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Abstract: Cross-modal retrieval aims to elucidate information fusion, imitate human learning, and
advance the field. Although previous reviews have primarily focused on binary and real-value
coding methods, there is a scarcity of techniques grounded in deep representation learning. In
this paper, we concentrated on harmonizing cross-modal representation learning and the full-cycle
modeling of high-level semantic associations between vision and language, diverging from traditional
statistical methods. We systematically categorized and summarized the challenges and open issues in
implementing current technologies and investigated the pipeline of cross-modal retrieval, including
pre-processing, feature engineering, pre-training tasks, encoding, cross-modal interaction, decoding,
model optimization, and a unified architecture. Furthermore, we propose benchmark datasets and
evaluation metrics to assist researchers in keeping pace with cross-modal retrieval advancements.
By incorporating recent innovative works, we offer a perspective on potential advancements in
cross-modal retrieval.

Keywords: cross-modal retrieval; representation learning; full-cycle modeling; feature engineering;
pre-training tasks

1. Introduction

Cross-model retrieval focuses on retrieving information from multiple modalities.
In the era of intelligent media, emerging social networking sites are gradually becoming
more popular, increasing users’ expectations for search results. People’s demand for infor-
mation retrieval is no longer satisfied with a single modality, but they want to obtain data
from different modalities. Both domestically and globally, academic scholars are committed
to exploring the semantic association between cross-modalities to improve the precision
and efficiency of retrievals. Cross-modal retrieval faces severe challenges in modal feature
representation, complex semantic processing, the alignment of different modal features,
and dataset construction. One of the primary motivations for cross-model retrieval is to
bridge the gap between the various modalities and enable effective information retrieval.

Representation learning is the foundation of cross-modal retrieval. It represents and
summarizes the complementarity and redundancy of vision and language. Cross-modal
representation in our work explores feature learning and cross-modal interactions for
information integration. It intends to minimize redundancy across modalities to provide
a more effective feature representation. Cross-modal retrieval explores the mechanisms
involved in the transformation of knowledge and seeks to maintain semantic consistency
across diverse modalities within the context.

Traditional surveys cover various modalities, including text, image, audio, and video
modalities. There are also more focused reviews of cross-modal retrieval oriented toward
image text. According to the variations in developing inter-modal association methods,
traditional studies divided text retrieval approaches into typical association analysis, deep
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learning, and deep hashing. They investigated particular remedies to the flaws of cross-
modal association methodologies. Kaur et al. [1] compared graphic retrieval surveys
and analyzed the practical applications. There is low-level representational heterogene-
ity and high-level semantic homogeneity between vision and language. Multi-learning
systems and explored approaches [2] for fusing representations are developed in deep
learning architectures. Cross-modal retrieval attempts to realize information interactions
by mining the relationships of multiple modal samples. There are more challenges in
effective indexing and retrieval. Feng et al. [3] divided cross-modal modeling strategies
into direct and indirect modeling. The former directly measured the correlation between
different modal data by establishing a sharing layer. The latter established a semantic corre-
lation between other modals in various scenes by building a common representation space.
Wang et al. [4] classified existing cross-modal retrieval methods into real-value and binary
representation learning and summarized their respective core ideas. However, massive
innovative and high-tech breakthroughs have emerged in recent years. Researchers may
abandon past machine learning techniques in the deep learning era. Peng et al. [5] paid
attention to cross-media analysis and reasoning, which are not carried out by retrieval.
With the advancement of cross-modal retrieval, a comparatively high number of review
articles emerged. Cross-modal retrieval [6] introduced public space learning and similarity
measurement, and different cross-modal retrieval techniques were summarized. Some
researchers divide cross-modal retrieval into subspace-based, deep-learning-based, hash-
transform-based, and theme-based methods [7]. The main problem is the lack of research
on the association between intra-modal local data and inter-modal semantic structures.
Li et al. [8] reviewed cross-modal retrieval models based on representation learning from
two dimensions of information extraction. They also provided a summary of feature
extraction results. As graph-related knowledge adds to the retrieval process, the cross-
modal retrieval method [9] of joint graph regularization was explored. Ayyavaraiah and
Venkateswarlu [10] provided a concise overview of the advancements in cross-modal fea-
ture retrieval and optimization. Furthermore, they elucidated the prevalent issues and
obstacles encountered in data joint analysis.

Compared to preliminary studies, our survey from a representation learning perspec-
tive involves full-cycle methodologies that include feature engineering, representation
learning, cross-modal interaction, and constructing high-dimensional correlations. The typ-
ical survey of cross-modal retrieval is primarily on whether a deep learning model is
employed for classification, and then, the retrieval results are analyzed. Different from the
traditional works, we focused on the characteristics of deep learning. Taking advantage of
pre-training and fine-tuning modes, our survey covers crucial processes of representation,
translation, alignment, fusion, co-learning, and cross-modal research.

We provide a taxonomy of issues and challenges on the subject to help readers better
understand image text and text image retrieval. The survey thoroughly explains how to
overcome recent technological breakthroughs. We examined the problems and challenges
that must be solved. Figure 1 contains several issues that require addressing. Detailed
introductions are provided in the subsequent sections:

1. Multi-modal data volume: Uni-modal retrieval cannot keep up with the increasing
expansion of multi-modal data.

2. Significant differences in the manifestation of heterogeneity: There is an issue with
evaluating the content correlation between modal data and computing their similarity.

3. Semantic gaps: The bottom-up semantics in feature analysis between separate modali-
ties are called semantic gaps.

4. Scalability of deep learning models: Adding new datasets, retraining the model,
and recalculating all take a long period and need incremental learning.

5. Problem with training datasets: There are missing data, loose data, fewer data labels,
and noisy data. Because the volume of particular cross-modal retrieval datasets is now
relatively tiny, multi-modal retrieval datasets that are large in scale and a universal
representation must be collected.
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6. Granularity of cross-modal correlation: Researchers must connect information at
the fine-grained and coarse-grained levels and pay close attention to contextual
information.

7. Text length issue: The textual duration in cross-modal retrieval may be too lengthy or
too short to prevent it from expressing complete meaning.

8. Long tail of vision: Raw data in the vision domain often follow a long-tail distribution,
with most samples originating from only a small number of classes.

9. Intra-modal reasoning problem: The fine-grained information in the modal is seman-
tically dependent, posing an intra-modal reasoning challenge.

10. Inter-modal alignment issue: Fine-grained information alignment and fragment align-
ment are examples of inter-modal alignment issues.

11. Scarce memory resources: When dealing with vast amounts of data, real-valued
representation techniques suffer from expensive computing costs and great space
requirements.

12. Large latency and low efficiency in retrieval: Extracting region features or other
characteristics might be time-consuming, resulting in delayed retrieval results.

Figure 1. The problems and challenges in cross-modal retrieval.

In addition to covering real-value and binary representation methods, our survey
further summarizes deep learning methodologies. Compared to previous work, we sum-
marize the overall workflow of cross-modal retrieval, explore the issues and challenges,
and analyze the optimization characteristics in each phase. Our contributions are as follows:

• We summarize various open issues and challenges.
• We concentrated on methodologies with a full-cycle deep learning process, which

addresses a gap in existing works. Our approach incorporates innovative techniques
and references that are absent in prior surveys.

• This paper provides a comprehensive summary and comparative analysis of disparate
cross-modal representations at every pre-training stage.

• We present a comprehensive description of benchmark datasets and evaluation metrics
that are critical.

The road map is arranged as follows: Section 2 provides preliminary techniques and
the retrieval pipeline. Section 3 describes full-cycle methodologies oriented toward fine-
grained deep learning, including feature engineering, cross-modal interaction, pre-training
tasks, and unified vision language architecture. Feature engineering combines extraction
capacity, representation learning, and the high-dimensional correlation of diverse modali-
ties. We analyzed aligning, reconstructing, and embedding the distinct modal information
elements. Besides, the survey presents the glossary of pre-training tasks for cross-modal
information completion and matching. Section 4 compares optimal studies about loss
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functions, avoiding the problems of gradient exploding or vanishing in detail. Additional
performance metrics with various evaluation methods are demonstrated in Section 5. Sec-
tion 6 illustrates different benchmark datasets in cross-modal retrieval. Comparison results
of cross-modal representation on the Flickr 30k and MS-COCO datasets are also provided.
Finally, Section 7 concludes the survey.

2. Overview of Cross-Modal Retrieval

Deep learning models have advanced the domain of cross-modal retrieval by address-
ing the heterogeneity challenge across diverse modalities. These approaches predominantly
emphasize techniques including joint subspace learning, feature extraction, interaction,
alignment, matching, and fusion. A considerable number of researchers establish fine-
grained interactions and multi-level or multi-stage semantic alignments to mitigate the
disparities between visual and linguistic modalities. Furthermore, numerous image text
pair corpora can be fine-tuned to perform retrieval tasks.

Feature extraction serves as the core module of cross-modal retrieval, encoding a raw
corpus into embeddings, such as vision embedding and language embedding. By applying
deep learning models, a sequence of features can be extracted. In contrast to traditional
CNN networks [11] that focus on grid features at the pixel level, more recent approaches
have emerged that explore region features in images, such as the Faster-RCNN algorithm
proposed by [12]. The widespread paradigms of pre-training and fine-tuning have been
motivated by the transformer [13] and BERT [14] architectures. For example, ViT [15] can
directly process patch features, while BERT, UniLM [16], RoBERTa [17], T5 [18], BART [19],
transformer, and ViT support text encoders. For image encoders, there are a variety of
options, including Faster-RCNN, ResNet [20], Visual Dictionary [21], Swin transformer [22],
EfficientNet [23], and Linear Projection.

Researchers have incorporated pre-training models into cross-modal retrieval sys-
tems, modeling the interactions between cross-modal representations. It has been shown
that visual concepts in images are critical and complex for cross-modal representations,
unlike relationships between words. By extending the BERT model to images and texts,
ViLBERT [24] targets region-based object detection and encodes separate sequences of
regions using Faster-RCNN. LXMERT [25], similarly to ViLBERT, encodes regions as a
sequence of region-of-interest (ROI) features. Apart from region features, pixel-level grid
features, such as SOHO [26], CLIP-ViL [27], and pixel-BERT [28], are encoded. They aban-
don the time-consuming Faster-RCNN. On the contrary, studies are in favor of ResNet
extracting grid features. Apart from the region and grid features, patch projection is also
used to present image features in many scenarios. ALBEF [29] processes patch features
utilizing the ViT encoder directly, generating several flattened 2D patches. OSCAR [30] and
ERNIE-ViL [31] develop additional information to facilitate semantic alignments. OSCAR
adds region tags as anchor points from images and then implicitly aligns with text words.
On the contrary, ERNIE-ViL simulates a scene graph and pays attention to objects with
attributions and relations.

The two image- and sentence-retrieval scenarios have been extensively studied to
align images and texts with the same semantics [32–37]. At the beginning of a cross-
modal alignment study, Reference [32] developed a model that used CNN and Bi-RNN to
construct descriptions of pictures and regions. The alignment models incorporate CNN
over image regions and bidirectional RNN over sentences. A structured objective leverages
a multi-modal embedding to align the two modalities. Carvalho et al. [33] simultaneously
leveraged retrieval and class-guided features and formulated a joint objective function and
the loss of classification in a shared latent space. The double loss is considered precisely
the retrieval loss and class loss. The double triplet scheme brings forward the novel idea
of a loss function for cross-modal research. Some researchers presented a dynamic router
schema for interactions between different modalities [34]. They designed a framework with
four cells to dynamically align fine-grained segments. ViLT [35] utilized linear projections
for matching and demonstrated improvements based on alignment pre-training models,
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which embed images and captions in the end. ROSITA [36] was motivated by the highlights
of OSCAR and ERNIE-ViL and enhanced alignments by integrating cross- and intra-modal
knowledge. In addition, another study [37] offered an instance-oriented vision language
task architecture that utilized the dot product to align texts and images.

The cross-modal retrieval framework predominantly encompasses fine-grained com-
ponents: representation, translation, alignment, fusion, and co-learning. This section
describes the exact design, comprising essential stages. Figure 2 illustrates the compre-
hensive architecture of a typical system within this domain. In the full-cycle workflow,
these modules are transformed into the following methodologies, including pre-processing,
encoder representation, cross-modal attention, and decoder mechanisms. These stages
facilitate efficient information extraction and retrieval across different modalities.

1 
 

 

Figure 2. An overview of the cross-modal retrieval process.

Pre-processing. The input data are pre-processed to reduce noise and to prepare for
subsequent processing. This stage converts image/video and textual phrase inputs into
visual and textual tokens. In addition, there are differences between various modalities, so
the pre-processing will make a distinction. Apart from the standard tokenization, there are
several modules.

Encoder representation. The second period involves representing each modality
independently using feature extraction methods. The encoder stage gathers input from
visual and textual tokens and generates intermediate states to encode semantic content.
After embedding, the most-common methodologies to build an encoder are to utilize LSTM,
convolution, and other techniques to encode the token sequences. For text representation,
word embeddings, positional embeddings, and segment embeddings are fed into the BERT
encoder. Additionally, a series of features, such as image representation, is aligned with a
text representation. In this scenario, patch, grid, and region features are extracted from the
visual domain.

Vision language pre-training models combine feature extraction and feature fusion
with pre-training tasks. These parts address various challenges, such as quantifying the
text and image and transmitting them to the model for learning, handling the challenges
of representation interactions, and building pre-training tasks to aid models in learning
the alignment information. Pre-training on large-scale data can learn semantic correlation
across distinct modalities, addressing the issue of difficult access to pricey manual annota-
tions. There are two core pre-training choices with respect to the fusion encoder and dual
encoders to aggregate information in the paired data. The single encoder mainly improves
the BERT input, whereas double encoders mainly perform co-/cross-BERT. We examined
many current publications from 2018 to 2022 and divided them into single-stream and
dual-stream models based on how they treat pre-training models. Table 1 shows a road map
for pre-training models with fusion encoder and dual encoders. Studies have shown that
the single-stream design conducts self-attention on two modalities directly, overlooking
intra-modality interaction. As a result, several researchers advocate the adoption of a
dual-stream architecture to describe cross-modal interactions.
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Table 1. A road map table for pre-training models with fusion encoder and dual encoders.

Dual-Stream Models Single-Stream Models

2019-ViLBERT [24] 2019-VisualBERT [38]

2019-LXMERT [25] 2020-UNITER [39]

2020-UNIMO [40] 2020-Oscar [30]

2020-ViLLA [41] 2020-Unicoder-VL [42]

2021-ALBEF [29] 2020-VL-BERT [43]

2021-LightningDot [44] 2020-E2E-VLP [45]

2021-CLIP [27] 2020-ImageBERT [46]

2021-ALIGN [47] 2020-Pixel-BERT [28]

2021-ERNIE-ViL [31] 2021-ViLT [35]

2019-WenLan1.0(RoBERTa-base) [17] 2021-VinVL [48]

2022-COTS [49] 2021-M6 [50]

A single-stream architecture learns by a single transformer encoder and assumes
that it is easy to create a correlation and alignment encompassing vision and language.
Furthermore, the features are concatenated with position information before being fed into
a transformer-based encoder.

Unlike single-stream architectures, dual-stream architectures utilize a cross-modal
mechanism to model two unidirectional cross-attention sublayers. The sublayers are typi-
cally composed of a cross-attention layer. They are in charge of transferring information
and harmonizing semantics. In this case, parameters are shared between two sublay-
ers, and separate transformers learn contextualized embedding information. As shown in
Table 1, single-stream and dual-stream pre-training models have emerged as two prominent
types in recent years. A single-stream architecture operates the unordered representation
of transformer attention in a unified framework. A number of studies have used the single-
stream paradigm for pre-training, such as VisualBERT [24], UNITER [39], OSCAR [30],
Unicoder-VL [42], VL-BERT [43], E2E-VLP [45], ImageBERT [46], Pixel-BERT [28], ViLT [35],
VinVL [48], and M6 [50]. Some researchers develop segment embedding from differ-
ent sources to indicate input elements, i.e., VisualBERT and VL-BERT. The dual-stream
models include ViLBERT [24], LXMERT [25], UNIMO [40], ViLLA [41], ALBEF [29], Light-
ningDot [44], CLIP [27], ALIGN [47], ERNIE-ViL [31], WenLan1.0 [17], and COTS [49].
In ViLBERT, the co-transformer handles a two-stream interaction. Moreover, the struc-
ture has been updated for interactivity, especially considering the text’s context while
rendering the image. Furthermore, LXMERT is the same as ViLBERT in the pre-training
model. UNIMO brings forth new ideas, which take both a single modal and multiple
modals into consideration to make a feature fusion. With respect to ViLLA, it employs
adversarial training in the pre-training and fine-tuning stages. Adversarial training can
help the model generalize better, enabling the performance at the fine-tuning stage. ALBEF
presents two categories, yielding strong single-peak and multi-peak representations with
enhanced retrieval and reasoning ability. The study of LightningDot proposes to convert
costly attention mechanisms into three types of learning objectives.

Cross-modal attention. Much work has been devoted to addressing the representation
as mentioned earlier via modeling multi-modal interactions. According to multi-modal
representations, correlation modeling is used to learn common representations. The cross-
modal interaction encourages other interactions between the two diverse modalities to
improve vision language tasks. We classified attention as up-bottom attention, bottom-up
attention, recurrent attention, cross-attention, co-attention, distillation-attention, meshed-
memory attention, and X-linear attention. The degree of cross-modal information fusion
varies among attention mechanisms. Up-bottom attention methods [51] have been widely
employed to enable comprehension via fine-grained analysis and even multiple levels



Appl. Sci. 2023, 13, 4571 7 of 26

of reasoning. The bottom-up process suggests picture areas, each with its feature vector,
while the up-bottom mechanism sets feature weights. According to the study by [52],
image text retrieval uses iterated operations and correspondences between visuals and
words via repeated alignment stages with recurrent attention memory. This research gains
a deeper understanding of fragment correspondences by exploring the attention mech-
anism. This understanding is compatible with intricate semantics, suggesting using the
complex relationship gradually between images and words. Cross-attention conveys en-
coder and decoder information in [14]. Transformer tracking [53] (TransT) avoids falling
into a local optimum of semantic information algorithms. To solve this issue of constructing
high-accuracy tracking systems, TransT introduces a unique attention-based feature fusion
network. The attention mechanism creates long-distance feature connections, allowing the
tracker to focus on important information while extracting a wealth of semantic information.
The combination of self-attention and guided attention is known as co-attention. A dis-
tillation attention framework [54] is a dual-encoder model that achieves faster inference
speeds than a standard fusion encoder thanks to its deep interaction module. In this study,
dual-encoder training is guided by fusion encoder instructor information in the annotation,
and the proposed knowledge distillation consists of two stages pre-training distillation and
fine-tuning distillation, ultimately outperforming other approaches. The use of meshed
memory allows the encoder to operate at multiple levels, learning both low-level and
high-level relationships. X-linear attention, developed by Pan et al. [55], enables high-order
feature interactions, while bi-linear fusion technology improves content interpretation in
cross-modal information by capturing second-order interactions between input types using
spatial and channel bi-linear attention distributions. Stacked cross-attention is widely used
by many researchers to maximize the investigation of vision language features.

Previously, the stack cross-attention network, named SCAN [56], has become a new
benchmark for calculating similarity on all potential pairs and not only areas in images
and words in sentences. The authors believe sentence descriptions are weakly explainable,
implying that words in phrases cannot suit particular positions. As a result, considering the
possible connections between visual regions and words, fine-grained interactions between
vision and language must be documented. They infer the similarity of entire images and
phrases by mapping word and picture areas to a shared embedding space. SCAN uses
Faster-RCNN to substitute CNN in DNN and extracts 36 border features with the border
indicating the position of candidate regions. Then, the layers of average pooling and fully
connection encode outputs are used. In addition, the revolutionary Bi-GRU assesses the
relative value of each word in sentences. Bottom-up attention is employed to forecast
and encode visual areas to features, and it maps words to sentence context characteristics.
Stacking cross-attention infers similarity between visuals and phrases.

Several studies have been derived from the SCAN model, including CAMP [57], IM-
RAM [52], MMCA [58], METER [59], and SMAN [60]. For example, CAMP differs from
SCAN in that SCAN only interacts in discrete subspaces, whereas CAMP maps image text
in the same subspace. CAMP involves specular highlights in vision and salient phrases
in language, alternately considers information from the two modalities, and filters out
irrelevant information to find fine-grained features for cross-modal matching. CAMP com-
prises two modules: an aggregate module and a gated fusion module. IMRAM iteratively
matches with recurrent attention memory in image text retrieval. Previous studies typically
focused on examining all semantic units to ensure uniform alignment, but the complexity
of alternative meanings can make it difficult for key semantics to be reflected. To address
this issue, iterative matching with repeated attention memory was introduced in IMRAM,
which compares the corresponding information between the text and image in several
phases to progressively investigate the corresponding fine-grained connections. Given that
individuals advance in the retrieval process, a memory distillation unit based on SCAN is
introduced to alignment via multi-step iterations. In IMRAM, the image input is for the
Faster-RCNN extraction of regional features, followed by a complete connection layer to
map each regional feature to a dimensional space. Text input is encoded using bi-GRU to



Appl. Sci. 2023, 13, 4571 8 of 26

obtain vector representations of each word in training. By describing the intra-modal and
inter-modal interactions between image areas and sentence words in a unified depth model,
they presented a novel multi-modal cross-attention (MMCA) network to match images
and sentences. In their approach, the authors employed a bottom-up model to extract the
characteristics of the significant image region in the self-attention module. Simultaneously,
the authors leveraged word token embedding as a linguistic element. The visual domain is
then fed into the transformer unit, and the word token is entered into the BERT model to
represent the connections between modalities. These features of fragments provide a global
representation. The study stacks the representation to picture the representation of regions
and sentence words and then passes them. In METER, co-attention and merged attention
are two methods for merging trans-modal content. Textual and visual characteristics are
passed into separate transformer blocks, adding parameters. Furthermore, textual and
visual components are easily integrated into a unique transformer block. Due to global
feature alignment, existing approaches cannot distinguish semantic information between
images and texts. In contrast, local feature alignment methods have significant computing
challenges when aggregating the similarity of vision and language. SMAN offers a stacked
multi-modal attention network to investigate fine-grained relationships and aggregates
fine fragments into the shared space. Multi-step attention reasoning is accomplished by
using modal and multi-modal information as guidance. It is argued that the bi-directional
ranking loss encourages a reduction in the distance between pairs of multi-modal examples.

Decoder module. Following the encoding of visual and linguistic feature interaction,
the next stage is to use intermediate states to decipher words for every step. Because the
decoder module generates outputs in inference, it is the most-comparable to the encoder
module. There are various methods for decoding, such as LSTM, GRU, convolution,
and transformer. For instance, LSTM outputs each auto-regressive word. Moreover,
the transformer first enables word generation via a self-attention and cross-attention mech-
anism between vision and language. Consequently, the decoder function is opposed to the
aforementioned encoder.

3. Fine-Grained Deep Learning Methodologies

Fine-grained deep learning approaches focus on advanced feature extraction, learning
feature representations, and establishing high-dimensional correlations across various
modalities. In this section, we critically review and analyze the full-cycle methodologies
employed in the cross-modal retrieval process, highlighting the effectiveness and potential
for further improvement.

3.1. Feature Engineering

Researchers aim to achieve high-precision retrieval by efficient feature extraction,
overcoming complex environments and the network topology. Referring to extensive
studies, we classified the feature extraction into global and local features based on the
granularity, as shown in Figure 3. Subsequent studies leverage global features, such as
VSE++ [61], ACMR [62], and DSPE [63]. In contrast, local features were employed in works
such as DAN [64], SCAN [56], SCO [65], and PVSE [66].

We further categorized feature extraction into two types, visual embeddings and
textual embeddings, which are crucial components of many cross-modal retrieval systems.
Visual embedding greatly influences retrieval efficiency, and current studies are extensive
and in-depth. The BERT-like structure is commonly utilized to extract features in textual
embedding methodologies. Unlike textual embedding, visual embedding employs different
degrees of extraction, including region, gird, and patch levels. The Faster-RCNN, a second-
order object detector, is widely used for extracting regional characteristics based on target
detection. For example, ViLBERT and LXMBERT employ co-attention to combine multi-
modal information. VisualBERT, VL-Bert, and UNITER use merged attention for multi-
modal information fusion, whereas OSCAR and VinVL need extra image tags. Despite
this, there are significant drawbacks to the approach. Training may freeze object detection.



Appl. Sci. 2023, 13, 4571 9 of 26

It limits visual concept recognition and loses context information. Moreover, it cannot
describe the connection between many objects. All of the limits described above are based
on region extraction characteristics. CNN-based techniques are another popular method of
extracting visual features. Grid characteristics are obtained using typical CNN networks
in pixel-Bert and CLIP-ViL, whereas text is obtained by using a transformer. SOHO
utilizes a learnable visual vocabulary to discretize grid features, which are subsequently
fed into multi-modal modules. It performs worse than the OD-based method compared to
inconsistent optimizers, i.e., CNN using SGD and transformer using AdamW. The Patch
projection enables image slices to extract features. A common approach, such as ALBEF,
utilizes ViT directly.

Figure 3. Classified diagram of V-L feature extraction.

3.2. Cross-Modal Interaction

Compared to the feature representation, the image text matching strategy improves
consistency by investigating semantic relationships. Cross-modal interaction plays a critical
role in establishing connections between distinct modal representations. This interaction
involves matching each pixel, region, or patch to a specific label. There are three primary
approaches in cross-modal interaction, namely vision language alignment, vision language
reconstruction, and vision language embedding based on semantic associations.

Vision language alignment. Vision language alignment aims to maximize the com-
parability of image text pairs using large-scale contrastive learning in the dual-encoder
model. It employs a re-sharing strategy to address cross-modal heterogeneity between
two network branches. In addition, the intra-modal similarity is learned using samples
from the exact modal via two conjoined CNN models. In traditional studies, the mode of
engagement for cross-modal retrieval has largely relied on manual expert knowledge and
empirical input. However, the study [67] proposed a dynamic interaction mechanism for
modeling cross-modal retrieval, known as DIME. DIME employs alternative interaction
approaches that are tailored to the complexity of the samples. The model includes a local
modification cell, an intra-modal inference cell, a global local guidance cell, and a modifica-
tion cell. ViLT [35] is a novel approach that incorporates visually embedded features via
patch projection and patch-level matching of the image and text information. By avoiding
the need for time-consuming object identification and convolution techniques with limited
expressive capacity, it can effectively improve the performance of cross-modal retrieval.
Similarly, in the work by [36], ROSITA employs a pre-training task to enhance fine-grained
semantic alignment by suppressing the interference of intra-modal context and eliminating
potential noise interference. These advancements demonstrate the effectiveness of these
techniques in overcoming the limitations of traditional cross-modal retrieval methods.
The ROSITA model draws inspiration from OSCAR and ERNIE-ViL. Additionally, a recent
study proposed a new alignment model [68], which embeds images and captions into
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the same subspace and enhances image-caption retrieval. The ALBEF model [29] adopts
the pre-fusion alignment method and utilizes a transformer-based ViT to collect image
features without the use of a CNN. The ViT model employs BERT for text and processes
single-modal text using the first six layers and multi-modal processing using the last six
layers. The model initially performs self-attention on text, followed by cross-attention and
visual feature fusion. Moreover, several studies have extensively explored instancewise
alignment. For example, X-DETR [37] introduces a versatile architecture for instance-level
alignment and discovers that costly joint modal transformers may be redundant for vision
language tasks, while weakly annotated data may be beneficial. X-DETR aligns graphics
and texts using the dot product. UVLP [69] demonstrates that the combination of image text
alignment and the alignment of the entire image text can achieve excellent unsupervised
vision language pre-training without parallel data, based on two critical criteria. The au-
thors proposed constructing a weakly supervised paired corpus and granularity alignment
pre-training tasks. Their unsupervised pre-training strategy aims to establish robust joint
representations of unaligned texts and images, and the results showed admirable perfor-
mance across various tasks in an unsupervised setting. The aforementioned alignment
approaches have specific criteria pertaining to the dataset size and quality and model
granularity, which are essential for achieving optimal results. These techniques emphasize
the importance of fine-grained matching in cross-modal retrieval.

Vision language reconstruction. Unlike vision language alignment, the reconstruc-
tion focuses more on global information. DSPE [63] learns from image text embedding
to solve matching problems. The optimization of the loss function aims to improve the
distribution of features in high-dimensional space, resulting in a more effective clustering
effect. MASLN [70] proposes a solution to the issue of classes being unable to traverse
instances. The proposed solution involves the use of a reconstruction sub-network, which
rebuilds each modal dataset using conditional autoencoders. The sub-network leverages
information from the input to the output, while minimizing discrepancies in the distribu-
tion. Additionally, MASLN introduces an adversarial sub-network to develop semantic
representations. The referenced study [71] investigated neural networks for embedding
and similarity calculations. The embedding network learns a latent embedding space with a
new neighborhood restriction and a maximum margin ranking error. The authors improved
neighborhood sampling to produce tiny batches compared to ordinary triplet sampling.
The similarity network uses an elementwise product and applies regression loss training
to forecast the similarity score directly. A significant number of trials indicate that this
network can accurately locate phrases. The problem of visual and textual retrieval has been
reformulated as a text and vision conversion task in recent research [72]. To address this
task, a cycle-consistent network was proposed by the authors. In another related study [73],
the attention mechanism was enhanced by incorporating a scene graph structure. Specifi-
cally, the sentence reconstruction network creates a scene graph from the objects, attributes,
and relations extracted by the detection network. The resulting graph is then processed
by a graph convolution network to generate a word vector, which is subsequently fed into
a pre-trained dictionary shared by the encoder decoder model. This approach results in
more natural and human-like visual descriptions in the generated corpus.

The study on reconstruction overcomes the constraint of embedding spaces. The recon-
struction approach employs a deep autoencoder to minimize heterogeneity and improve
the semantic discrimination capacity. Furthermore, compared to cross-modal alignments,
cross-modal reconstruction has fewer dataset requirements and a lower annotation cost,
making it suited for small- and medium-sized datasets.

Vision language embedding. Joint embedding may develop superior feature dis-
crimination by integrating global and local information as semantic feature embedding.
The study of DSCMR [74] presented a supervised learning structure to retain semantic
distinction and modal invariance. It creates two sub-networks with weight-sharing restric-
tions. The authors reduced discrimination losses in labels and common representation
space, increasing the significance of the learned common representation. The learning strat-
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egy of DSCMR can fully unitize paired labels and classification information, successfully
learning the typical representation of heterogeneous data. PCME [75] matches one image
to numerous titles or one title corresponding to multiple images. The authors believe that
most existing models’ deterministic functions are insufficient to capture a one-to-many
correspondence. A federated representation space PCME paradigm maps one-to-many
relationships. It uses probabilistic maps and does not need the precise formulation of
many-to-many matches. The uncertain estimation enables PCME to evaluate retrieval
difficulty and failure probability, i.e., the auxiliary interpretability aspect. The probabilistic
model learns from a more decadent embedding space, where set relations are also beneficial,
whereas only similarity relations are helpful in precise spaces. Probability mapping is a
supplement to the accurate retrieval system. ViSTA [76] presents a transformer framework
for learning an aggregated visual representation by directly encoding patches and scene
embedding. It proposes a novel aggregation token to embed pairs and combine them into
the shared space. The bidirectional contrastive learning loss tackles the modal loss problem
of the scene text.

This joint embedding strategy focuses on high-level semantics. Rich semantic cor-
relation approaches can successfully address the polysemy instance. Moreover, vision
language embedding can enhance the accuracy and expansibility of image text matching.
In addition, the embedding has a strong retrieval performance.

3.3. Pre-Training Tasks

The input is unstructured in cross-modal retrieval and transformed into the format
of vectors. From previous studies, the data-driven pre-training models may learn from it
and is highly impacted by the results of pre-training tasks. We classified and summarized
pre-training tasks in cross-modal retrieval and divided them into text-based, vision-based,
and cross-modal tasks. A glossary of pre-training tasks is outlined in Table 2. We show how
to use pre-training tasks to train models, which are critical for a universal representation.
Pre-training tasks’ primary objectives include sequence completion, pattern matching,
and providing temporal/contextual features.

Table 2. Glossary of pre-training tasks.

Pre-Training Type Task Name

Vision-Based Tasks

MOC: masked object classification
MRFR: masked region feature regression

MRM: masked region modeling
MFR: masked feature regression

MFC: masked feature classification
MRC: masked region classification

MIM: masked image modeling

Text-Based Tasks

MLM: masked language modeling
NSP: next sentence prediction
WRA: word region alignment

PLM: permuted language modeling
CLTR: cross-lingual text recovery

TLM: translation language modeling

Cross-Modal Tasks

VLM: visual-linguistic matching
ITM: image text matching
MTL: multi-task learning

CMCL: cross-modal contrastive Learning
CMTR: cross-modal text recovery

PrefixLM: prefix language modeling
DAE: denoising autoencoding

ITCL: image-text contrastive learning
MRTM: masked region-to-token modeling

VTLM: visual translation language modeling
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3.4. Unified V-L Architecture

This section introduces how we study the unified architecture, which is crucial for
learning vision and language information. We summarize the vision language (V-L) archi-
tecture into two categories: the universal representation and unified generation model from
recent references. The universal representation aims to learn a single embedding space
whereby multiple modalities may be represented. A unified generation model is a form of
cross-modal retrieval that utilizes a single model to build content representations in several
modalities. Both approaches have their advantages and disadvantages, and the choice of
approaches depends on the specific requirements. Firstly, we present an overview of the
two architectures in this section. Subsequently, we provide a comprehensive evaluation of
the advantages and disadvantages, highlighting their strengths and weaknesses.

Universal representation. Universal representation is essential for effectively com-
paring similarity across different modalities in cross-modal retrieval. To achieve this goal,
the DSCMR model proposed by [74] presents a generic representation space that enables
the direct comparison of samples from multiple modalities. The framework employs a
supervised cross-modal learning approach to establish connections between disparate
modalities, successfully learning common sentences while retaining semantic distinctions
and modal invariance. To discover cross-modal correlations, the final layer of the model
contains two subnets with weight-sharing restrictions. Modal invariance losses are incorpo-
rated into the objective function to remove discrepancies, and a linear classifier categorizes
the data in the common representation space. These features collectively make the DSCMR
model a promising approach for cross-modal retrieval. The proposed method in SDML [77]
defines a public space beforehand while simultaneously maximizing the smallest group
gap. SDML is the first model to support an infinite number of modal inputs. To train a
specific network for different modalities, the input is projected into a predefined subspace.
This approach trains additional modalities without learning all modals simultaneously.
UNITER aims to solve the problem of determining whether it learns a common vision
language representation for all V-L tasks. Its large-scale pre-training process allows it to
handle diverse downstream V-L tasks and joint multi-modal embedding.

Besides the joint representation, the universal encoder has also been studied ex-
tensively. For example, Unicoder-VL develops a generic vision and language encoder.
Unicoder-VL employs three types of pre-training tasks, including MLM, MOC, and VLM.
The tasks collaborate to create context-aware representations of input tokens. It also tries
to predict whether a picture and a text are related and performs other algorithms without
jointly pre-training for image-text retrieval. It illustrates that transferring learning may also
produce excellent results in cross-modal tasks. GPV [78] provides a general purpose and
task-agnostic system. It receives visual characteristics and textual descriptions. Besides,
it generates bounding boxes, confidences, and output information. Without affecting the
network structure, the system may learn and carry out any task across a large domain. GPV
comprises an optical encoder, a textual encoder, and a co-attention module. The CNN
backbone and the DETR transformer encoder–decoder are used to create an object detector.
It also refers to ViLBERT, which can encode cross-contextualize representations from visual
and linguistic encoders. Because collecting and annotating task-specific data in all lan-
guages is unfeasible, there is a strong need for a framework to make universal models across
languages. M3P [79] provides a multi-language and multi-modal pre-training paradigm
that integrates them into a cohesive framework to acquire universal representations. It
leverages the inadequate supervision of multi-lingual text video data, inspired by recent
achievements in large-scale language modeling and multi-modal pre-training.

Unified generation model. The discriminative model and generative model may be
classed. Several works have investigated a general framework from the standpoint of model
development. Due to the growth of cross-modal retrieval, the single task framework cannot
meet the needs of multiple tasks. Therefore, the study [80] explored a unified framework
based on a text generation model. The framework is simultaneously compatible with multi-
modal task learning. The approach is conditional text generation, which means that images



Appl. Sci. 2023, 13, 4571 13 of 26

and texts produce text labels, and the knowledge between tasks may be shared. Moreover,
UNICORN [81] bridges the texts and boundaries of box formats, aiming at unified vision
language modeling. Text generation and bounding box prediction are combined in this
model framework, which can dynamically design different heads for various problems.
The Pix2Seq model is a general-purpose target detection framework inspiring UNICORN.
A discrete approach is employed to convert the bounding box location into a discrete token
sequence. Generative adversarial networks improve the synthesis of images by learning
the underlying data distribution. However, there has seldom been research on other visual
tasks using image-generating tasks. VILLA is the first technique integrating large-scale
adversarial training to boost model generalization. It is a comprehensive framework that
utilizes any pre-training model to increase the model’s generalization capacity. To put it
another way, VILLA employs confrontational learning in the stages of pre-training and fine-
tuning. As a branch of self-supervised learning technology in deep learning, the unified
generation model focuses on defining the data production process.

The pros and cons of the V-L architecture are summarized in Table 3. A universal
representation offers several advantages, such as improved accuracy, better generalization,
and increased efficiency, by reducing the computational resources and training time for
multiple tasks. However, it also presents challenges in terms of increased complexity, poten-
tial loss of modality-specific information, and limited interpretability due to the intricacy of
interactions between vision and language. On the other hand, unified generation models
possess the ability to generate outputs in one modality based on inputs from another,
resulting in better performances in cross-modal retrieval. Nonetheless, these models exhibit
limited flexibility, increased complexity during training, and a higher risk of overfitting,
primarily because they generate representations for multiple modalities simultaneously,
which may require diverse training data to prevent overfitting.

Table 3. Pros and cons of V-L architecture.

Pros of Universal Representation
Improved Accuracy : It reduces the computational

resources and training time needed, making retrieval
faster and more efficient.

Pros of Universal Representation

Better Generalization: A universal representation can
lead to better generalization. This can improve

performance and reduce the need for large amounts of
training data.

Pros of Universal Representation

Increased Efficiency: A universal representation reduces
the computational cost of developing and training models.

Instead of creating separate models for each task,
the model can be trained and used for multiple tasks.

Cons of Universal Representation

Increased Complexity: A universal representation is a
complex and challenging task that requires a significant

cost of time and resources. Developing cross-modal
retrieval model may require expertise from multiple

domains and may involve complex algorithms
and architectures.

Cons of Universal Representation

Loss of Modality-Specific Information: Combining
multiple modalities into a single model, some

modality-specific information may be lost. This may
reduce the accuracy of the cross-modal retrieval that

require fine-grained features.

Cons of Universal Representation

Limited Interpretability: A universal representation may
be difficult to interpret, making it challenging to

understand the interactions between vision and language.
This lack of interpretability may be a concern

for applications.
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Table 3. Cont.

Pros of Unified Generation Model

Generation Ability: A unified generation model can
generate outputs in one modality based on inputs from

another modality, which can be useful for
cross-modal retrieval.

Pros of Unified Generation Model

Better Performance: A unified generation model can
provide better performance in cross-modal retrieval

compared to separate models for different modalities.
The unified model can capture the complex relationships

between different modalities more effectively.

Cons of Unified Generation Model

Limited Flexibility: A unified generation model is not as
flexible as traditional models in handling different

modalities. The model generates representations for all
modalities, which may not be optimal for

specific modalities.

Cons of Unified Generation Model

Increased Complexity of Training: Although training a
unified generation model may take less time,

the complexity of training the model may be higher.
The model generates representations for multiple
modalities, which can be a more challenging task.

Cons of Unified Generation Model

Increased Risk of Overfitting: A unified generation
model is more prone to overfitting. The model generates
representations for multiple modalities simultaneously,

which may overfit if the training data are not
sufficiently diverse.

4. Loss Function

The loss function will assess the model’s performance by comparing the anticipated
and expected outputs of the model and then determining the directions of optimization.
If the difference between the two is exceptionally high, the loss value will be significant.
Oppositely, if the difference is tiny or about equal, the loss value will be meager. As a result,
an adequate loss function is required that correctly punishes the model as it is trained
on the dataset. This section defines the principal loss function and performance analysis
methods. We summarize innovative samples of the loss function in cross-modal tasks,
which can be seen in Figure 4.

Conventional classification methodologies divide loss functions into regression, binary,
and multi-class categories. In contrast, our survey synthesized the utilization and develop-
ment of loss functions within the context of cross-modal retrieval, ultimately distilling the
loss function into four fundamental components. Consequently, the loss functions were
classified into regression-based loss, classification-based loss, ranking loss, and cross-modal
application loss. For example, the L1 loss and L2 loss represent prevalent approaches for
calculating loss in regression loss functions. The L1 loss function calculates the mean abso-
lute difference between predicted and actual values, with a valid domain extending from
zero to positive infinity. This loss function exhibits rapid convergence, and the gradient
can be assigned an appropriate penalty weight rather than an equal one, thus providing a
more accurate gradient for updating the optimization direction. However, the L1 loss is
vulnerable to the influence of outliers, which can dominate the gradient update process
and render it unreliable. In contrast, the L2 loss function computes the sum of squared
differences between predicted and true values. Despite its merits, the L2 loss presents
certain drawbacks, such as a discontinuous derivative at 0, which leads to reduced solution
efficiency and sluggish convergence. Additionally, the gradient for small loss values is
indistinguishable from that of other loss values, which is not conducive to effective net-
work learning. In the context of classification-based loss functions, the cross-entropy loss
function is predominantly utilized. Ranking loss, on the other hand, estimates the relative
distance between the input samples and is often associated with metric learning. Triplet
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loss serves as the most-prevalent method for assessing matching models, with random
samples, positive examples, and negative examples being essential components to consider.

Figure 4. Innovative samples of the loss function.

In recent applications of cross-modal retrieval, specific loss functions have been adeptly
integrated into model training procedures. In the study conducted on VSE++ [61], hard
negative samples were employed to enhance the retrieval methodology in a visual semantic
embedding framework. The researchers opted for max of hinges (MH) loss rather than sum
of hinges (SH) loss. SH loss accounts for the aggregate of all values, whereas MH loss selects
the maximum value among all triplet losses. The modification of conventional loss function
applied to multi-modal embedding was motivated by the exploration of hard negatives,
the incorporation of hard negative samples in structural prediction, and the rank-based
loss function. When combined with fine-tuning strategies and the implementation of aug-
mented data, this approach significantly elevates retrieval performance. In the study of [82],
an innovative approach employing adaptive loss was applied to the realm of fashion, facili-
tating cross-modal retrieval by enabling searches using either text or images. By integrating
textual and visual elements into the transformer architecture, adaptive loss was employed
to modify the weightings of text matching and image matching. Reference [83] generated
images in a feature embedding framework. They proposed a dual-structure embedding
that consists of a global semantic embedding and a supplementary local embedding to
enhance the performance. The ranking loss is a key component in their approach, with the
bidirectional autoencoder effectively learning features in public spaces. Furthermore, they
demonstrated that ranking loss with a violation penalty outperforms hard triplet loss in the
context of VSE++. A number of scholars employ a diverse range of loss functions in their
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research. These functions may include global consistency loss within a textual modality,
local and global loss across modalities, and categorical antagonism loss. Some researchers
constructed hybrid networks and precisely defined loss functions, as outlined by [84]. Such
functions encompass hash loss, similarity loss, quantization loss, and equalization loss.
The aforementioned network facilitates the concurrent training of deep representations and
quantizers. The study [85] introduced a comprehensive approach incorporating multiple
loss functions to enhance the model’s efficacy. These functions encompass semantic dif-
ferentiation loss, contrastive loss, and significant margin loss. Reference [63] introduced a
soft margin triplet loss for noise data processing, addressing noise correspondence. A new
polynomial loss function was developed in [86] to determine the polynomial weight with
positive and negative samples. This function is capable of selecting informative pairs from
redundant pairs. Moreover, the loss functions were discussed separately in [87], and the
learning strategy was divided into four parts. With respect to mitigating the semantic
discrepancy, the authors introduced a discriminative label function, shown in (Equation (1)):
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where FIi represents the i-th image in common subspace and FTi is the i-th text’s representa-
tion. N denotes the number of image–text pairs. The notation ϕ is for classification as the
parameter vector. T is the text sample in a multimedia database. The Frobenius norm is
defined as ‖ · ‖F. Classifier
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the semantic discrimination in label space. In the study of [87], the authors preserved visual
and textual representations in a unified subspace. The objective loss function encompasses
three dimensions:
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In the above Equation (2)), cross-modality, image, and text semantic discrimination
loss are learned, where function ≡ (, ) represents an indicator function; if both inputs are
from the same modality, this function has a value of 1; else, it is 0.

Cross-modal representations can learn modality invariance to minimize heterogeneity
across distinct modalities by decreasing the distance in the shared subspace. The objective
function of invariance loss is as follows:

`invar =
1
N
‖
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−
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)
(3)

Researchers investigate semantic associations by combining the similarity of inter-
modal and intra-modal. The S denotes the feature vector of the image generated by
Siamese CNNs. L is the classification label of the i-th image-text pair. The intra-modal
similarities are paired. 〈Ii, T i, Li〉,

〈
Ij, T j, Lj

〉
and Li = Lj, while the cross-modal similarities

are Sim (Ii, Ti) and Sim
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. The hybrid loss is:
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To avoid gradient exploding or vanishing problems, researchers train models by
employing various loss functions for relationship prediction and object classification. Dis-
criminative characteristics can be monitored via the loss function, which minimizes discrim-
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ination loss in both common and label spaces. The binary encoding of hash representation
frequently leads to information loss, leading to a decline in accuracy. To address this
concern, researchers have introduced real-valued representation learning methodologies to
enhance the overall accuracy. Moreover, these studies facilitate direct optimization of the
complete pipeline through multi-level rewards.

5. Evaluation Metrics

There are a variety of evaluation indicators to demonstrate the efficacy of cross-
modal retrieval. The effectiveness of a methodology in a particular scenario is evaluated
using appropriate metrics [88]. In this section, we make a comparison with predominant
evaluation metrics such as the precision (P), recall rate (Recall@K), PR curve (PR), mean
average precision (mAP), F-score (FS), and normalized discounted cumulative gain (NDCG).

Precision. Precision is the ratio of accurately recovered samples to total retrieved
samples in cross-modal systems.

Recall rate. The recall rate is an important performance metric in cross-modal retrieval,
measured by recall@k. Recall@1, @5, and @10 represent the recall rate of the first k retrieved
results. To evaluate the effectiveness of a retrieval system in specific scenarios, the Recall@50
and Recall@100 metrics are often used. It should be noted that achieving a balance between
recall and accuracy is crucial since they are inversely related. Equation (5)) represents the
calculation of the recall metric.

Recall = TP/(TP + FN) (5)

where TP stands for the total number of documents returned from the retrieval that matches
the query and FP represents the number of unmatched samples in the retrieved samples.
The variable FN denotes the number of documents that fail to match the query sample and
are not returned from the dataset.

PR curve. The performance of cross-modal retrieval can be evaluated by combining
recall and precision measures to produce a precision–recall curve (PR curve). This curve
displays the precision value at various recall levels and provides a visual representation.
For example, Reference [89] utilized the PR curve to demonstrate the effectiveness of their
proposed cross-modal retrieval method.

mAP. The mAP metric evaluates the relevance of the retrieved results to the query
and is calculated as the average accuracy of all queries. The studies cited in [74,87,90]
employed the mAP metric to improve retrieval performance. The average accuracy of a
query and the top-K retrieved results can be computed using Equation (6):

AP =
1
R

R

∑
r=1

P(r)δ(r) (6)

where P(r) signifies the precision of the top R retrieved outputs and R is the number of
relevant outcomes, and if the retrieved R is relevant, the value is set to 1; otherwise, it is set
to 0. The mean average precision (mAP) can be specified as (Equation (7)):

mAP =
1
Q

Q

∑
q=1

AP (7)

A high mAP value indicates that a specific cross-modal method performs well on a
given dataset, based on a certain number of queries (Q). Unlike the precision, recall, and F-
score, which are single-point values, the mAP provides a comprehensive measure of retrieval
capabilities and represents overall performance.
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F-score. The F-score, which is the weighted harmonic mean of the precision and recall,
is a widely used performance metric in various fields. It is calculated using the following
formula (Equation (8)):

F =
(

1 + β2
)
∗ precision ∗ recall

β2 ∗ ( precision + recall )
(8)

One important factor in measuring performance is the weight given to precision and
recall. This weight can be adjusted using the β parameter, where a value of 1 corresponds
to equal weighting of precision and recall, known as the F1-score. The β parameter can
tune the relative importance of precision versus recall in the retrieval process. As a result,
the FS-score is a popular metric for evaluating retrieval performance, as it provides a
balanced optimization of the precision and recall values. For example, in the study of [91],
the FS-score was used to measure the performance of the retrieval system.

NDCG. Normalized discounted cumulative gain (NDCG) is a widely used method
for evaluating search engine ranking performance. It assesses the quality of sorted recom-
mended items, typically with a list length of L. A higher correlation between the sorted
list and the actual preferences results in a higher NDCG score. Specifically, the impact on
the final NDCG score is greater if it appears in a higher position and has a higher correla-
tion with user preferences. Additionally, memory requirements and retrieval computing
speed are also considered with the development of deep learning models and more corpus
to process.

6. Benchmark Datasets

Benchmark datasets are commonly utilized to evaluate the performance of cross-modal
retrieval. Table 4 displays the analysis and explanation of classical cross-modal datasets,
including the names of the datasets, the numbers of images and texts, and descriptions.

Table 4. Summary of representative datasets facilitating cross-modal retrieval.

Name Number Description

NUS-WIDE [92] 269,648 Every image includes 2 to 5 label claims on
average.

https://www.image-net.org/
(accessed on 1 January 2022) 14,197,122 ImageNet aims at classification, positioning,

and detection task evaluation.

Pascal VOC 2007 [93] 9963 It includes training, validation, and test and
marks 24,640 objects.

Pascal VOC 2012 [94] 11,530

Each image is tagged with 20 categories of
objects, including people, animals, vehicles,
and furniture. Each image has an average of
2.4 objects.

Wikipedia [95] 2866
The most-often used dataset for retrieval study
is Wikipedia, which consists of entries with
relevant picture–text pairs.

SBU Caption [96] 1,000,000

Image captions are a retrieval task containing
1 million image URLs and title pairs. Humans
write the captions, which are then filtered to
leave only those with at least two nouns,
noun–verb pairs, or verb–adjective pairs.

Flickr 8k [97] 8092
Each image is accompanied by five
human-generated subtitles that focus on
humans or animals performing an action.

Wiki-CMR [98] 74,961 A web cross-modality dataset includes written
paragraphs, photos, and hyperlinks.

https://www.image-net.org/
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Table 4. Cont.

Name Number Description

Flickr 30k [99] 31,783
The images are accompanied by
1,58,915 captions gathered through
crowdsourcing.

MS-COCO [100] 3,28,000
The dataset contains 25,00,000 annotated
occurrences. The collection contains artifacts
from 91 different categories.

Visual Genome [101] 108,077

There are about 5.4 million captions given to
picture areas. It contains around 2.8 million
labels for object properties in the picture and
approximately 2.3 million labels for object
connections.

PKU FG-XMedia [102] 50,000

Over 50,000 samples are included in the PKU
FG-XMedia collection, comprising
11,788 graphics, 8000 texts, 18,350 videos,
and 12,000 audios. It has different media kinds,
a precise granularity of categories,
and multiple data sources.

Conceptual Caption [103] 3,000,000

The photographs and descriptions are
gathered from the Internet, and they feature a
diverse spectrum of emotions. The captions are
derived from the HTML alt element of each
picture.

Objects 365 [104] 630,000

The collection includes 630,000 photos from
365 categories and up to 10 million frames. It is
distinguished by its cast scale, excellent quality,
and good generalizability.

https:
//storage.googleapis.com/

openimages/web/index.html
(accessed on 1 January 2022)

9,000,000

Open Images is a library of 9 million collection
including image-level labels, 15,851,536
bounding boxes, 2,785,498 segmentation
masks, visual connections, 675,155 localized
narratives, and 59,919,574 image-level labels.

M6 [50] 100,000,000
It is the most-extensive dataset of a Chinese
multi-modal pre-training model, with 1.9 T
pictures and 292 G texts.

Conceptual 12M [105] 12,000,000

It includes a much greater spectrum of visual
concepts than the Conceptual Captions dataset,
used for image captioning model pre-training
and end-to-end training.

6.1. Cross-Modal Datasets

Benchmark datasets are vital for evaluating the performance of cross-modal retrieval.
They enable researchers to compare and contrast different techniques and algorithms un-
der consistent conditions, providing a comprehensive and accurate assessment of their
strengths and limitations. A high-quality dataset that includes multi-modal data, high-
quality labels, and diverse content is crucial for training and evaluating models and ad-
vancing relevant research. Nonetheless, conventional datasets might be tailored for a
particular task, thereby constraining their versatility in addressing different downstream
tasks. The high-quality datasets should encompass a broad range of contextual information
and scenarios to ensure the model can learn from multiple domains and exhibit robustness
in cross-modal retrieval. Researchers create multi-modal datasets to evaluate the efficacy of
the proposed cross-modal methodologies. There are some publicly available datasets in
cross-modal retrieval that have been obtained through large-scale collection and labeled.

https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
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For example, the NUS-WIDE [92] dataset is frequently used in cross-modal hashing.
Researchers can investigate the difficulties of image annotation and retrieval research based
on NUS-WIDE. ImageNet (https://www.image-net.org/, accessed on 1 January 2022) is for
items in an image to have multiple appearances, positions, views, postures, background
clutter, and occlusion. MS-COCO [100] contains more images in each category than the
ImageNet dataset, allowing for more scenarios to obtain. The MS-COCO dataset only
annotates 80 object categories and does not describe all objects in the image. In the tradi-
tional scenario, there might be more object categories. The Visual Genome [101] dataset
labels all visual objects in the images with the Objects Categories. Wikipedia [95] is the
most-extensively used for cross-modal retrieval. However, it contains limited samples and
semantic categories based on Wikipedia articles. SBU Captions [96] contains images with
one-million user-generated titles. However, these pairs are still insufficient to train models
with hundreds of millions of parameters. The Flickr 8K [97] and Flickr 30k [99] datasets
come from Flickr, Yahoo’s photo album site. The images in both datasets typically depict
individuals engaged in an activity. The handwritten annotation for each image is five words.
Because the two databases derive from the same root, the syntax of the annotations is com-
parable. Besides, twelve million image–text data pairs named Conceptual 12M [105] are
suitable for training vision-and-language models. The researchers explore and compare this
dataset to the previously popular dataset. The new dataset emphasizes long-tail visual iden-
tification, and the quantitative and qualitative findings indicate the benefits for visual and
language tasks. Data from multiple media types are distributed and represented differently
in fine-grained cross-media retrieval. Some researchers created a fine-grained cross-media
retrieval dataset called PKU FG-XMedia. Moreover, the Object365 [104] dataset, which
contains objects in natural situations,primarily handles large-scale detection problems,
including 365 object types, and it provides a diverse and useful baseline for target detection
research. Open Images V6 (https://storage.googleapis.com/openimages/web/index.html,
accessed on 1 January 2022) significantly increases the annotation of the Open Images
dataset when compared to V5, introducing many new visual associations, human activity
annotations, and horizontal picture labels. Some academics focus on creating large-scale
Chinese datasets to undertake large-scale multi-modal pre-training in Chinese, such as
M6 [50]. The M6 dataset aids large-scale pre-training models in learning sophisticated
global information in Chinese, including sports, politics, science, and other disciplines.

Researchers can leverage benchmark datasets to develop more effective and efficient
cross-modal retrieval systems, resulting in advancements in image retrieval, text retrieval,
and cross-modal retrieval, among other applications.

6.2. Comparison on Flickr 30k and MS-COCO Datasets

The Flickr 30k and MS-COCO datasets are widely employed for evaluating cross-
modal representations. Our comparisons relied on the test sets from Flickr 30k and MS-
COCO. We utilized metrics such as IR@K and TR@K (K = 1, 5, 10), where R_SUM represents
the total recall. We present the comparison results on the Flickr 30k dataset in Table 5. Non-
pre-trained models were trained from scratch. Generally, models incorporating pre-training
exhibit superior performance compared to traditional methods without pre-training. For in-
stance, SCAN [56] maps the features of each modality to a low-dimensional space, employ-
ing only shallow interactions for similarity calculation. CAAN [106] suggests collecting
local information and investigating intra-modal properties. This approach overlooks signif-
icant cross-modal commonalities. While VSRN [107], MMCA [58], and DIME [108] utilize
distinct methods to employ semantic reasoning or dynamic interaction, they need to gain
early learning of common properties across modalities. Therefore, the effect of feature
training is inferior to the result of the pre-training mode.

https://www.image-net.org/
https://storage.googleapis.com/openimages/web/index.html
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Table 5. Cross-modal retrieval performance comparison on Flickr 30k (1K test set).

Models
Pretrain Flickr 30k (1K Test Set)

R_SUM
Images TR@1 TR@5 TR@10 IR@1 IR@5 IR@10

SCAN - 67.4 90.3 95.6 48.5 77.7 85.2 464.7
CAAN - 70.1 91.6 97.2 52.8 79.0 97.9 488.6
VSRN - 71.3 90.6 96.0 54.7 81.8 88.2 482.6

MMCA - 74.2 92.8 96.4 54.8 81.4 87.8 487.4
CAMRA - 78.0 95.1 97.9 60.3 85.9 91.7 508.9
DIME - 81.0 95.9 98.4 63.6 88.1 93.0 520.0

UNITER 4 M 87.3 98.0 99.2 75.6 94.1 96.8 551.0
VILLA 4 M 87.9 97.5 98.8 76.3 94.8 96.5 552.8
ALIGN 1.8 B 95.3 99.8 100 84.9 97.4 98.6 576
UNIMO 5.7 M 89.4 98.9 99.8 78 94.2 97.1 557.4

VLC 5.6 M 89.2 99.2 99.8 72.4 93.4 96.5 550.5

Table 6 presents the comparison results on the MS-COCO test dataset. These findings
suggest that the larger the pre-training dataset, the higher the recall in cross-modal retrieval
is. ALIGN [29], which utilizes 1.8B pre-training data, outperforms algorithms with the 4M
and 5.6M pre-training data in retrieval tasks. UNITER [39] and ViLT [35] employ single-
stream encoders. However, since UNITER relies on a pre-trained object detection model, it
introduces additional noise, leading to suboptimal retrieval performance. In contrast, ViLT
incorporates an RPN-like candidate region generator, but the limited tags in supervised
training pose challenges, resulting in performance constraints.

Table 6. Cross-modal retrieval performance comparison on MS-COCO (5K test set).

Models
Pretrain MS-COCO (5K Test Set)

R_SUM
Images TR@1 TR@5 TR@10 IR@1 IR@5 IR@10

UNITER 4 M 65.70 88.60 93.80 52.90 79.90 88.00 468.90
ViLT 4 M 61.50 86.30 92.70 42.70 72.90 83.10 439.20

ALBEF 4 M 73.10 91.40 96.00 56.8 81.50 89.20 488.00
TCL 4 M 75.60 92.80 96.70 59 83.20 89.90 497.20
VLC 5.6 M 71.30 91.20 95.80 50.70 78.90 88.00 475.90

ALIGN 1.8 B 77.00 93.50 96.90 59.90 83.30 89.80 500.40

7. Conclusions

Deep learning research has significantly advanced cross-modal retrieval, providing
elegant solutions and driving substantial progress. In this paper, we presented a compre-
hensive summary and analysis of numerous notable studies and proposed a taxonomy
of cross-modal retrieval mechanisms. We also discussed the challenges and open issues
to guide future research from a representation learning perspective. To provide a holistic
understanding of the full-cycle methodologies, we covered pre-processing, feature engi-
neering, encoding, cross-modal interaction, decoding, model optimization, and evaluation
metrics. Additionally, we employed tables, figures, and equations to enhance the clarity of
the primary study.

Despite the extensive efforts, achieving optimal results and precision in cross-modal
retrieval remains an ongoing challenge. Key obstacles include feature representation,
complex semantic processing, vision language alignment, unified architecture, model opti-
mization, performance evaluation metrics, and the development of more comprehensive
datasets.
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