
Citation: Mihelič, A.; Hovelja, T.;

Vrhovec, S. Identifying Key Activities,

Artifacts and Roles in Agile

Engineering of Secure Software with

Hierarchical Clustering. Appl. Sci.

2023, 13, 4563. https://doi.org/

10.3390/app13074563

Academic Editors: Howon Kim and

Thi-Thu-Huong Le

Received: 27 January 2023

Revised: 24 March 2023

Accepted: 29 March 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Identifying Key Activities, Artifacts and Roles in Agile
Engineering of Secure Software with Hierarchical Clustering
Anže Mihelič 1,2,* , Tomaž Hovelja 2 and Simon Vrhovec 1

1 Faculty of Criminal Justice and Security, University of Maribor, 1000 Ljubljana, Slovenia
2 Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
* Correspondence: anze.mihelic@um.si

Abstract: Different activities, artifacts, and roles can be found in the literature on the agile engineering
of secure software (AESS). The purpose of this paper is to consolidate them and thus identify key
activities, artifacts, and roles that can be employed in AESS. To gain initial sets of activities, artifacts,
and roles, the literature was first extensively reviewed. Activities, artifacts, and roles were then cross-
evaluated with similarity matrices. Finally, similarity matrices were converted into distance matrices,
enabling the use of Ward’s hierarchical clustering method for consolidating activities, artifacts, and
roles into clusters. Clusters of activities, artifacts, and roles were then named as key activities, artifacts,
and roles. We identified seven key activities (i.e., security auditing, security analysis and testing,
security training, security prioritization and monitoring, risk management, security planning and
threat modeling; and security requirements engineering), five key artifacts (i.e., security requirement
artifacts, security repositories, security reports, security tags, and security policies), and four key
roles (i.e., security guru, security developer, penetration tester, and security team) in AESS. The
identified key activities, artifacts, and roles can be used by software development teams to improve
their software engineering processes in terms of software security.

Keywords: secure software development; security engineering; agile methods; agile development;
software development; software engineering; software security; application security; cybersecurity;
cyber resilience

1. Introduction

When creating software, software development businesses adhere to a particular
methodology, whether it is a widely recognized cookie-cutter software development
methodology or a unique internal methodology that is only loosely defined by them-
selves. The process of producing software is made more controllable and efficient by
employing a software development method, which entails using the appropriate prac-
tices, tools, and methodologies [1]. For any software development company attempting
to generate a competitive product, an appropriate software development methodology
is consequently essential. Among those, agile software development methods prevail in
the current market [2]. Contrary to the traditional methods, most agile methods rely on
short feedback loops with customers, self-organizing teams, daily face-to-face commu-
nications among team members, and iterative and incremental approaches to software
development [3,4]. Such work organization can therefore realize the principles from the
agile manifesto. Hence, agile methods provide a highly adaptive, effective, and quick
software development process.

However, due to their loose design and prioritization of individuals, interactions,
collaboration, and flexibility [5], agile methods tend to be less suitable for secure software
development [6]. Agile engineering of secure software (AESS) has been gaining prominence
during the last few years due to both the popularity of agile methods in practice and the
need for engineering secure software in global cyberspace [7,8]. The AESS literature

Appl. Sci. 2023, 13, 4563. https://doi.org/10.3390/app13074563 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074563
https://doi.org/10.3390/app13074563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5925-4262
https://orcid.org/0000-0002-3278-1433
https://orcid.org/0000-0002-6951-6369
https://doi.org/10.3390/app13074563
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074563?type=check_update&version=1

Appl. Sci. 2023, 13, 4563 2 of 16

appears to be blooming with a variety of AESS approaches being proposed and studied.
Some of the proposed approaches represent comprehensive solutions in the form of a
complete method or an adaptation of an existing one (e.g., [9–11]), though most studies
propose partial solutions that can be integrated into several agile (or traditional) software
development practices. However, several similarities in the proposed security solutions can
be observed. For example, variations in security testing [12–14], risk analysis [15–17], threat
modeling [18–20], and security-related backlogs [21–23] can be found in the literature, just
to name a few. Hence, there is a benefit of consolidating all proposed security elements
found in the AESS literature to gain insights into the variety of the proposed solutions and
their elements and set the grounds for the future development of security solutions by
exposing the knowledge gaps and possible over-saturation of particular security elements.

The paper is structured as follows. The next section presents a theoretical background.
First, it presents the standards behind software development and then the security solutions
found in the literature. The Section 3 presents the motivation behind the paper and its
aim. The Section 3 presents the methodological framework in which the qualitative and
quantitative methods were used to achieve the aim of the paper. The study results are
presented in the Section 4, and the results are discussed in the Section 5. Finally, with the
concluding remarks, we highlight the limitations of our work and give suggestions for
future work.

2. Theoretical Background

The software development method typically defines the workflow of the software
development process. A project management method is usually used to divide processes
which can be grouped into distinct phases, making the complete process more manageable
and enabling more efficient software production [24]. In software development, a con-
ceptual framework considers the structure of the stages involved in the development of
an application from its initial feasibility study through the deployment and maintenance,
which is defined as a software development life-cycle (SDLC) [25]. More precisely, it
is defined as a set of “processes, activities, and tasks that are to be applied during the
acquisition of a software product or service and during the supply, development, oper-
ation, maintenance, and disposal of software products” [26]. SDLC is also standardized
by the International Organization for Standardization (ISO), International Electrotechni-
cal Commission (IEC), and the Institute of Electrical and Electronics Engineers (IEEE)
in international standards, namely, ISO/IEC/IEEE 12207:2017 [27] and ISO/IEC/IEEE
24748-1:2018 [28].

The ISO/IEC/IEEE 12207:2017 focuses on software development processes and de-
fines groups of processes, namely, Organizational Project-Enabling processes, Technical
Management processes, and Technical processes. It contains processes, activities, and tasks
that could be applied during any stage of the software life-cycle, i.e., from the supply to
the disposal [27]. On the other hand, the ISO/IEC/IEEE 24748-1:2018 more specifically
addresses software life-cycle concepts, models, stages, processes, process applications, key
points of view, adaptation. and use in various domains [28]. The standards ISO/IEC/IEEE
12207:2017 and ISO/IEC/IEEE 24748-1:2018 are to be used in combination. Any software
life-cycle progresses through stages in which the software system is conceptualized, devel-
oped, produced as a product or service (or both), utilized, supported, and finally retired [28].
Hence, according to the ISO/IEC/IEEE 24748-1:2018 standard, the software development
life-cycle has five distinct stages: concept (identification of the needs and expectations;
exploring concepts and viable solutions); development (refining the requirements, cre-
ating solution descriptions, building the software, and verifying/testing it); production
(producing, inspecting, and testing software); utilization (operating the software to meet
the needs); support (providing sustainability of software capability); retirement (storing,
archiving, or disposing the software). Each stage should have entry and exit criteria defined
in advance. While defining such criteria, it is crucial to consider that the progressions
between mentioned stages are not necessarily non-iterative and continuous. Iterations and

Appl. Sci. 2023, 13, 4563 3 of 16

recursions are common at most life-cycle stages, making every software’s life-cycle unique
with only fundamental stages in common. However, the software development life-cycle is
only a conceptual framework with the structure of the stages involved in the development.
Actual approaches to SDLC, i.e., the SDLC models, are typically used to describe the steps
within the life-cycle framework [25]. They can be broadly grouped into traditional, agile,
or hybrid categories [29,30].

However, also according to the established international standards [31], software
should be adequately secure. It should be able to resist alterations during intentional or
unintentional attacks adequately. Hence, secure software development solutions emerged
as a response to market needs and to meet the minimum standards of security. Since
security is typically considered a non-functional requirement, it is frequently not integral
to general cookie-cutter methods. Solutions for secure software development are generally
a variation of “security add-on” for the existing methods.

In recent years, for example, AESS authors focused mainly on security prioritization
through additional integrating security meetings into the development [32,33] and through
recommendations for security experts stemming from categories identified in practice [8]
and managing security requirements [6,34,35]. Furthermore, since user stories can be
considered the driving force of AESS, security-related stories (a set of possible scenarios and
threats to the end-product), such as safety stories [9], abuser stories [36], misuse and abuse
cases [37], and generic security user stories [38], are suggested in the literature. Related
to these, some authors additionally propose using security-specific backlogs that may
provide a superior overview of security issues and requirements [21,36]. Others, however,
suggest taking a different approach—by measuring and elevating the knowledge [39] and
motivation of the development team as the baseline for their technical work. Gamification
of security is one such approach. Based on planning poker [40] (heavily influenced by the
wideband Delphi method), protection poker [41] and threat poker [42] were proposed as
additional elements to be incorporated to the AESS. These aim to help determine the ease of
executing the attack and the potential security/privacy impact. On the other hand, authors
frequently propose including at least one additional security-specific role. Such roles
typically include some variation of a security expert [43], such as a security master [21],
security engineer [36], or security champion [44]. Even though these roles are among
more common ones, there are also some others, such as security architect [10], penetration
tester [14], and security developer [19]. Their primary role is to provide security knowledge
and support to the development team.

Different AESS approaches often have their own focuses, application levels and char-
acteristics [45–47]. Nevertheless, certain ideas seem to be reoccurring, and considerable
overlaps between different AESS approaches can be noticed. Due to their fundamental
differences, it is not an easy task to compare different AESS approaches, and it is much
more complex to consolidate them. AESS approaches can, however, be further decomposed.
Most AESS approaches involve a set of different activities, such as security intention recap
meetings [33], that may be integrated into a software engineering method used in a certain
software development enterprise. They often prescribe various artifacts, such as security
backlog [22], which may be used during software engineering to enhance security of the
developed software. Some AESS approaches also introduce roles, such as the security mas-
ter [20], that may execute AESS activities and take advantage of AESS artifacts. Similarly to
AESS approaches, considerable overlaps may be noticed between different activities, arti-
facts, and roles found in AESS approaches. However, they may be more directly compared
than varying approaches due to their more atomic nature.

3. Motivation and Aim

Software engineering falls within the more applied sciences. After all, engineering
is by its definition an “application of scientific and mathematical principles to practical
ends” [48]. Hence, the results of the studies should be easy to interpret and implement
into practice. Even though software engineering research has positively affected software

Appl. Sci. 2023, 13, 4563 4 of 16

engineering practice [49], some authors note that industrial practitioners, even if interested
in implementing ideas published in high-ranked scientific journals, have great difficulties,
or it is nearly impossible for them to apply such approaches in practice [50]. Such a situation
emerged for several reasons. Software engineering research must address several aspects to
meet the needs of the industry. For example, it must focus on real-world requirements and
constraints and address scalability. Moreover, the proposed approaches are continuously
exposed to various human factors, and finally, the end product must meet the right trade-
offs (e.g., between quality and cost) [51]. Additionally, most solutions proposed in the
majority of academic papers, especially those in high-ranked journals, typically do not
consider practical factors which are essential for real-world applications of solutions [50].

As previously mentioned, fundamental ideas in secure software engineering fre-
quently overlap, e.g., gamification of security (e.g., [41,42]), security-themed requirement
repositories (e.g., [21,36]), additional meetings [32,33], and various prioritization activi-
ties [32,34], among others. Hence, there is a need to consolidate all the security elements
proposed in the literature for practitioners to have an overview of proposed solutions in a
simplified form, thereby enabling a simplified overview of security-related solutions in the
literature. When consolidated, security elements can be used as pieces of a jigsaw puzzle
for tailoring software engineering processes in enterprises, focusing on the security of the
developed software.

Therefore, we aimed to consolidate activities, artifacts, and roles, and thus identify
the overall key activities, artifacts, and roles found in the literature on AESS. We first
extensively reviewed the literature to gain initial sets of activities, artifacts, and roles.
Next, we cross-evaluated them with similarity matrices. The similarity matrices were then
converted into distance matrices, enabling the use of Ward’s hierarchical clustering method.
Finally, we consolidated activities, artifacts, and roles into clusters of activities, artifacts,
and roles. These are named as the key AESS activities, artifacts, and roles.

4. Materials and Methods

To identify AESS activities, artifacts, and roles found in the literature, we conducted
an extensive literature review covering conference and journal papers indexed in four bibli-
ographic databases (i.e., ACM DL, IEEE Xplore, Scopus, and Web of Science). The search
queries included a combination of keywords: agile, lean, secure, security, software, de-
velopment, engineering, method, and management. The queries were used to search
titles, abstracts, and keywords of bibliographic records published since 2000. Papers de-
scribing or testing a secure software development method compatible with agile methods
were retained in the pool of relevant papers. Additionally, the snowball method [52] was
employed to widen the reach of the literature review. During this process, we screened
the references of initially identified papers for potentially relevant papers. Further, we
backward-snowballed the papers with Google Scholar (i.e., we searched for papers citing
the identified papers). The papers in the pool of relevant papers were carefully examined
to identify the activities, artifacts, and roles they describe. The original names of activities,
artifacts, and roles were preserved at this point, even though they may not be indicative
of their types. For example, generic security user stories refer to an activity rather than
an artifact, as the name suggests in [38]. One researcher extracted the data, and another
researcher double-checked the extraction. To make sure that only activities, artifacts, and
roles directly contributing to the security of developed software are included in the study,
two researchers independently classified them as either related or non-related to security.
The researchers disagreed in 11.3 percent of cases. The Cohen’s kappa (κ = 0.72, p < 0.001)
suggests substantial agreement between the researcher’s assessments [53]. Classification
inconsistencies were solved with consensus before moving on to the next step.

To determine similarities among the identified activities, artifacts, and roles, similarity
matrices were employed. Similarity matrices are n × n tables of binary or multi-value
scores indicating the likeness between two data points (e.g., activities). They can be
used for reducing data in larger qualitative datasets [54]. This enabled us to consolidate

Appl. Sci. 2023, 13, 4563 5 of 16

activities, artifacts, and roles. The consolidation was performed in three steps. First, two
researchers independently created separate similarity matrices for activities, artifacts, and
roles. Similarities were scored on a 3-point scale: 0.0 (not similar), 0.5 (partially similar),
or 1.0 (very similar). The cross-evaluations of identified activities, artifacts, and roles (e.g.,
comparing all identified activities with each other) resulted in 3419 assessments by each
researcher. The researchers assigned different similarity scores in 1.6 percent of cases.
The Cohen’s kappa (κ = 0.96, p < 0.001) suggests very strong (almost perfect) agreement
between the researchers’ assessments [53]. Such a strong agreement may be attributed to
a large number of obvious dissimilarities among activities, artifacts, and roles. Second,
similarity matrices produced by each researcher were consolidated into final similarity
matrices by calculating the means of individual scores for each pair of security elements.
Similarities in the final similarity matrices were therefore scored on a 5-point scale: 0.00
(not similar), 0.25, 0.50, 0.75, 1.00 (very similar).

To consolidate activities, artifacts, and roles, we employed Ward’s hierarchical cluster-
ing. Since Ward’s method requires distance matrices, we transformed the final similarity
matrices into distance matrices by calculating xdistance = 1 − xsimilarity. The final number of
clusters, their naming, and brief descriptions were determined in a focus group of three
researchers. The number of clusters for each type of security elements was determined by
minimizing the number of clusters while retaining the similarity of intra-cluster security
elements. Clusters were named either according to the most representative and typical
security elements within the cluster (e.g., threat requirement map, security backlog, secu-
rity requirements repository, and safety product backlog were grouped into the security
repositories cluster) or by determining the umbrella term that best describes all elements in
a particular cluster (e.g., security test cases review report, test phase code review report,
security mechanism review report, security testing report, and security audit report were
grouped into the security reports cluster). Descriptions of the clusters were based on the
definitions of the security elements found in their respective papers.

5. Results

The literature review yielded 27 AESS approaches that were decomposed into 76 unique
activities, 28 unique artifacts, and 8 unique roles. These are presented in Table 1, together
with their respective sources. Several similarities among the identified activities, artifacts,
and roles can be noticed, supporting the need to consolidate them.

Table 1. Activities, artifacts, and roles found in the literature.

Source Activities Artifacts Roles

[17] Risk analysis; Vulnerability analysis; Inventory risks; Security test;
Security controls

Security user stories -

[16] Risk assessment; Prioritization of security requirements Threat-requirement map; Security
requirements repository

-

[55] Security survey; Security triage - -

[12] Risk identification; Design inspection; Risk-based security tests; Code
inspection; Penetration testing; Risk analysis

Misuse cases; Attack tree Security master

[10] Risk analysis; Risk estimations - Security manager;
Security architect;
Security master;
Penetration tester

[14] Agile risk analysis; Security requirement analysis; Security plan-
ning; Pair penetration testing; Dynamic code analysis; Code review;
Penetration testing

Security-related user stories Penetration tester

Appl. Sci. 2023, 13, 4563 6 of 16

Table 1. Cont.

Source Activities Artifacts Roles

[56] Defining security requirements; Threat modeling; Risk analysis; Use
of static analysis tools; Code review; Security testing; Fuzz testing;
Security review

Secure coding policies; Secure
testing policies; Secure design;
Security keywords

-

[36] Identification of security sensitive assets; Formulation of abuser
stories; Abuser story risk assessment; Abuser story and user story
negotiation; Definition of security-related user stories; Abuser
story–countermeasure cross-checking

Security-related user stories (secu-
rity functionalities); Abuser stories
(threat scenarios); Security related
coding standards

-

[13] Security requirements analysis and planning; Threat modeling
and designing; Secure code implementation; Security testing;
Security training

Abuser stories; Security
user stories; Attack trees

-

[57] Risk analysis - -

[58] Utilization of highly testable architecture extensive testing; Security
refactoring; Security test cases

- -

[59] Basic security training for all stakeholders Fundamental security architecture -

[15,23] Hazard analysis; Risk analysis Safety product backlog -

[33] Security intention recap meetings - -

[60] Continuous risk management; Identification of business and technical
risks; Synthesizing and prioritization of the risks; Code analysis

- -

[18] Threat modeling; Dynamic code analysis - Security team;
Security champion

[19] Security training; Additional security training after change; Applica-
tion risk analysis; Test plan review; Threat modeling; Threat modeling
updates; Business impact analysis; Security auditing; Security testing;
Attack surface recognition and reduction; Security test cases review;
Test phase code review; Use of automated testing tools (fuzzers &
code analyzers); Security mechanism review; Development time au-
diting; Goal and criticality definition; Application security settings
definition for maintenance

Documentation of security solu-
tions; Security test plan; Threat
models; Security testing report;
Security audit report; Architecture
security requirement; Attack sur-
face analysis; Security mechanism
review report; External interface
review report; Test phase code
review report; Security test case
review report; Development-time
audit report

Security developer

[20] Vulnerability assessment; Threat modeling; Penetration testing;
Code analysis

- Security master;
Security guru

[61,62] Threat modeling; Risk estimation; Security goals identification;
External review of the assurance case; Automated security tests
and analysis

Security assurance cases; Security
user stories

-

[21,22] - Security backlog -

[4] Identification of security issues; Security implementation; Verification
of the software from a security perspective

S-tags; S-marks -

[41] Protection poker - -

[42] Threat poker - -

[37] Security analysis; Design the security requirements; Security testing Misuse cases; Abuse cases -

[63] Security analysis; Security modeling; Security designing;
Security testing

- -

[38] Generic security user stories - -

Appl. Sci. 2023, 13, 4563 7 of 16

Overall, the hierarchical clustering produced 16 clusters. Figure 1 shows a dendogram
of how unique activities were grouped into seven clusters. Security auditing includes seven
unique activities, such as security auditing, design inspection, and code review, that help
to evaluate the overall security of developed software. Security analysis and testing is a
set of 16 activities, such as penetration testing and risk-based security tests, aiming to
analyze and test the security performance of developed software. Security training is a
cluster of three activities aiming to increase the knowledge about security among software
developers and other stakeholders. Security prioritization and monitoring is a set of 28 unique
activities, such as protection poker and business impact analysis, that prioritize specific
security goals and requirements, and monitor their implementation. Risk management is
a cluster of six activities, such as hazard analysis, risk identification, and risk assessment,
that help to identify, assess, and control threats to developed software on a strategic
level. Security planning and threat modeling is a set of six activities, such as threat modeling
and security modeling, for structured identification of potential operational threats (e.g.,
structural vulnerabilities and the absence of appropriate safeguards). Security requirements
engineering is a group of 10 activities, such as defining security requirements, defining
security-related user stories, and formulation of abuser stories, that focus on defining,
documenting, and maintaining security requirements during software design.

Artifacts were grouped into five clusters, as shown in Figure 2. Security requirement
artifacts is a cluster of seven backlog-related artifacts, such as abuse cases and security user
stories, that put a focus on security during acquisition of requirements. Security repositories
is a group of four artifacts, such as security requirements repository and security backlog,
that provide checklists of requirements for software security. Security reports is a set of five
artifacts, such as security audit reports and security testing reports. These are documents
written at the end of certain security activities. Security tags is a cluster of three artifacts,
such as security keywords and s-tags, that help developers to stay aware of the security
relevance of users’ stories. They point to parts of the developed software that need security
verification. Security policies is a group of nine artifacts, such as secure coding policies and
security test plans, that help to plan software development by providing standards and
solutions related to security.

Figure 3 presents four clusters into which unique roles were grouped. Security guru is
a cluster of four roles, such as security manager and security master, that are respected for
their security knowledge and who lead software engineering from the security perspective
on the strategic level. Security developer is a group of two roles, namely, security architect
and security developer, that involve designing security tests, risk analyses, threat models,
and attack surface analysis. Penetration tester is a cluster with a single role responsible for
testing developed software for known vulnerabilities and attack vectors. He also tries to
find possible exploits in the developed software. Security team is a cluster with a single
team of several security-related roles, such as penetration tester, security manager, and
security architect.

The above presented clusters may be considered as consolidated key AESS activities,
artifacts, and roles, since they are composed of elements that are most similar to each other.
The focus group was also able to provide descriptions of clusters that encompassed all their
individual elements.

Appl. Sci. 2023, 13, 4563 8 of 16

Figure 1. Dendrogram of activities. It indicates seven distinct clusters: security auditing (P.1), security
analysis and testing (P.2), security training (P.3), security prioritization and monitoring (P.4), risk management
(P.5), security planning and threat modeling (P.6), and security requirements engineering (P.7).

Appl. Sci. 2023, 13, 4563 9 of 16

Figure 2. Dendrogram of artifacts. It indicates five distinct clusters: security requirement artifacts (A.1),
security repositories (A.2), security reports (A.3), security tags (A.4), and security policies (A.5).

Appl. Sci. 2023, 13, 4563 10 of 16

Figure 3. Dendrogram of roles. It indicates four distinct clusters: security guru (R.1), security developer
(R.2), penetration tester (R.3), and security team (R.4).

Appl. Sci. 2023, 13, 4563 11 of 16

6. Discussion

This paper aimed to offer an overview of security solutions proposed in the litera-
ture by disassembling proposed AESS approaches and methods into atomic parts (i.e.,
security elements) and consolidating the overlapping ideas. The consolidation process
was performed using a mixed-methods approach, combining qualitative and quantita-
tive methods. The consolidated security elements (i.e., clusters) can then be used by the
practitioners as general guidelines that are presented concisely and interpretably while
still allowing distinct elements to be traced back to their sources, as presented in Table 1.
On the other hand, such an overview can also be used by researchers when analyzing
knowledge gaps and designing future research. Hence, this paper yields several theoretical
and practical implications.

First, this study comprehensively reviews the literature on AESS. Although some
papers reviewed AESS (e.g., [7,64,65]), this is among the first studies to comprehensively
amass a number of AESS approaches and decompose them into corresponding activities,
artifacts, and roles. Such a generalized overview of the proposed security solutions should
help practitioners and researchers understand the current state of the research on AESS.
More particularly, our research offers insights into the available security elements and
exposes the ones that should have received less attention, indicating research gaps.

Second, the research on AESS topics is diverse, and at first glance, individual studies
and/or security solutions are seemingly not directly comparable. The clustering results
presented in this study introduce the baseline, by which present (and potential future)
research and security solutions can be compared. The comparisons can be made among the
security solutions where security elements are categorized within the same clusters.

Third, this research gave an overview of AESS approaches and their constituent
activities, artifacts, and roles. This list can aid practitioners looking for established, off-the-
shelf AESS approaches. Although implementing an off-the-shelf AESS approach may not
work well in specific settings, it may still offer a good starting point for software enterprises
looking to upgrade their software engineering process, for example, for transitioning from
near-zero security "as agile as it gets" software engineering towards more security-focused
development of software. Evaluation of security elements independently of each other
allows enterprises to modify their existing method only slightly by including only one most
suitable element for their needs. The needs may vary from project to project. For example,
some projects may require the highest levels of security, and others may call only for basic
security requirements. Such an overview of security elements, as presented in this paper,
where most security elements found in the literature could be placed in one of the clusters,
offers decision-makers and agile teams a comprehensive list to choose from. Whether they
seek low-hanging fruits or comprehensive security solutions, our results can serve as a
checklist for enterprises when attempting to improve their development methods in terms
of security.

Additionally, the clusters reveal the variety and the range of security elements the
development enterprises can use. For example, if the enterprise aims to implement a
security review in its development process, our results enable them to gain insights into
the variety of security review measures and several different possibilities at their disposal.

Fourth, this study is one of the first to attempts at the qualitative-quantitative consol-
idation of the multitude of different activities, artifacts, and roles related to AESS found
in the current literature. The identified clusters resemble the core engineering phases of
secure software proposed by [66]: software requirements security, software design security,
software construction security, and software testing security. However, this paper provides
more insights by decomposing several AESS approaches into more atomic parts, including
activities, artifacts, and roles. Several previously proposed secure software development
frameworks, approaches, and maturity models, such as [67–70], provide some support for
the identified key activities, artifacts, and roles. Therefore, clusters of activities, artifacts,
and roles may be considered key AESS activities, artifacts, and roles. They can be used as
pieces of a jigsaw puzzle for tailoring software engineering processes in enterprises with a

Appl. Sci. 2023, 13, 4563 12 of 16

focus on the security of the developed software. Future studies may also consider focusing
on the key AESS activities, artifacts, and roles instead of specific AESS approaches.

The present study has some limitations that the reader should note. First, the literature
review was conducted with four bibliographic databases (Web of Science, Scopus, ACM
Digital Library, and IEEE Xplore) with a search query that resulted in the most comprehen-
sive overview of published documents while maintaining the manageability of the results.
Hence, some of the proposed approaches may not be included in our review. To address the
issue, we additionally employed the snowball and backward-snowball methods to identify
additional studies we might have missed. Additionally, this study could have omitted
certain relevant studies due to circumstances beyond our control (e.g., studies published in
languages other than English, and non-availability of papers). Second, since we focused on
agile, elements from traditional methods also relevant for agile secure software engineering
may have been absent. Third, the similarity matrices included a vast number of security
elements that needed to be compared. Since the comparisons were made by the researchers
based on the descriptions in the respective papers (some elements were described in more
detail, whereas others remained scarce with the description), some of the comparisons may
be subject to errors. To reduce the subjectivity of the results, the dimensionality reduction
was conducted by analyzing the input data qualitatively and quantitatively, with the help
of several researchers. However, we mitigated the issue by following the protocol: two
researchers independently created similarity matrices. Due to the possibility of researcher
bias in creating similarity matrices, Ward’s hierarchical clustering was performed to sug-
gest the ideal number and content of clusters, and the focus group of three researchers
confirmed the clusters.

Future studies may incorporate such potentially undetected AESS approaches into the
identified clusters, or identify new ones. Second, the study focused on agile engineering
of secure software. Future work may investigate activities, artifacts, and roles beyond
those already known to be applicable to agile methods. For example, future studies may
investigate ideas from traditional engineering of secure software to determine if and how
they perform when used in agile methods. Such studies may be especially beneficial in
identifying prospective new AESS activities, artifacts, and roles. Third, similarity matrices
were created by the researchers, which introduces the possibility of researcher bias. We
aimed to lower the possibility of researcher bias by first having two researchers indepen-
dently create the similarity matrices and then calculating the means of their scores for
each pair of security elements. Despite our best efforts to minimize it, the possibility of
researcher bias was not zero. Future studies may incorporate natural language processing
to automatize this process, for example, by determining similarities between activities,
artifacts, and roles based on their descriptions. Finally, future studies may investigate
the impacts, such as costs, the agility of software development, and the security of the
developed software, when incorporating individual key activities, artifacts, and roles in
software development processes.

7. Conclusions

This paper presented the identification and clustering of security elements found in
the AESS literature. We reviewed the literature to gain initial sets of activities, artifacts,
and roles. Activities, artifacts, and roles were then cross-evaluated with similarity matrices.
Based on these matrices, we performed Ward’s hierarchical clustering. We identified seven
key activities (i.e., security auditing, security analysis and testing, security training, security
prioritization and monitoring, risk management, security planning and threat modeling,
and security requirement engineering), five key artifacts (i.e., security requirement artifacts,
security repositories, security reports, security tags, and security policies), and four key
roles (i.e., security guru, security developer, penetration tester, and security team) in
AESS. The software development teams can leverage these key security elements at any
core engineering phase of software development (depending on which security element
they shall choose to implement into their process and where within the development

Appl. Sci. 2023, 13, 4563 13 of 16

process they would like to introduce more security-centered elements). Depending on the
nature of the agile teams and the levels of agility their development processes are built
upon, they may choose only the security elements that fit best into their development
processes. Furthermore, researchers can use the insights from this paper to identify possible
knowledge gaps and propose new security solutions that can be applied to AESS practice.

Author Contributions: Conceptualization, A.M., T.H. and S.V.; methodology, A.M.; validation, S.V.;
formal analysis, A.M.; resources, A.M.; investigation, A.M., T.H. and S.V.; data curation, A.M.;
writing—original draft preparation, A.M. and S.V.; writing—review and editing, A.M., T.H. and S.V.;
visualization, A.M.; supervision, T.H. and S.V.; funding acquisition, S.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AESS Agile engineering of secure software

References
1. Bianchi, M.J.; Conforto, E.C.; Amaral, D.C. Beyond the agile methods: A diagnostic tool to support the development of hybrid

models. Int. J. Manag. Proj. Bus. 2021, 14, 1219–1244. [CrossRef]
2. Rindell, K.; Ruohonen, J.; Holvitie, J.; Hyrynsalmi, S.; Leppänen, V. Security in agile software development: A practitioner survey.

Inf. Softw. Technol. 2021, 131, 106488. [CrossRef]
3. Adelyar, S.H.; Norta, A. Towards a Secure Agile Software Development Process. In Proceedings of the 10th International

Conference on the Quality of Information and Communications Technology (QUATIC), Lisbon, Portugal, 6–9 September 2016;
pp. 101–106. [CrossRef]

4. Pohl, C.; Hof, H.J. Secure Scrum: Development of Secure Software with Scrum. In Proceedings of the The Ninth International
Conference on Emerging Security Information, Systems and Technologies Secure, Venice, Italy, 23–28 August 2015; pp. 15–20.

5. Beck, K.; Beedle, M.; van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries,
R.; et al. Manifesto for Agile Software Development. 2001.

6. Tøndel, I.A.; Jaatun, M.G. Towards a Conceptual Framework for Security Requirements Work in Agile Software Development.
Int. J. Syst. Softw. Secur. Prot. 2020, 11, 33–62. [CrossRef]

7. Tashtoush, Y.M.; Darweesh, D.A.; Husari, G.; Darwish, O.A.; Darwish, Y.; Issa, L.B.; Ashqar, H.I. Agile Approaches for
Cybersecurity Systems, IoT and Intelligent Transportation. IEEE Access 2022, 10, 1360–1375. [CrossRef]

8. Tøndel, I.A.; Cruzes, D.S.; Jaatun, M.G.; Sindre, G. Influencing the security prioritisation of an agile software development project.
Comput. Secur. 2022, 118, 102744. [CrossRef]

9. Barbareschi, M.; Barone, S.; Carbone, R.; Casola, V. Scrum for safety: An agile methodology for safety-critical software systems.
Softw. Qual. J. 2022, 30, 1067–1088. [CrossRef]

10. Baca, D.; Boldt, M.; Carlsson, B.; Jacobsson, A. A Novel Security-Enhanced Agile Software Development Process Applied in an
Industrial Setting. In Proceedings of the ARES Conference International Conference on Availability, Reliability and Security 2015,
Toulouse, France, 24–28 August 2015; pp. 11–19. [CrossRef]

11. Alenezi, M.; Basit, H.A.; Beg, M.A.; Shaukat, M.S. Synthesizing secure software development activities for linear and agile
lifecycle models. Software: Pract. Exp. 2022, 52, 1426–1453. [CrossRef]

12. Firdaus, A.; Ghani, I.; Jeong, S.R. Secure Feature Driven Development (SFDD) Model for Secure Software Development.
Procedia-Soc. Behav. Sci. 2014, 129, 546–553. [CrossRef]

13. Singhal, S.; Singhal, A. Development of Agile Security Framework Using a Hybrid Technique for Requirements Elicitation. In
Advances in Computing, Communication and Control; Unnikrishnan, S., Surve, S., Bhoir, D., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 178–188.

http://doi.org/10.1108/IJMPB-04-2020-0119
http://dx.doi.org/10.1016/j.infsof.2020.106488
http://dx.doi.org/10.1109/QUATIC.2016.028
http://dx.doi.org/10.4018/IJSSSP.2020010103
http://dx.doi.org/10.1109/ACCESS.2021.3136861
http://dx.doi.org/10.1016/j.cose.2022.102744
http://dx.doi.org/10.1007/s11219-022-09593-2
http://dx.doi.org/10.1109/ARES.2015.45
http://dx.doi.org/10.1002/spe.3072
http://dx.doi.org/10.1016/j.sbspro.2014.03.712

Appl. Sci. 2023, 13, 4563 14 of 16

14. Maier, P.; Ma, Z.; Bloem, R. Towards a Secure SCRUM Process for Agile Web Application Development. In Proceedings of the
12th International Conference on Availability, Reliability and Security—ARES ’17, Reggio Calabria, Italy, 29 August–1 September 2017;
pp. 1–8. [CrossRef]

15. Stålhane, T.; Johnsen, S.O. Resilience and safety in agile development (Through safescrum). In Proceedings of the 27th European
Safety and Reliability Conference, ESREL 2017, Portoroz, Slovenia, 18–22 June 2017; pp. 945–954. [CrossRef]

16. Ionita, D.; Van Der Velden, C.; Ikkink, H.j.K.; Eelko, N. Towards Risk-Driven Security Requirements Management in Agile
Software Development. Lect. Notes Bus. Inf. Process. 2019, 350, 133–144. [CrossRef]

17. Maria, R.E.; Rodrigues, L.A.; Pinto, N.A. ScrumS—A model for safe agile development. In Proceedings of the 7th Interna-
tional ACM Conference on Management of Computational and CollEctive Intelligence in Digital EcoSystems, MEDES 2015,
Caraguatatuba, Brazil, 25–29 October 2015; pp. 43–47. [CrossRef]

18. Nguyen, J.; Dupuis, M. Closing the feedback loop between UX design, software development, security engineering, and
operations. In Proceedings of the 20th Annual Conference on Information Technology Education—SIGITE 2019, Tacoma, WA,
USA, 3–5 October 2019; pp. 93–98. [CrossRef]

19. Rindell, K.; Hyrynsalmi, S.; Leppänen, V. Securing scrum for VAHTI. In Proceedings of the CEUR Workshop Proceedings, Paris,
France, 31 August–3 September 2015; pp. 236–250.

20. Mohino, J.d.V.; Higuera, J.B.; Higuera, J.R.B.; Montalvo, J.A.S. The application of a new secure software development life cycle
(S-SDLC) with agile methodologies. Electronics 2019, 8, 1218. [CrossRef]

21. Azham, Z.; Ghani, I.; Ithnin, N. Security backlog in scrum security practices. In Proceedings of the 5th Malaysian Conference in
Software Engineering, MySEC 2011, Johor Bahru, Malaysia, 13–14 December 2011; pp. 414–417. [CrossRef]

22. Ghani, I.; Azham, Z.; Jeong, S.R. Integrating software security into agile-Scrum method. KSII Trans. Internet Inf. Syst. 2014,
8, 646–663. [CrossRef]

23. Stålhane, T.; Myklebust, T.; Hanssen, G. The application of safe scrum to IEC 61508 certifiable software. In Proceedings of the
11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability
Conference 2012, Helsinki, Finland, 25–29 June 2012; pp. 6052–6061.

24. Project Management Institute. A guide to the project management body of knowledge (PMBOK guide), 6th ed.; Project Management
Institute: Newtown Square, PA, USA, 2017; p. 579.

25. Ruparelia, N.B. Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes 2010, 35, 8–13. [CrossRef]
26. ISO/IEC 12207:2008; Systems and Software Engineering—Software Life Cycle Processes. International Organization for Standard-

ization: Geneva, Switzerland, 2008.
27. ISO/IEC/IEEE 12207:2017(E), 1st ed.; Systems and Software Engineering—Software Life Cycle Processes. ISO/IEC/IEEE Interna-

tional Standard: Geneva, Switzerland, 2017; pp. 1–157. [CrossRef]
28. ISO/IEC/IEEE 24748-1:2018(E); Systems and Software Engineering—Life Cycle Management—Part 1: Guidelines for Life Cycle

Management. ISO/IEC/IEEE International Standard: Geneva, Switzerland, 2018; pp. 1–82. [CrossRef]
29. Kuhrmann, M.; Diebold, P.; Munch, J.; Tell, P.; Trektere, K.; McCaffery, F.; Garousi, V.; Felderer, M.; Linssen, O.; Hanser, E.; et al.

Hybrid Software Development Approaches in Practice: A European Perspective. IEEE Softw. 2019, 36, 20–31. [CrossRef]
30. Gemino, A.; Horner Reich, B.; Serrador, P.M. Agile, Traditional, and Hybrid Approaches to Project Success: Is Hybrid a Poor

Second Choice? Proj. Manag. J. 2021, 52, 161–175. [CrossRef]
31. ISO/IEC 15408-1:2009; Information Technology—Security Techniques—Evaluation Criteria for IT Security—Part 1: Introduction

and General Model. ISO: Geneva, Switzerland, 2009.
32. Tøndel, I.A.; Cruzes, D.S. Continuous software security through security prioritisation meetings. J. Syst. Softw. 2022, 194, 111477.

[CrossRef]
33. Tøndel, I.A.; Cruzes, D.S.; Jaatun, M.G.; Rindell, K. The Security Intention Meeting Series as a way to increase visibility of software

security decisions in agile development projects. In Proceedings of the International Conference on Availability, Reliability and
Security, Canterbury, Canterbury, UK, 26–29 August 2019; pp. 1–8. [CrossRef]

34. Behutiye, W.; Rodriguez, P.; Oivo, M. Quality Requirement Documentation Guidelines for Agile Software Development. IEEE
Access 2022, 10, 70154–70173. [CrossRef]

35. Reddivari, S. An Agile Framework for Security Requirements: A Preliminary Investigation. In Proceedings of the 2022 IEEE 46th
Annual Computers, Software, and Applications Conference (COMPSAC), IEEE, Los Alamitos, CA, USA, 27 June–1 July 2022;
pp. 432–433. [CrossRef]

36. Boström, G.; Wäyrynen, J.; Bodén, M.; Beznosov, K.; Kruchten, P. Extending XP practices to support security requirements
engineering. In Proceedings of the 2006 international workshop on Software engineering for secure systems—SESS ’06, Shanghai,
China, 20–21 May 2006; pp. 11–17. [CrossRef]

37. Daud, M.I. Secure software development model: A guide for secure software life cycle. In Proceedings of the International
MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, 17–19 March 2010; pp. 724–728.

38. Siiskonen, T.; Sars, C.; Vah Sipila, A.; Pietikain, A. Generic Security User Stories. In Handbook of the Secure Agile Software
Development Life Cycle; Pietikinen, P., Rning, J., Eds.; University of Oulu: Oulu, Finland, 2014; Chapter 9, pp. 9–14.

39. Oyetoyan, T.D.; Jaatun, M.G.G.; Cruzes, D.S. Measuring Developers’ Software Security Skills, Usage, and Training Needs.
In Research Anthology on Agile Software, Software Development, and Testing; IGI Global: Hershey, PA, USA, 2022; pp. 2026–2048.
[CrossRef]

http://dx.doi.org/10.1145/3098954.3103171
http://dx.doi.org/10.1201/9781315210469-122
http://dx.doi.org/10.1007/978-3-030-21297-1
http://dx.doi.org/10.1145/2857218.2857225
http://dx.doi.org/10.1145/3349266.3351420
http://dx.doi.org/10.3390/electronics8111218
http://dx.doi.org/10.1109/MySEC.2011.6140708
http://dx.doi.org/10.3837/tiis.2014.02.019
http://dx.doi.org/10.1145/1764810.1764814
http://dx.doi.org/10.1109/IEEESTD.2017.8100771
http://dx.doi.org/10.1109/IEEESTD.2018.8526560
http://dx.doi.org/10.1109/MS.2018.110161245
http://dx.doi.org/10.1177/8756972820973082
http://dx.doi.org/10.1016/j.jss.2022.111477
http://dx.doi.org/10.1145/3339252.3340337
http://dx.doi.org/10.1109/ACCESS.2022.3187106
http://dx.doi.org/10.1109/COMPSAC54236.2022.00076
http://dx.doi.org/10.1145/1137627.1137631
http://dx.doi.org/10.4018/978-1-6684-3702-5.ch097

Appl. Sci. 2023, 13, 4563 15 of 16

40. Grenning, J. Planning poker or how to avoid analysis paralysis while release planning. Hawthorn Woods Renaiss. Softw. Consult.
2002, 3, 22–23.

41. Williams, L.; Meneely, A. Protection poker: The New Software Security “Game”. IEEE Secur. Priv. 2010, 8, 14–20. [CrossRef]
42. Rygge, H.; Jøsang, A. Threat Poker : Solving Security and Privacy Threats in Agile Software Development. In Proceedings of the

23rd Nordic Conference on Secure IT Systems, Oslo, Norway, 28–30 November 2018; pp. 1–15. [CrossRef]
43. Musa, S.B.; Norwawi, N.M.; Selamat, M.H.; Sharif, K.Y. Improved extreme programming methodology with inbuilt security. In

Proceedings of the 2011 IEEE Symposium on Computers & Informatics, Kuala Lumpur, Malaysia, 20–23 March 2011; pp. 674–679.
[CrossRef]

44. Jaatun, M.G.; Bernsmed, K.; Cruzes, D.S.; Tøndel, I.A. Threat Modeling in Agile Software Development. In Research Anthology on
Agile Software, Software Development, and Testing; IGI Global: Hershey, PA, USA, 2022; pp. 480–490. [CrossRef]

45. Bernsmed, K.; Cruzes, D.S.; Jaatun, M.G.; Iovan, M. Adopting threat modelling in agile software development projects. J. Syst.
Softw. 2022, 183, 111090. [CrossRef]

46. Althar, R.R.; Samanta, D.; Kaur, M.; Singh, D.; Lee, H.N. Automated Risk Management Based Software Security Vulnerabilities
Management. IEEE Access 2022, 10, 90597–90608. [CrossRef]

47. Kumar, S.; Kaur, A.; Jolly, A.; Baz, M.; Cheikhrouhou, O. Cost Benefit Analysis of Incorporating Security and Evaluation of Its
Effects on Various Phases of Agile Software Development. Math. Probl. Eng. 2021, 2021, 7837153. [CrossRef]

48. Parton, J. The American Heritage Dictionary of the English Language; Houghton Mifflin: Boston, MA, USA, 2022.
49. Osterweil, L.J.; Ghezzi, C.; Kramer, J.; Wolf, A.L. Determining the Impact of Software Engineering Research on Practice. Compuer

2008, 41, 39–49. [CrossRef]
50. Practical relevance of software engineering research: Synthesizing the community’s voice. Empir. Softw. Eng. 2020, 25, 1687–1754.

[CrossRef]
51. Embracing the engineering side of software engineering. IEEE Softw. 2012, 29, 96–99. [CrossRef]
52. Wohlin, C.; Prikladniki, R. Systematic literature reviews in software engineering. Inf. Softw. Technol. 2013, 55, 919–920. [CrossRef]
53. McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [CrossRef]
54. Namey, E.; Guest, G.; Thairu, L.; Johnson, L. Data reduction techniques for large qualitative data sets. In Handbook for Team-Based

Qualitative Research; AltaMira Press: Lanham, MD, USA, 2008; pp. 137–161.
55. Giacalone, M.; Paci, F.; Mammoliti, R.; Perugino, R.; Massacci, F.; Selli, C. Security Triage: An Industrial Case Study on the

Effectiveness of a Lean Methodology to Identify Security Requirements. In Proceedings of the Symposium on Empirical Software
Engineering and Measurement—ESEM 2014, Torino, Italy, 18–19 September 2014; pp. 1–8. [CrossRef]

56. Koc, G.; Aydos, M.; Tekerek, M. Evaluation of Trustworthy Scrum Employment for Agile Software Development based on
the Views of Software Developers. In Proceedings of the UBMK 2019 4th International Conference on Computer Science and
Engineering, Samsun, Turkey, 11–15 September 2019; pp. 63–67. [CrossRef]

57. Singh, A. Integrating the Extreme Programing Model with Secure Process for Requirement Selection. In Proceedings of the 2nd
International Conference on Electronics, Communication and Aerospace Technology—ICECA 2018, Coimbatore, India, 29–31
March 2018; pp. 423–426. [CrossRef]

58. Tappenden, A.F.; Huynh, T.; Miller, J.; Geras, A.; Smith, M. Agile Development of Secure Web-Based Applications. Int. J. Inf.
Technol. Web Eng. (IJITWE) 2006, 1, 1–24. [CrossRef]

59. Ge, X.; Paige, R.; Polack, F.; Brooke, P. Extreme Programming Security Practices. In Agile Processes in Software Engineering and
Extreme Programming, Proceedings of the 8th International Conference, XP 2007, Como, Italy, 18–22 June 2007; Concas, G., Damiani, E.,
Scotto, M., Succi, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 226–230.

60. Yu, W.D.; Le, K. Towards a secure software development lifecycle with SQUARE+R. In Proceedings of the 2012 IEEE 36th Annual
Computer Software and Applications Conference, Izmir, Turkey, 16–20 July 2012; pp. 565–570. [CrossRef]

61. Othmane, L.; Angin, L.; Weffers, H.; Bhargava, B. Extending the Agile Development Process to Develop Acceptably Secure
Software. IEEE Trans. Dependable Secur. Comput. 2014, 11, 497–509. [CrossRef]

62. Othmane, L.B.; Angin, P.; Bhargava, B. Using assurance cases to develop iteratively security features using scrum. In Proceedings
of the Proceedings—9th International Conference on Availability, Reliability and Security, ARES 2014, Fribourg, Switzerland,
8–12 September 2014; pp. 490–497. [CrossRef]

63. Mougouei, D.; Sani, N.F.M.; Almasi, M.M. S-Scrum : A Secure Methodology for Agile Development of Web Services. World
Comput. Sci. Inf. Technol. J. (WSCIT) 2013, 3, 15–19.

64. López, L.; Burgués, X.; Martínez-Fernández, S.; Vollmer, A.M.; Behutiye, W.; Karhapää, P.; Franch, X.; Rodríguez, P.; Oivo,
M. Quality measurement in agile and rapid software development: A systematic mapping. J. Syst. Softw. 2022, 186, 111187.
[CrossRef]

65. Nägele, S.; Watzelt, J.P.; Matthes, F. Investigating the Current State of Security in Large-Scale Agile Development. In Agile Processes
in Software Engineering and Extreme Programming, Proceedings of the 23rd International Conference on Agile Software Development, XP
2022, Copenhagen, Denmark, 13–17 June 2022; Lecture Notes in Business Information Processing; Springer: Cham, Switzerland,
2022; Volume 445, pp. 203–219. [CrossRef]

66. Nina, H.; Pow-Sang, J.A.; Villavicencio, M. Systematic mapping of the literature on Secure Software Development. IEEE Access
2021, 9, 36852–36867. [CrossRef]

http://dx.doi.org/10.1109/MSP.2010.58
http://dx.doi.org/10.1007/978-3-030-03638-6_29
http://dx.doi.org/10.1109/ISCI.2011.5958997
http://dx.doi.org/10.4018/978-1-6684-3702-5.ch024
http://dx.doi.org/10.1016/j.jss.2021.111090
http://dx.doi.org/10.1109/ACCESS.2022.3185069
http://dx.doi.org/10.1155/2021/7837153
http://dx.doi.org/10.1109/MC.2008.85
http://dx.doi.org/10.1007/s10664-020-09803-0
http://dx.doi.org/10.1109/MS.2012.86
http://dx.doi.org/10.1016/j.infsof.2013.02.002
http://dx.doi.org/10.11613/BM.2012.031
http://dx.doi.org/10.1145/2652524.2652585
http://dx.doi.org/10.1109/UBMK.2019.8907213
http://dx.doi.org/10.1109/ICECA.2018.8474598
http://dx.doi.org/10.4018/jitwe.2006040101
http://dx.doi.org/10.1109/COMPSACW.2012.104
http://dx.doi.org/10.1109/TDSC.2014.2298011
http://dx.doi.org/10.1109/ARES.2014.73
http://dx.doi.org/10.1016/j.jss.2021.111187
http://dx.doi.org/10.1007/978-3-031-08169-9_13
http://dx.doi.org/10.1109/ACCESS.2021.3062388

Appl. Sci. 2023, 13, 4563 16 of 16

67. Ansari, M.T.J.; Pandey, D.; Alenezi, M. STORE: Security Threat Oriented Requirements Engineering Methodology. J. King Saud
Univ.—Comput. Inf. Sci. 2018, 34, 191–203. [CrossRef]

68. Karim, N.S.A.; Albuolayan, A.; Saba, T.; Rehman, A. The practice of secure software development in SDLC: An investigation
through existing model and a case study. Secur. Commun. Netw. 2016, 9, 5333–5345. [CrossRef]

69. Migues, S.; Erlikhman, E.; Ewers, J.; Nassery, K. Building Security in Maturity Model (BSIMM) Foundations Report—Version 12.
70. Jaatun, M.G.; Soares Cruzes, D. Care and Feeding of Your Security Champion. In Proceedings of the 2021 International Conference

on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021; pp. 1–7. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jksuci.2018.12.005
http://dx.doi.org/10.1002/sec.1700
http://dx.doi.org/10.1109/CyberSA52016.2021.9478254

	Introduction
	Theoretical Background
	Motivation and Aim
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

