. KCNR mainly
consists of a recommendation module, an information complementary module (ICM),
and a KGE module. In the recommendation module, KCNR firstly combines the prior
information of user interaction items with the rich association semantic information in
the KG, and then obtains and aggregates the weights of different related entities in the
KG through a knowledge-aware attention network, so as to enrich the user’s embedding
representation. Similarly, KCNR uses the idea of a graph convolutional network [15]
to sample the neighborhoods of item entities in the KG, and bias aggregates the item
neighborhood information to enrich the embedding representation of the original items.
This bias mainly refers to the use of connectivity relations and user-specific generated scores
in the KG, to weight the aggregated item neighborhood information. Through the above
operations, we can not only characterize the associated semantic information in the KG, but
also capture the personalized interest of users in the relationship. In addition, KCNR also
designs an ICM, to combine the recommendation module and the KGE module. The main
idea of the ICM is to exploit the one-to-many relationships between item entities in the
KG, and to explicitly model enhanced item representations and higher-order interaction
features between entities, using cross-compression awareness to automatically control the
knowledge transfer between the two. This also brings regularization to the model, to a
certain extent.

The contribution of KCNR can be summarized in three aspects as shown below:

1. We propose KCNR, a knowledge-aware enhanced network combining neighborhood
information, which is an end-to-end model. KCNR effectively utilizes users’ prior
information and the rich associative semantic information in the KG, and greatly
enhances user and item representations, by designing a user representation layer
(URL) and item representation layer (IRL), to alleviate the data sparsity problem of
the RS.

2. We design an ICM, to enable information sharing and complementarity between
items in the RS and related entities in the KG. The model generalization capability is
improved, based on further enriching the item embedding representation.

3. We conduct experiments in three realistic recommendation scenarios, and the results
show that KCNR outperforms the baseline approach.

2. Related Work

KG uses heterogeneous information to build a network with powerful semantic rep-
resentation. In recent years, many studies have introduced KGs as auxiliary information
to recommender systems and achieved good results. Combining KGs with recommender
systems is also an emerging research area. There are three types of knowledge graph-
based recommendation methods [16]: embedding-based methods, path-based methods,
and unified methods.

The main idea of the embedding-based method, is to use the embedding representation
of entities in the KG, obtained with the KGE algorithm [17,18], directly in the RS, to
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enrich user or item representations. Zhang et al. [13] proposed a CKE model, which
focuses on how to exploit heterogeneous information of items to improve recommendation
effectiveness. It unites item content information (e.g., text and visual), structural knowledge
information, and user preference information, to learn together, significantly improving
the performance of collaborative filtering recommendation methods. Wang et al. [11]
proposed the DKN model, which combines KGs with a convolutional neural network for
news recommendation, to more accurately recommend news that may be of interest to
users, by combining the connections between news at the knowledge level, and to capture
the dynamic interest of users in the news, using the designed news following module.
Huang et al. [19] designed the KSR model, which uses the key-value memory network to
incorporate KG information into recommender systems, and combines the KG information
with item information to capture users’ preferences, to enhance the model capabilities.
Wang et al. [14] designed a multi-task feature learning framework called MKR, which
utilizes the correspondence between items and entities in a KG, to link the recommendation
task and the entity embedding task. In the framework, the recommendation task learns
representations of users and items and eventually makes predictions, while the entity
embedding task learns representations of item-related entities and relationships, and both
share latent features using cross-compression units. Embedding-based methods have high
flexibility, but the directly learned entity embedding vectors sometimes cannot directly
describe the recommendation relationship between items, and it ignores a large number of
inter-entity connections in KG and lacks reasoning ability.

The main idea of the path-based method, is to provide auxiliary information to the
recommender system by using various connection patterns of the unique structure of the
KG. For example, Yu et al. [20] proposed the HeteRec model, which supplements the
user–item interaction matrix, by calculating the similarity of user (item) meta-paths in the
KG, so that richer representations of items can be extracted to improve the recommendation
quality. Zhao et al. [21] designed the FMG model, which uses a meta-graph containing
more rich connectivity information instead of meta-paths, incorporating complex semantic
information into the model, so that the model can more accurately obtain the similarity of
entities. Hu et al. [22] proposed the MCRec model, which uses a context-based meta-path
and a neural network model of a co-attention mechanism, in a heterogeneous informa-
tion network, to build recommender systems. The path-based method can describe the
information in the KG more intuitively, and using the correlation of entities in the KG
brings a certain degree of interpretability to the recommendation. However, this method
excessively depends on the meta-paths designed according to the domain of expertise, and
needs to reconstruct the meta-paths when the recommendation scenarios or KGs change,
thus limiting its usage scenarios.

The above-mentioned two methods only utilize the unilateral information of the KG.
In order to fully exploit and utilize the information in the KG, the semantic knowledge
of entities and relationships in the KG has been used jointly with association informa-
tion for the recommendation, which is called the unified method. For example, Wang
et al. [10] designed the RippleNet model, which inputs user–item interaction pairs and
outputs whether the user clicked on an item. It gradually spreads out, like water ripples,
and vividly describes the user preference spread along the associated path in the KG, from
historical interests. Wang et al. [15] also proposed the KGCN model, which utilizes a graph
convolutional network to sample multiple neighbor entities of an item entity in a KG and
aggregate them onto the original item, to enhance the item representation. Additionally,
Qu et al. [23] proposed the KNI model, which also considers the interaction between users
and item neighbors, further enriching the connectivity of nodes. Wang et al. [24] proposed
the CKAN network, which encodes prior user–item interaction information and then com-
bines it with the designed attention module, for the recommendation. The unified methods
organically unify the ideas of embedding and propagation, and enrich the representation
of entities using the linking structure of entities in the KG, which greatly enhances the
embedding representation of users and items.
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3. Our Approach

In this section, we present the KCNR model in detail. We first present the recommen-
dation problem of this paper. Then, we describe the KCNR model framework and the
design of each module in detail. Finally, we discuss the learning algorithms for different
parts of the KCNR.

3.1. Problem Definition

In our recommendation module, it is assumed that there is a user set U = {u1, u2, · · · , uM},
and an item set V = {v1, v2, · · · , vN}, where M and N are the number of users and the number
of items in the RS, respectively. The user–item interaction matrix YM×N = {yuv|u ∈ U, v ∈ V}
is defined as follows:

yuv =

{
1, user u interacts with item v,
0, otherwise,

(1)

where yuv = 1 indicates that user u has interacted with item v, i.e., has purchased, browsed,
clicked, etc. yuv = 0 here, simply indicates that user u has not clicked on item v. It does
not indicate that the user does not like the item. It is also possible that the user has not
seen the item or has unintentionally skipped it. In addition, we construct a KG G =
{(h, r, t)|h, t ∈ E, r ∈ R} containing a large number of triplets, where E = {e1, e2, · · · , ei}
denotes a large number of entities in the KG and R =

{
r1, r2, · · · , rj

}
denotes a large

number of connection relationships between entities in the KG. Any of the triplets (h, r, t)
in G consists of an entity–relationship–entity, representing the head entity h, the tail entity
t, and the relationship r between them, respectively. For example, the triplet (Fast & Furious
9, film.film.star, Vin Diesel), indicates that Vin Diesel starred in the film Fast & Furious 9. Then,
we use D = {(v, e)|v ∈ V, e ∈ E} to represent the one-to-one correspondence between
items and entities in the KG, where (v, e) denotes the correspondence between v and e.
In most recommended scenarios, an item often corresponds to only one entity.

In short, after obtaining the implicit interaction matrix YM×N , and the KG G, our main
task is to build a prediction function to predict the possible interactions between users and
their uninteracted items. The prediction function F (·), is defined as follows:

ŷuv = F (u, v|Θ, G ), (2)

where ŷuv denotes the possibility that user u interacts with item v, and Θ denotes the
argument of function F (·).

3.2. Model Framework

As shown in Figure 2, KCNR consists of a recommendation module, an ICM, and a
KGE module. Among them, the recommendation module contains a URL, an IRL, and a
prediction layer. The URL mainly encodes the prior information of user–item interactions
explicitly as user representations, and captures important entity information associated with
them in the KG, using a knowledge-aware attention network to make the model describe
user representations more richly. Similarly, the IRL takes advantage of the correlation
between entities in the KG to bias aggregate multiple-hop neighborhood information of
item entities, to enhance the item embedding representation. Then, the prediction layer
combines the obtained enhanced user/item representations, to output the final predicted
item click probabilities. In addition, we designed an ICM, for feature interaction between
items in the RS and head entities in the KG, to complement the available information
between items and entities. The KGE module mainly connects the head entities output
from the ICM with the relational entities, and then goes through a multi-layer neural
network to predict the tail entities, thus assisting the recommendation module and bringing
regularization to the model.
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Figure 2. Illustration of the proposed KCNR model, which consists of a recommendation module,
knowledge graph embedding module, and information complementary module.

3.3. Recommendation Module

In this subsection, we detail the URL, IRL, and prediction layer of the KCNR model.

3.3.1. URL

The URL includes a collaborative propagation part and a knowledge graph-aware
propagation part. We will discuss both parts in detail below.

Collaborative propagation: We know that the user’s prior information (i.e., histor-
ical interaction items) largely represents the information about the user’s personalized
preferences. Therefore, to enrich the description of the user, KCNR does not use a simple
embedding representation of the user alone, but combines it with the user’s prior informa-
tion and the knowledge information in the KG, to describe the user. Specifically, KCNR
first finds multiple entities in the KG, corresponding to multiple interaction items of user
u, based on the correspondence between items and entities in the KG, which constitutes
the initial entity propagation set of user u, and lets it propagate in the KG, to obtain user
personalized preferences. The initial entity propagation set of user u is defined as follows:

ϕ0
u = {e|(v, e) ∈ D and v ∈ |yuv = 1}. (3)

With the above processing, we can add the interaction information that best represents
the potential semantics of the user to the initial set of entity propagation of the user u,
which is used to enhance the user embedding representation.

Knowledge graph-aware propagation: In the KG, entities connected by a variety of
relationships often have strong knowledge associations. Thus, by propagating entities
along the associated paths in the KG, we can obtain the extended entity set of the user’s
initial entity propagation set, as well as the set of triplets of different depths, which can also
further enhance the user’s embedding representation, due to the strong correlation between
them. The extended set of entities of user u in the KG, can be recursively represented as:

ϕl
u =

{
t|(h, r, t) ∈ G and h ∈ ϕl−1

u

}
, l = 1, 2, · · · , L, (4)

where l represents different depths. Then, we define the user’s l-th triplet set as:

φl
u =

{
(h, r, t)

∣∣∣(h, r, t) ∈ G and h ∈ ϕl−1
u

}
, l = 1, 2, · · · , L. (5)
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Through collaborative propagation and knowledge graph-aware propagation, users’
preferences are continuously diffused in the KG, and we are then able to capture users’
knowledge-based higher-order interaction information, effectively enhancing the ability of
the model to augment user representations with latent vectors. However, each tail entity
in the KG tends to have different head entities and their corresponding relationships. For
example, Farewell Atlantis and Interstellar are relatively similar in the genre of films, but the
actors and directors are less similar. Therefore, we adopt a knowledge-aware attention
network [24] to generate different scores for tail entities of triplets (i.e., different weights
for different head entities and relations), which are used to indicate that, when different
head entities are obtained, different meanings when entities and relationships are used.
The knowledge-aware network is shown in Figure 3. Assuming that (h, r, t) is the i-th
triplet in the set of user extended entities in the set of triplets at the l-th layer, the attention
embedding of the tail entity is as follows:

atti = δ
(

eh
i , ri

)
et

i , (6)

where eh
i is an embedding representation of the head entity, ri is an embedding representa-

tion of relation, and et
i is an embedding representation of the tail entity. We use δ

(
eh

i , ri

)
to

control the attention scores (weights) generated by eh
i and ri. In this paper, a network similar

to the attention network [25] is used to implement the function δ(·), formulated as follows:

δ
(

eh
i , ri

)
= Sigmoid(w2ReLU(w1z0 + b1) + b2), (7)

where
z0 = ReLU(w0(eh

i , ri)concat + b0), (8)

where w∗ and b∗ are the parameters of the nonlinear layer. Then, we use softmax [26] to
normalize the weights as follows:

δ
(

eh
i , ri

)
=

exp
(

δ
(

eh
i , ri

))
∑(h′ ,r′ ,t′)∈φl

u
exp

(
δ
(

eh′
i , r′i

)) , (9)

where φl
u denotes the triplet set of the user’s l-th layer. Through the knowledge-aware

attention network, KCNR can assign different weights to different tail entities, so that we
can obtain knowledge with higher relevance to the user, to enrich the user description. Then,
we use the obtained different weights to aggregate the tail entities, to obtain a potential
expression of the l-th layer triplet set for the user u, as shown below:

el
u =
|φl

u|
∑
i=1

attu
i , (10)

where
∣∣∣φl

u

∣∣∣ denotes the number of triplets. Note in particular, that the entities in the user’s
initial entity propagation set tend to be closest to the user’s original representation. There-
fore, we include these representations in the user representation. This is shown as follows:

e0
u =

∑e∈ϕ0
u

e∣∣ϕ0
u
∣∣ . (11)
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We finally obtain the set of user representations containing the user simple embed-
ding representation, the user first-order entity set, and the weighted extended entity set.
The representations are as follows:

ψu =
{

u,e0
u, e1

u, · · · , el
u

}
. (12)

Since the representations in each layer of the propagation process have their different
potential impacts, it emphasizes different higher-order connectivity and preference simi-
larity. Therefore, in this paper, the summation approach is used to obtain the embedded
representations of users as follows:

uL = ∑
eu∈ψu

eu. (13)

…

head h

ie

relation ir

tail t

ie
l

ue

i 1i + l

Figure 3. Knowledge-aware attention network.

3.3.2. IRL

The IRL mainly samples the neighboring entities of the item entity in the KG, and then
combines the neighboring entity information with a bias, to complement the embedded
representation of the item entity. We can also extend the perceptual depth of items in the KG
to multi-hop, to obtain potential personalized preferences of users over long distances. We
assume that there are users u and items v, and we use Q(v) to denote the set of first-order
entities in the KG, corresponding to item v. To enrich the embedding representation vector
of items, we have the bias to aggregate these entities as follows:

vu
Q(v) = ∑e∈Q(v) π̃u

rv,e e, (14)

where rv,e is the relational representation of entities v and e in the KG, and π̃u
rv,e is the score

between u and r, defined as follows:

π̃u
rv,e =

exp(πu
rv,e)

∑e∈Q(v) exp(πu
rv,e)

, (15)

where
πu

r = ∆(u, r), (16)

where u and r are user embedded representations and relation embedded representations,
respectively, πu

r denotes the score between a user and a relation, and π̃u
rv,e is the normal-

ization operation on πu
r . The function ∆(·) (inner product), is used to calculate the score

πu
r . This operates because we consider that different relations are important to users in

different ways. For example, a particular user may have more personalized preferences for
music they have historically enjoyed by the same artists, while other users may be more
concerned with the genre of the music. Therefore, we use the user and relationship scores
as a filter for the user’s personalized preferences, allowing us to bias specific scores when
aggregating neighborhood information. Note that, in the real world, the Q(v) of some
entities may be large. Therefore, to ensure higher computational efficiency, we draw the set
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of neighbors of the same size uniformly for each entity. Briefly, we denote the neighborhood
representation of entity v as vu

O(v), whereO(v) = {e|e ∈ Q(v)} and |O(v)| = K. K denotes
the size of the nearest neighbor, which is a tunable parameter, and we will discuss its effect
on the model in the experimental section. As shown in Figure 4, we give examples of the
two-layer depth of perception of the item entity.

1h =

2h =

ue

1

ue

2

ue

3

ue

4

ue

,v ei

u

r ,v ei

u

r
relationrelation

Figure 4. A two-layer perception depth of item entity in a KG.

Finally, we have to combine the initial embedding representation of item v, with its
aggregated neighborhood representation vu

O(v), to obtain the neighborhood-enhanced rep-
resentation vu

agg, of item v. This paper implements the following four types of aggregators:

• Summation aggregator [27] directly sums v and vu
O(v), and then goes through a nonlinear

layer, which is defined as follows:

vu
aggsum = ReLU(w · (v + vu

O(v)) + b). (17)

• Concat aggregator [28] concatenates v and vu
O(v) before going through the nonlinear

layer, which is defined as follows:

vu
aggconcat = ReLU(w · concat(v, vu

O(v)) + b). (18)

• Neighbor aggregator [29] only considers vu
O(v) as the output representation, which is

defined as follows:
vu

aggneighbor
= ReLU(w · vu

O(v) + b). (19)

• Bi-interaction aggregator [30] considers two information interactions of v and vu
O(v),

defined as follows:

vu
aggBi

= ReLU(w1 · (v + vu
O(v))) + ReLU(w2 · (v� vu

O(v))). (20)

Among the above four aggregators, w∗ and b denote the weights and bias, respectively.
In particular, the � in the bi-interaction aggregator represents the Hadamard product.
Aggregation is an important step in our model, and we will evaluate its performance in the
experimental section.



Appl. Sci. 2023, 13, 4577 10 of 19

3.3.3. Prediction Layer

After obtaining the final embedded representations of users and items, we combine
the two through the prediction function fRS (inner product), to make the final prediction.
The probability of user u clicking on item v is as follows:

ŷuv = σ( fRS(uL, vu
L)), (21)

where
vu

L = Eh∼s(v)

[
ICM

(
vu

agg, h
)
[vu

agg]
]
, (22)

where s(v) represents the set of related entities of item v, and ICM(·) is the information com-
plementary module we designed, which we will introduce in detail in the next subsection.

3.4. ICM

To model higher-order feature interactions between enhanced item representations in
RS and entity representations in KGs, and let them complement the available information,
we design an ICM in KCNR, as shown in Figure 5. The ICM utilizes a cross-compression
unit [14], to automatically control the enhanced item representation and knowledge transfer
between entities. Specifically, for the neighbor aggregate representation vu

agg of item v, and a
related entity e of the item in the KG, we construct the interaction of their potential features
vl and el from the l-th layer (for convenience, in the following description we replace vu

agg
with q):

Jl = qleT
l =

 q1
l e1

l · · · q1
l ed

l
...

. . .
...

qd
l e1

l · · · qd
l ed

l

, (23)

JT
l = elqT

l =

 e1
l q1

l · · · e1
l qd

l
...

. . .
...

ed
l q1

l · · · ed
l qd

l

, (24)

where both Jl and JT
l are called the cross feature matrix, and d is the entity embedding

dimension. Through the above operations, all possible feature interactions qi
le

j
l , ∀(i, j) ∈

{1, · · · , d} represented by the neighbor aggregate representation q of item v and related
entities e, are explicitly modeled. Next, we project Jl and JT

l into their latent representation
space, and use the output as input for the next layer of interaction, expressed as follows:

vl+1 = Jlw
QQ
l + JT

l wEQ
l + bQ

l = qleT
l wQQ

l + elqT
l wEQ

l + bQ
l , (25)

el+1 = Jlw
QE
l + JT

l wEE
l + bE

l = qleT
l wQE

l + elqT
l wEE

l + bE
l , (26)

where w· ·l and b·l are weight and bias. For the convenience of description, we denote the
ICM as:

[ql+1, el+1] = ICM(ql , el). (27)

In particular, the ICM generally has a better feature interaction effect at the lower layer,
because as the number of network layers increases, the degree of mixing of various features
grows, and the mixed features lack clear associations and are not suitable for sharing [14].
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Figure 5. Information complementary module.

3.5. KGE Module

KGE is used to represent entities and relationships in a continuous vector space.
In KCNR, we first use the ICM to obtain the interactive features of the head entity h, and
item neighbor aggregated representation vu

agg in the triplet (h, r, t), and then we combine the
head entity representation hL output by the ICM, with the nonlinear layer processing. The
relational entities rL are combined, and the tail entity is predicted after K-layer multi-layer
perceptron (MLP). The specific operation steps are as follows:

hL = Ev∼s(h)

[
ICML

(
vu

agg, h
)
[e]
]
, (28)

rL =ML(r), (29)

t̂ =MK
([

hL
rL

])
, (30)

where s(h) is the set of associated items of entity h, and t̂ is the predicted tail entity
representation, we then calculate the score of the triad using the score function fKGE:

score(h, r, t) = fKGE
(
t, t̂
)
= σ

(
tT t̂
)

, (31)

where σ(·) is a nonlinear activation function.

3.6. Learning Algorithm

The loss function of KCNR is shown below:

L = LRS + LKGE + LREG

= ∑
u∈U,v∈V

J(ŷuv, yuv)

−λ1

(
∑

(h,r,t)∈G
score(h, r, t)− ∑

(h′ ,r,t′)/∈G
score(h′, r, t′)

)
+λ2‖W‖2

2,

(32)

where J(·) represents the cross-entropy loss, and LKGE is the loss of the KGE module, which
calculates the score of the triplet. LREG is the regularization term of KCNR.
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4. Experiments

In this section, we conduct a large number of experiments on KCNR, and analyze and
discuss the experimental results and related influencing factors.

4.1. Datasets

KCNR conducted experiments on the following three datasets.

• MovieLens-1M, https://grouplens.org/datasets/movielens/1m/, (accessed on 20
September 2022) is the more widely utilized movie recommendation dataset in rec-
ommendation systems. In the dataset, 6040 favorite movies of users are reflected as
ratings from 1 to 5.

• Book-Crossing, http://www2.informatik.uni-freiburg.de/cziegler/BX/, (accessed
on 12 October 2022) is used for book recommendations, and it consists of 90,000 user
ratings from 0 to 10, for 1,149,780 books.

• Last.FM, https://grouplens.org/datasets/hetrec-2011/, (accessed on 6 September
2022) is a dataset for music recommendation, which contains music interaction infor-
mation from 2000 users.

Since the interaction data in the above three datasets are all explicit feedback data, we
first transform them into implicit feedback data by data preprocessing. For MovieLens-
1M, we labeled the interactions of ratings 4 and 5 as positive feedback signals, and for
Book-Crossing and Last.FM, we recorded all interactions as positive feedback behaviors.
Microsoft’s Satori was used to extract the knowledge triad used to construct the KG. For the
specific knowledge graph construction process, we followed the literature [10]. Table 1
shows the details of the datasets.

Table 1. Statistical information for the three datasets.

MovieLens-1M Book-Crossing Last.FM

#users 6036 17,860 1872
#items 2445 14,910 3846
#inter. 753,772 139,746 42,346
#entity 182,011 77,903 9366

#relation 2,483,990 303,000 31,036
#triplets 20,195 19,793 15,518
#sparsity 0.9489 0.9994 0.9941

4.2. Baseline Model

In this paper, to more comprehensively evaluate the performance of KCNR, we com-
pare it with mainstream baseline methods, including graph network-based recommenda-
tion methods (FairGo, PER), knowledge graph-based recommendation methods (CKE, Rip-
pleNet, KGCN, MKR, CAKR), and other recommendation methods (LibFM, Wide&Deep).
The descriptions of these methods are shown below:

• LibFM [31] is used in the CTR recommendation scenario, and it does not use KG.
• PER [12] is a path-based recommendation method that regards the KG as a heteroge-

neous information network.
• CKE [13] introduces various types of heterogeneous data for the RS, combined with

the initial item representation, to improve the recommendation quality.
• Wide&Deep [32] combines a deep model and linear model, to obtain more informa-

tion, to improve the recommendation effect.
• RippleNet [10] proposed to use the user’s prior information to propagate in the KG,

to capture the user’s personalized preferences.
• KGCN [15] propagates item entities in the KG and has a bias to aggregate the item’s

neighbor information to complement the item embedding.
• MKR [14] is a multi-task recommendation model trained by combining the recom-

mendation task and the KGE task.

https://grouplens.org/datasets/movielens/1m/
http://www2.informatik.uni-freiburg.de/cziegler/BX/
https://grouplens.org/datasets/hetrec-2011/
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• FairGo [33] uses adversarial learning techniques to consider the fairness of graph rec-
ommendation.

• CAKR [34] improves the interaction unit of MKR, to better capture characteristic
interactions between entities.

4.3. Experimental Setup

As shown in Table 2, we set the corresponding hyperparameters for these three
datasets, where the d parameter is the embedding dimension of the model and L is the
layer number of the ICM. λRS is the learning rate for the recommendation module, and λ2
represents the L2 regularization weight. The hyperparameters of the other baseline models
are the same as in the original papers. In this paper, AUC and F1 were used to evaluate the
KCNR model, and the higher the values, the better. In terms of dataset partitioning, we
divide the dataset into 6:2:2 (training set:validation set:test set).

Table 2. Hyperparameter settings for the KCNR model.

Dataset Parameters

MovieLens-1M d = 32, L = 2, λRS = 2× 10−2, λ2 = 10−6

Book-Crossing d = 16, L = 2, λRS = 2× 10−4, λ2 = 10−6

Last.FM d = 4, L = 2, λRS = 10−3, λ2 = 10−6

4.4. Experimental Results

In this section, we conduct experiments on click-through rate prediction for different
models. We show the final results in Table 3. The analysis is as follows:

• Compared with other baseline models, the performance of PER is relatively poor, be-
cause the design of artificial paths often requires more professional domain knowledge,
resulting in its inability to use the information in the KG efficiently.

• From the experimental results, LibFM, Wide&Deep, and CKE, achieved better experi-
mental results than PER, indicating that they can utilize the rich auxiliary information
in the KG to improve the recommendation performance.

• RippleNet shows excellent performance, suggesting that obtaining auxiliary informa-
tion by propagating user preferences in the KG is effective in improving the recommen-
dation effect. However, by comparing the experimental results of the three datasets,
RippleNet performs poorly on the dataset with greater data sparsity, indicating its
strong dependence on data sparsity.

• For both MKR, CAKR, and KGCN, MKR and CAKR outperform all baseline methods
on the Book-Crossing dataset, suggesting that the cross-compression unit in MKR and
CAKR can learn more additional information, to alleviate the data sparsity problem
in recommendation scenarios with high sparsity. KGCN, on the other hand, is the
least effective on the Book-Crossing dataset, which is also due to the fact that data
sparsity causes KGCN to easily introduce noise, degrading the model performance
when aggregating neighbor information.

• Overall, the KCNR model proposed in this paper outperformed all baseline models on
all three datasets. On the MovieLens-1M dataset, the AUC increased by 0.7%. On the
Book-Crossing dataset, the AUC increased by 0.6%. On the Last.FM dataset, the AUC
increased by 1.1%. It can be seen that KCNR utilizes the rich semantic information
in the KG, and the special network structure of the KG, to enhance the embedded
representation of users and items. This also alleviates the data sparsity problem of the
recommendation system, to a certain extent.

• The last four rows in Table 3 show the results of KCNR using four different aggregators,
when aggregating item neighbors. It can be observed that KCNRneighbor has the worst
performance, because it uses only the information of the item’s neighbors to represent
the item, losing the original information of the item. This information is important for
the item. KCNRsum and KCNRconcat achieve better results than KCNRneighbor, because
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they consider the importance of the item’s original information and neighboring
entities’ information. Based on KCNRsum, KCNRBi adds additional feature interaction
between the item’s original information and the neighboring entities’ information, to
supplement the information further. So it achieved better results. This also shows
that the information disseminated in the KG is sensitive to the association between
vu
O(v) and v. It is also demonstrates that the rich semantic information in the KG

can enhance user and item embedding representations and effectively improve the
recommendation quality.

Table 3. The results of AUC and F1.

Model
MovieLens-1M Book-Crossing Last.FM

AUC F1 AUC F1 AUC F1

LibFM 0.892 0.763 0.685 0.618 0.777 0.710
PER 0.706 0.639 0.624 0.562 0.632 0.596
CKE 0.801 0.703 0.671 0.611 0.744 0.673

Wide&Deep 0.898 0.791 0.712 0.645 0.756 0.654
RippleNet 0.912 0.812 0.725 0.650 0.766 0.702

MKR 0.911 0.838 0.727 0.665 0.795 0.729
KGCN 0.908 0.834 0.690 0.634 0.798 0.718
FairGo 0.907 0.838 0.716 0.661 0.796 0.700
CAKR 0.919 0.844 0.744 0.648 0.800 0.725

KCNRBi 0.926 0.852 0.750 0.666 0.811 0.732
KCNRsum 0.926 0.851 0.743 0.661 0.808 0.732

KCNRconcat 0.925 0.851 0.741 0.662 0.805 0.734
KCNRneighbor 0.924 0.851 0.738 0.654 0.805 0.734

4.5. Influence of Different Modules

In this part, we discuss the impact of the URL module, the IRL module, and the
knowledge-aware attention network on KCNR, as shown in Figure 6. As can be seen from
the figure, the results of KCNR outperform KCNRw/o URL without URL and KCNRw/o IRL
without IRL. This indicates that the KCNR model adds more supplementary information
to users and items through URL and IRL, which makes the model describe users and items
more accurately. By processing in this way, we can better understand users’ personalized
preferences and thus provide them with more accurate recommendation results. In addi-
tion, the results of KCNR outperform KCNRw/o ATT without knowledge-aware attention
networks, and it has the most significant performance improvement. This shows that, when
the model selects neighbor entities for users, it takes into account entities that are more
relevant to the user, by using the knowledge-aware attention network, and combines the
information of these entities with the original embedding of the user, which significantly
improves user representational ability. The main purpose of a recommendation system, is
to model the user’s preferences to provide higher-quality recommendation results to the
user. Therefore, the improvement of the model by knowledge-aware attention networks is
relatively significant.
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Figure 6. AUC results for different modules of KCNR.

4.6. Experimental Parameter Analysis

In this subsection, we discuss the effect of parameters such as dimensionality on the
KCNR model, provided that other parameters are fixed.

4.6.1. Impact of Embedding Dimension

In this part, we use the same embedding dimensions for the KG and recommendation
system, and experimentally explore the effect of different dimensions on KCNR models.
As shown in Table 4, we find that for the MovieLens-1M dataset, the model performance
increases when the embedding dimension increases from 4 to 32, and when the dimension
is larger than 32, the performance does not increase and starts to decrease. For the Book-
Crossing dataset, the best model performance is achieved when the embedding dimension
is 16, and the performance starts to decrease when the embedding dimension continues to
increase. For the Last.FM dataset, the model performance is optimal when the embedding
dimension is 4 and starts to decrease when the embedding dimension starts to increase. We
can infer that KCNR’s performance will keep changing with the embedding dimension,
and when the peak is reached, continuing to increase the dimension will lead to a decrease
in the performance of KCNR. This suggests that a suitable dimensional embedding can
improve the performance of the model, but when the dimensionality is too large, overfitting
problems may occur. In addition, an excessively large embedding dimension may introduce
some noise while encoding more information, which is also a possible reason for the decline
in model performance.
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Table 4. Results of AUC on three datasets with different embedding dimensions.

d 4 8 16 32 64 128

MovieLens-1M 0.918 0.924 0.925 0.926 0.925 0.922
Book-Crossing 0.743 0.744 0.750 0.742 0.743 0.738

Last.FM 0.811 0.808 0.808 0.807 0.806 0.803

4.6.2. Impact of Item Perception Depth

We explore the impact of item entities on the performance of KCNR, by setting their
different depth of feeling in the KG. As shown in Table 5, the optimal performance is
obtained when h is two or three, for the three datasets. We can also see from the table, that
when the perceptual depth is too large, it will lead to bad results. This is because too long a
KG propagation chain, sometimes does not add more useful information to the initial item
entities and may even add more noise, affecting the model performance.

Table 5. Results of AUC on three datasets with different item perception depths.

h 1 2 3 4

MovieLens-1M 0.924 0.926 0.923 0.923
Book-Crossing 0.742 0.750 0.740 0.735

Last.FM 0.807 0.808 0.811 0.806

4.6.3. Impact of Item Neighbor Sampling Size

We chose different item sampling neighbor sizes, to investigate their effect on KCNR’s
performance. From Table 6, we observe that KCNR’s performance is optimal in the
MovieLens-1M and Last.FM datasets when the neighbors are six and eight, respectively,
and in the Book-Crossing dataset when the neighbors are two. This is because the Book-
Crossing dataset is more sparse, and more neighbors may introduce more useless informa-
tion and reduce the predictive power of the model.

Table 6. Results of AUC on three datasets with different item neighbor sampling sizes.

K 2 4 6 8 16 32

MovieLens-1M 0.923 0.923 0.926 0.924 0.923 0.923
Book-Crossing 0.750 0.744 0.743 0.743 0.742 0.734

Last.FM 0.805 0.807 0.808 0.811 0.808 0.807

4.6.4. Impact of the User’s Initial Entity Size

We explored the upper bounds of KCNR’s performance, by varying the size of the
user’s initial entity. Table 7 shows the results of the AUC evaluation metrics for the
MovieLens-1M dataset, the Book-Crossing dataset, and the Last.FM dataset. We find that a
suitable user initial set size is beneficial to the model. The reason is, that the number of users’
initial entities determines the number of triplets associated with KG, which ultimately
affects the model recommendation results.

Table 7. Results of AUC on three datasets with different user’s initial entity sizes.

s 4 8 16 32 64

MovieLens-1M 0.906 0.910 0.916 0.920 0.926
Book-Crossing 0.743 0.750 0.744 0.743 0.739

Last.FM 0.808 0.809 0.811 0.807 0.807

4.6.5. Impact of User Propagation Depth

In this part, we observe the changes in KCNR’s performance, by varying the depth
of user perception propagation. Table 8 shows the AUC evaluation metrics for the three
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datasets. From the table, we can see that the model performance is optimal at a propagation
depth of two for the MovieLens-1M dataset, three for the Book-Crossing dataset, and one
for the Last.FM dataset. This is because propagating too far in the KG, in addition to
bringing in more supplementary information to enhance the user representation, may bring
in more noise. Therefore, a reasonable propagation depth can be set, to obtain the optimal
model prediction capability in different recommendation scenarios.

Table 8. Results of AUC on three datasets with different user propagation depths.

l 1 2 3

MovieLens-1M 0.924 0.926 0.922
Book-Crossing 0.743 0.744 0.750

Last.FM 0.811 0.808 0.805

5. Conclusions and Future Work

In this paper, we propose an end-to-end knowledge-aware enhanced network com-
bining neighborhood information for recommendation (KCNR). KCNR consists of a rec-
ommendation module, KGE module, and ICM. In the recommendation module, we use
user prior information and item entities propagated in the KG, to enhance user and item
embeddings, as a way to alleviate the data sparsity problem of the RS. The KGE module
uses the properties of triplets in the KG to extract latent features. We then associate the
recommendation module with the KGE module, by explicitly modeling the interaction
between the enhanced item representations and the features of the entities in the KG, using
the designed ICM. Our numerous experiments in real recommendation scenarios, show
that KCNR outperforms the baseline models. In future work, we will try to construct user-
related KGs for recommendation, and consider adding temporal information to capture the
dynamic preferences of users at different time periods.
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