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Abstract: Image matching is a basic task in three-dimensional reconstruction, which, in recent years,
has attracted extensive attention in academic and industrial circles. However, when dealing with
large-scale image datasets, these methods have low accuracy and slow speeds. To improve the
effectiveness of modern image matching methods, this paper proposes an image matching method
for 3D reconstruction. The proposed method can obtain high matching accuracy through hash index
in a very short amount of time. The core of hash matching includes two parts: creating the hash
table and hash index. The former is used to encode local feature descriptors into hash codes, and the
latter is used to search candidates for query feature points. In addition, the proposed method is ex-
tremely robust to image scaling and transformation by using various verifications. A comprehensive
experiment was carried out using several challenging datasets to evaluate the performance of hash
matching. Experimental results show that the HashMatch presents excellent results compared to the
state-of-the-art methods in both computational efficiency and matching accuracy.

Keywords: 3D reconstruction; image matching; structure from motion; local feature; feature matching

1. Introduction

In recent years, image matching has attracted much attention from both computer
vision and artificial intelligence communities and has been used in various practical ap-
plications, such as 3D reconstruction [1], augmented reality, virtual reality [2,3], visual
localization, visual tracking, object detection, image classification [4,5], and medical image
analysis. In the case of 3D reconstruction [6], the components of image-based 3D reconstruc-
tion mainly consist of image matching, camera pose estimation, triangulation, and bundle
adjustment. Thus, image matching is one of the most important modules in image-based
3D reconstruction [7]. The goal of image matching is to generate feature correspondences
across multiple views. Once feature correspondences have been generated, the structure
from motion (SFM) system can be used to recover sparse point clouds and camera pa-
rameters, then the multi-view stereo and Poisson surface reconstruction can be utilized to
generate dense point clouds and texture models, respectively. As a result, we can conclude
that the quality of 3D reconstruction heavily depends on image matching methods.

The standard pipeline of image matching consists of feature point detection, feature
descriptor computing, feature matching, and outlier removal [8]. Each component of
image matching has many potential choices. In the case of feature point detection, there
are scale-invariant feature transform (SIFT) [9], speeded-up robust features (SURF) [10],
KAZE features [11], oriented fast and rotated brief (ORB) [12], and learned invariant feature
transform (LIFT) [13]. These features can not only locate feature points but also generate
feature descriptors. Moreover, there are also some deep learning-based methods, such
as boosted efficient local image descriptor (BELID) [14], repeatable and reliable detector
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and descriptor (R2D2) [15], joint description and detection of local features (D2Net) [16],
and SuperGlue [17]. According to reports in corresponding papers, every method has a
state-of-the-art performance. For outlier removal, the ratio test [9] is the simplest but most
efficient method, and it uses a constant threshold to reject incorrect feature correspondences
and is widely used in various computer vision tasks. Ma et al. [18] proposed an auto-
matic approach to remove outliers by vector field learning. This method has an excellent
performance even when dealing with large-scale feature collections with heavy outliers.

For feature matching, there are also many methods. For example, brute force matching
(BFM) [9] is one of the most famous methods. For a given query point, BFM chose a
maximal confident candidate from reference points as the corresponding point. Usually, the
feature correspondences generated by BFM have some outliers, often caused by the feature
descriptor’s ambiguity. Thus, BFM combined with the ratio test is a good solution for image
matching. Wang et al. [19] proposed the use of a graph-matching approach to generate
feature correspondences in the presence of outliers. The core idea is to reject incorrect
matches by using the zero-assignment constraint. Jiang et al. [20] proposed the use of
spatial clustering to generate a robust image matching result. The key idea of this method
is to progressively cluster the putative matches into several motion-consistent clusters,
including an outlier cluster. Zhou et al. [21] proposed progressive large-scale-invariant
image matching in scale space for 3D reconstruction, resulting in a desirable performance
in matching precision. Han et al. [22] proposed a deep learning-based approach to image
matching as they designed a unified solution for learning feature representations and
learning feature comparison functions. Although image matching has made significant
progress, the topic still needs more attention, especially in image-based 3D reconstruction,
and there is still much room for improvement in the accuracy and time efficiency of image
matching methods.

After a deep investigation into the topic of image matching, we found that hash
indexing is an efficient approach to feature descriptor matching. As a result, in this paper,
we propose the design of a HashMatch based on hash indexing for image matching in 3D
reconstruction. The HashMatch consists of two modules. First, constructing a big hash
table for located feature points via Haar wavelet feature transform [23]. Second, indexing
a potential candidate by using a short hash code for the query point. The HashMatch
can significantly reduce computational costs on image matching when dealing with big
image datasets. According to our experiments, the HashMatch has not only proved to
be extremely fast but also has the desired matching precision and is very suitable for the
processing of large-scale 3D reconstruction. In summary, the main contributions of this
work are summarized as follows:

• We propose the use of hash indexing to replace the original brute force matching for
image matching and present a HashMatch for 3D reconstruction.

• We propose the use of the Haar wavelet feature transformation to construct a big and
robust hash table for the located feature points for feature descriptor indexing.

• We have designed a parallel architecture for hash matching to speed up the image
matching process and save computing time. Additionally, a systematic experiment
conducted on several benchmarking datasets is provided to assess the HashMatch
against the state-of-the-art methods.

The rest of this paper is organized as follows: After a brief introduction in Section 1,
related work about image matching is presented in Section 2. In Section 3, we present
the HashMatch in detail. In Section 4, a systematic experiment was conducted on several
benchmarking datasets to prove the effectiveness of the HashMatch. Finally, the conclusion
and remarking comments are presented in Section 5.

2. Related Works

In this section, we will briefly review the most relative work to our research topic,
including image matching, 3D reconstruction with SFM, MVS, and surface reconstruction.
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2.1. Image Matching

Image matching has obtained great progress in the past decades due to many po-
tential applications, so various feature-matching methods have been proposed by re-
searchers [24,25]. In a nutshell, existing methods can be roughly divided into two cate-
gories according to the types of input data (video, and images). If the input data are in
video form, the KLT and variants are usually adopted to locate feature correspondences
by computing the displacements between two consecutive frames [26]. The Lucas and
Kanade tracker (KLT) [27] is generally considered to be the best choice for video feature
tracking, especially in robotic navigation, trajectory extraction for moving objects, and
visual object tracking. Zach et al. [28] presented an adaptive KLT that was implemented in
parallel programming for real-time applications. Hwangbo et al. [29] proposed the use of
the inertial measurement unit (IMU) to improve the stability of KLT for a moving camera.
Poling et al. [30] presented a novel framework for jointly tracking a collection of feature
points, which can share information between the different feature points in the scene. This
method achieves stable feature tracking via subspace constraints. Zhao et al. [31] formu-
lated the feature tracking problem as a spatio-temporal statistical learning framework, so
they proposed a robust keypoint tracking method via metric learning-driven multi-task
structured output optimization. Generally, KLT and its variants can produce promising
results for video sequences.

Regarding the second category, there have also been many approaches published in
recent years. For example, Zhang et al. [31] proposed an efficient feature-tracking method
to process a nonconsecutive image sequence for large-scale SFM, in which the parallel
SIFT feature and second-pass matching strategy were adopted to handle feature-tracking
drift. Lin et al. [32] developed a novel method called RepMatch for reconstructing the
city model, in which the Epipolar guided approach is adopted to accommodate both
wide baselines and repeated structures. Additionally, the RepMatch also utilized random
sample consistency (RANSAC) to handle different true or false feature correspondences.
Lukos et al. [33] proposed wide-baseline image matching via projective view synthesis for
two-view image matching. This method can aptly handle the limitations caused by the
approximate character of affine transformations via projective transformations, and can
also use the essential matrix between images to reject incorrect feature correspondences.
Recently, Lowry et al. [34] proposed to make use of local geometric priors to boost the
spatial verification for filtering outliers. This method also utilized the scale and orientation
information from feature neighborhoods to identify which feature points are likely to be
correct feature correspondences and has proved to be excellent in practice.

Recently, the deep learning technique has provided excellent performances in vari-
ous computer vision tasks, such as object detection and recognition, visual tracking and
localization, and depth estimation. Thus, some researchers have tried to use deep learn-
ing techniques to handle image matching, including feature point detection, descriptor
computing, and feature matching. For example, the first work of deep learning-based
image matching was MatchNet, proposed by Han et al. [22], in which an end-to-end
neural network architecture was designed to generate feature correspondences for image
pairs. Zhao et al. [35] presented a hierarchical neural network named NM-Net to generate
high-precision feature correspondences via mining reliable neighbors, in which NM-Net
takes the generated graph as an input, then boosts the robustness to the order of feature
correspondences. Yi et al. [36] designed a deep neural network architecture for the purpose
of learning to locate good feature correspondences for wide-baseline images. They train the
network in an end-to-end solution to label the feature correspondences as inliers or outliers.
Sarlin et al. [17] proposed a neural network named SuperGlue to match two sets of local
feature points by jointly finding feature correspondences and rejecting incorrect matches.
Additionally, they also presented a flexible context aggregation mechanism by making use
of visual attention to enable SuperGlue to reason the underlying geometry model. As a
result, SuperGlue is an excellent solution based on deep learning for image matching. Ma
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et al. [37] presented a systematic survey to analyze the research state of image matching.
More information about image matching can be found in Ma’s work.

2.2. 3D Reconstruction

Reconstructing geometric models from image sets is a basic task in the fields of
computer vision and computer graphics, which has led to the emergence of various 3D
reconstruction methods. The classic pipeline of image-based 3D reconstruction consists
of sparse, dense, and surface reconstruction. Each component has different solutions
or methods. The goal of sparse reconstruction is to recover sparse point clouds and
camera parameters from the generated feature correspondences via SFMs. For instance,
Snavely et al. [38] developed a system named Bundler to recover sparse geometry from
Internet image collections. Bundler possesses an excellent implementation and has the
robustness to scene scales. Wu et al. [39] present a novel SFM system that reaches linear-
time reconstruction via incremental way with the parallel SIFT and multi-core bundle
adjustment. In addition to fast speeds, Wu’s system can generate compact point clouds by
re-triangulation for drifted features. Chris et al. [40] presented a large-scale SFM for outdoor
scene reconstruction, in which they make use of the distributed camera model to describe
image observations in terms of light rays rather than image pixels. Zhu et al. [41] developed
a very large-scale global SFM to replace incremental SFMs, in which distributed motion
averaging is utilized to estimate the camera pose in a parallel manner. Johannes et al. [42]
revised the development progress of SFMs, then designed an excellent incremental SFM via
scene graph augmentation. According to the reports in [43,44], modern SFMs can recover a
world-scale model from Internet image collections in a few days.

For dense reconstruction, the patch-based multi-view stereo (PMVS) [45] is an excellent
solution, which takes local feature points and edges as seeds to densify the sparse point
clouds to generate dense point clouds via point expansion. Goesele et al. [46] proposed
a depth-map-fusion-based MVS for generating dense point clouds. The method first
computes individual depth maps using a stereo matching approach, then the depth maps
are merged into a single dense model using a direct volumetric fusion. Silvano et al. [47]
developed a massively parallel method for high-quality multi-view stereo matching, with
the core idea being based on the PathMatch, which uses a robust photo-consistency measure
to check depth errors. Kuhn et al. [48] proposed a scalable and efficient MVS method to
reconstruct an accurate dense geometry model from hundreds of high-resolution images,
in which all depth maps are estimated by semi-global matching (SGM) methods and a TV
previously utilized to improve the quality of MVS. Inspired by the success of deep learning
in pattern recognition, some researchers have tried to design neural networks for MVS
reconstruction with end-to-end approaches. For example, Yao et al. [49] proposed the use
of a deep learning-based approach to inference depth maps for generating dense point
clouds. This resulted in the construction of a novel neural network architecture named
MVSNet. Later, they modified MVSNet with recurrent neural networks (RNN), resulting
in RMVSNet [50].

Once dense point clouds have been generated, surface reconstruction methods can be
utilized to generate texture models. Among the existing methods, the most famous method
is Poisson surface reconstruction [51], which formulates the problem of reconstructing
the textured model as the Poisson equation solver. Zhou et al. [52] proposed the use of
data-parallel Octrees to accelerate Poisson surface reconstruction when dealing with large-
scale scenes, subsequently resulting in parallel Poisson surface reconstruction. Waechter
et al. [53] presented a novel approach to generating high-quality textures for large-scale 3D
reconstructions. This method can handle the complexity and scale of reconstructed models.
Ummenhofer et al. [54] developed a variational method for surface reconstruction from
the MVS data, which can handle a billion points in a short time. Recently, Tom et al. [55]
presented a BigSUR for large-scale structured urban reconstruction, in which a binary
integer program is proposed for global balances sources of error to generate semantically
parsed mass models with associated façade elements. With the rapid development of deep
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learning technology, some learning-based approaches have been proposed for reconstruct-
ing texture models from image collections via end-to-end ways, such as SurfaceNet [56]. We
believe that more efficient methods based on deep learning will be proposed in the future.

3. The Proposed Method

To improve the quality of modern 3D reconstruction, in this paper, we present an
efficient image matching method based on hashing indexing, named HashMatch. The
pipeline of the HashMatch is depicted in Figure 1, where we first use the SURF feature to
find local feature points and compute feature descriptors for given image pairs. Second,
Haar wavelet coding is adopted to construct a compact hash table for the located feature
points and descriptors. Thirdly, the hash index replaces the traditional KNN to select the
corresponding feature point from the reference feature set, and then the wrong feature
correspondences are caused by repeating the query process. Note that the ratio test is also
integrated into the HashMatch for rejecting outliers. The procedures of the HashMatch are
presented in Algorithm 1. More details can be found in the subsequent sections.

Algorithm 1 HashMatch.

Input: Image collection I = {In|n ∈ [1, N]}
Output : Feature correspondences Mi,j = { f (p, q)|p, q ∈ [1, M]}

Step 1: Use the SURF feature to detect feature points for each image in image collection I.
Step 2: Use the SURF feature to compute feature descriptors for each located feature point.
Step 3: Create a hash table for all feature descriptors:

for idx = 1 to N′:
(1) Compute Haar wavelet coefficients for each descriptor via Equation (8);
(2) Calculate the values of ek1, ek2, ek3, and ek4 via Equations (9)–(12);
(3) Assign values to the members of hash table htable via Equations (13)–(16);

Step 4: Indexing hash table for given numbers i and j:
(1) Compute the values of id0, id1, and id2 according to Equation (18);
(2) Calculate the indexing table for locating feature descriptors via Equation (19);

Step 5: Measure the difference between feature descriptor dp and dq via L2-distance;
Step 6: Repeat Step 4~Step 5. This should result in a set of feature correspondences for each
image pairs.
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3.1. Feature Detection

Many feature point detectors can be candidates for image matching in 3D reconstruc-
tion, such as SIFT [9], ORB [12], KAZE [11], SuperPoint [57], and SuperGlue [17]. In this
paper, the SURF [10] feature is adopted to find feature points and compute feature descrip-
tors due to its fast speed and comparable matching precision to SIFT. Figure 2 presents the
pipeline of the SURF detector for locating feature points from the given image. Specifically,
for the input image I, the box filter is utilized to construct multi-scale spaces via different
kernel sizes, and the integral image operation is also adopted to accelerate convolutional
operation.

I∝(x, y) = ∑
0≤x′<kernel.cols
0≤y′<kernel.rows

kernel
(
x′, y′

)
∗ I
(
x + x′ − anchor.x, y + y′ − anchor.y

)
(1)
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The position of the feature point can be computed by the Hessian matrix in multi-scale
spaces. The Hessian matrix H(x, y, σ) in (x, y) at scale, σ is defined as

H(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

]
(2)

where Lxx(x, y, σ) is the convolution of the Gaussian second-order derivative G(x, y, σ)
with image I in point (x, y).

Lxx(x, y, σ) =
∂2g(x, y, σ)

x2 ⊗ I(x, y, σ) (3)

Notice that Lxy(x, y, σ) and Lyy(x, y, σ) can be calculated similarly.
To this end, we can judge whether (x, y) is a feature point according to the approximate

determinant Det(H′(x, y, σ)) of the Hessian matrix H(x, y, σ).

Det(H′(x, y, σ)) = Lxx(x, y, σ)Lyy(x, y, σ)−
(
0.9Lxy(x, y, σ)

)2 (4)

If Det(H′(x, y, σ)) is greater than all pixel values in the neighborhood of (x, y), then
(x, y) is a feature point, otherwise, it is not. As depicted in Figure 2, the circles containing
yellow are the located feature points.

3.2. Descriptor Extraction

The descriptor is a representation of the local feature point, some novel descriptors
have been proposed in recent years. For example, Lowe’s SIFT and its variants, AKAZE
feature [11], local difference binary (LDB) [58], locally uniform comparison image de-
scriptor (LUCID) [59], learned arrangements of three patch codes (LATCH) [60], learned
invariant feature transform (LIFT) [13], and SURF [10]. Binary descriptors possess a fast
computational efficiency but have low matching precision. Floating-point descriptors have
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high matching precision but slow speed. There is an exception, namely SURF, which is a
floating-point descriptor extractor, but it has comparable computational efficiency to binary
descriptor extractors such as ORB and LDB. As a result, in this paper, we also use SURF to
compute feature descriptors for located feature points due to it providing the best balance
between distinctiveness and computational cost.

Figure 3 presents the pipeline for extracting feature descriptors for the located feature
points via the SURF feature descriptor extractor. For the given feature point x = (x, y) and
corresponding image I, we first compute a dominant orientation θ for feature point x by
computing Haar wavelet responses in the neighborhood centered at x with radius 6s, where
s = 1.2h/9 and h is the size of the current filter kernel. With the dominant orientation θ, we
crop the patch p with the size of 20s× 20s centered at x from image I, then split the patch p
into 16 sub-regions along with the dominant orientation θ, as depicted in Figure 3c, where
each sub-region has four-types of Haar wavelet responses, namely

Respi =
{
∑i dx, ∑i|dx|, ∑i dy, ∑i|dy|

}
(5)

where i denotes the index of sub-regions.
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To this end, we can obtain a floating-point feature vector with 64 elements.

Dx = {Respi|i = 1, 2, · · · , 16} (6)

Furthermore, we can normalize Dx by the Frobenius normal to boost its robustness to
light and scale changes, and repeated texture.

3.3. Hash Matching

The goal of feature descriptor matching is to find feature correspondences for given
independent feature collections. In the past decade, many approaches to feature descriptor
matching have been proposed by researchers from academia. The simplest method is a
k-nearest neighbor (KNN) matching with a ratio test. However, KNN is time-consuming,
especially in large-scale feature collections. Johannes et al. [42] formulate feature descriptor
matching as image searching for large-scale 3D reconstruction to reduce the computational
cost of image matching, but matching precision may decrease in practice. Although there
are some GPU-accelerated methods for image matching, they can also be improved in terms
of both computational burden and matching precision. To improve the quality of image
matching for boosting modern 3D reconstruction, in this paper, we propose a simple but
efficient approach to feature descriptors matching via hashing indexing; thus, the proposed
method is named hash indexing.

The pipeline of hash indexing is depicted in Figure 4, where feature descriptors are
computed by the SURF feature [10]. For a given set of feature descriptors, the following
steps should be conducted to generate feature correspondences: (1) create a hash table for all
feature descriptors that included the initial hash table, feature transformation, and updated
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feature bins; (2) perform hash matching, specifically searching feature correspondences
using the hash value of feature descriptors. In the implementation, we can make use of the
Haar wavelet to create an approximate hash table for the acceleration of feature descriptors
that match further. According to the report in Section 4, the proposed method outperforms
the state-of-the-art methods in both efficiency and accuracy. It is salient to note that hash
matching belongs to similar matching rather than brute-force matching; thus, it has a faster
speed and desired matching precision.
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3.3.1. Creating a Hash Table

Descriptor matching is still a challenging task in large-scale 3D reconstruction. Al-
though some novel approaches have been proposed for accelerating descriptor matching
in image matching, these methods need further improvements regarding how they deal
with high-resolution images. To reduce the computational costs of descriptor matching, in
this section, we propose the creation of a big hash table to accelerate image matching via
hash indexing, then boost the computational efficiency of image-based 3D reconstruction.
Specifically, let htable be a hash table for the given descriptor collections d = {d1, · · · , dN},
and the htable is defined as (in C-Plus-Plus language):

htable = {int N; f loat sum[3]; f loat avg[3]; f loat squsum[3]; f loat std[3]} (7)

where N is the number of feature points, sum[3] is used to store the sum of Haar wavelet
coefficients of all feature descriptors and squsum[3] is utilized to store the squared sum
of Haar wavelet coefficients of all feature descriptors. Let ck1, ck2, and ck3 represent the
Haar wavelet coefficients for the descriptor dk ∈ d, which can then be calculated using the
following formulas, 

ck1 = ek1 + ek2 − ek3 − ek4
ck2 = −ek1 + ek2 − e3 + ek4
ck3 = ek1 − ek2 − ek3 + ek4

(8)

Additionally, ek1, ek2, ek3, and ek4 are the sum of descriptor elements and are defined as

ek1 =
i=3

∑
i=0

j=3

∑
j=0

dk[i ∗ 8 + j] (9)

ek2 =
i=3

∑
i=0

j=7

∑
j=4

dk[i ∗ 8 + j] (10)

ek3 =
i=7

∑
i=4

j=3

∑
j=0

dk[i ∗ 8 + j] (11)
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ek4 =
i=7

∑
i=4

j=7

∑
j=4

dk[i ∗ 8 + j] (12)

Upon finding the values of ck1, ck2, and ck3, the members of htable can be computed as

sum[index] =
k=N

∑
k=0

ck1, index = 0, 1, 2 (13)

squsum[index] =
k=N

∑
k=0

ck1 ∗ ck1, index = 0, 1, 2 (14)

std[index] =

√
squsum[index]

N
− sum[index] ∗ sum[index], index = 0, 1, 2 (15)

avg[index] =
sum[index]

N
, index = 0, 1, 2 (16)

To this end, we can create a big hash table based on Haar wavelet transformation for
the input feature descriptor collections for fast indexing in the image matching stage.

3.3.2. Hash Indexing

The final stage of hash matching is to index hash table htable for the given fea-
ture descriptor dk ∈ d. Brute force searching is the simplest method for indexing the
hash table, but it may demand high computational costs. To mitigate this, we pro-
pose the construction of an index table indtable for the purpose of accelerating image
matching. The indtable is a multi-dimensional array, which can be defined as (in C Plus
Plus language) indtable := std :: vector〈std :: vector〈std :: vector〈int〉〉〉(). Specifically, let
inv_stdindex=1/stdindex, index = 0, 1, 2, and id0, id1, and id2 represent indexing numbers.
t0, t1, and t2 denote temporal variables, namely

t0 = indinv_std0 ∗ (ck0 − avg[0])
t1 = indinv_std1 ∗ (ck1 − avg[1])
t2 = indinv_std2 ∗ (ck2 − avg[2])

(17)

The values of id0, id1, and id2 can be calculated by the following formulas.
id0 = min(9, max(0, f loor(1.5 ∗ (t0 + 3.333))))
id1 = min(9, max(0, f loor(1.5 ∗ (t1 + 3.333))))
id2 = min(9, max(0, f loor(1.5 ∗ (t2 + 3.333))))

(18)

where min(x, y) and max(x, y) represents the minimal and maximal values between x and
y, respectively. To obtain an integer that is less than x, f loor(x) is used. Let bins = std ::
vector〈std :: vector〈int〉〉(), and indext = 100 ∗ id0 + 10 ∗ id1 + id2. Thus, bins[indext] = k,
where k represents the indexing number of the kth feature descriptor in the image In,
n ∈ [0, N − 1]. As a result, the value of the indexing table can be assigned using the
following formula.

indtable[n] = binsn, n ∈ [0, N − 1] (19)

Once we have the indexing table, we can quickly obtain the descriptor collections
for the image In and image In+1 via hash indexing. The remaining operations of feature
descriptor matching are similar to [23]. More detailed information which demonstrates
the performance of the HashMatch can be found in Section 4, where a comprehensive
experiment conducted on several challenging datasets is provided for readers.
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4. Experimental Results

The HashMatch was implemented in Visual C++ 2017 with OpenCV SDK 4.1, and
Nvidia CUDA SDK 10.0 version was also used to accelerate the process of image match-
ing. Furthermore, we evaluated the HashMatch on the benchmarking dataset and the
open-source dataset and also made a comprehensive comparison to KNN + RatioTest [9],
ENFT [61], MODS [62], RepMatch [32], CODE [63], D2D [64], and R2D2 [15]. It should be
noted that, during the experiment, each algorithm used the original parameters.

4.1. Evaluation on the EdgeFoci Dataset

The EdgeFoci dataset [65] is a benchmark for evaluating the performance of local fea-
ture detectors and descriptors. It consists of nine sequences and each sequence has a variant
number of images. The samples of the EdgeFoci dataset are provided in Figure 5, they are
Boat, Graffiti, Light, Dame, Obama, Painted Ladies, Rushmore, and Yosemite, respectively.
The partially matching results are provided in Figure 6 where the BFM has the most incor-
rect matches. The RatioTest can reject some outliers from the matching collection produced
by the BFM. The ENFT has more robustness than that of the BFM and KNN + RatioTest
due to the use of a two-pass matching strategy. The HashMatch can generate the most
accurate feature correspondences via Haar wavelet encoding. In the case of Notre Dame, it
has symmetric structures and repeated features. The BFM produced the highest number
of feature correspondences for Notre Dame, but there are too many incorrect matches in
the collection of generated feature correspondences. The KNN + RatioTest also has outliers
because its performance suffers from the constant threshold. If a big threshold is used
by the KNN, it may produce more feature correspondences than that of the KNN with
a small threshold but have more incorrect matches. Otherwise, The KNN with a small
threshold can reject more incorrect feature correspondence; however, it can also reject some
correct ones. Although the ENFT can filter many outliers from the collection of the initial
feature correspondences by the two-pass matching strategy, a few incorrect matches also
exist. However, the HashMatch has the best performance among the compared methods,
providing the highest number of correct feature correspondences.
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In addition to the qualitative analysis, we also provided the statistical results (number
of correct feature correspondences) for the compared methods. The results are listed in
Table 1, where the higher the number of correct feature correspondences, the better the
performance of the corresponding method. As the stated before, the KNN + RatioTest has
the worst performance and the least amount of feature correspondences. The HashMatch
has the highest number of feature correspondences (only inliers) on the whole dataset,
demonstrating excellent performance. Finally, for each sequence, we recorded the computa-
tional time taken by the HashMatch. These times are depicted in Figure 7. The HashMatch
can match ten thousand local features in a small amount of time. Moreover, we also provide
the computational time for each method in Figure 8, where it can be seen that our proposed
HashMatch has the fastest speed. To this end, both qualitative and quantitative results
have proven the excellent performance of the HashMatch.
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Table 1. Statistical results (correct matches) of the EdgeFoci dataset.

Method
Sequence

Boat Graffiti Light Notre Dame Obama Painted Ladies Rushmore Yosemite

KNN + RatioTest 95 70 501 70 21 39 17 23
ENFT [61] 141 96 698 89 25 80 23 28
MODS [62] 101 83 564 142 42 47 18 32

RepMatch [32] 117 120 721 137 60 69 35 41
CODE [63] 98 109 706 110 58 53 29 47

D2D + KNN [64] 167 203 792 89 81 90 42 59
R2D2 + KNN [15] 130 178 807 120 90 83 53 62
HashMatch (Ours) 558 378 1263 307 328 407 286 613
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4.2. Evaluating HashMatch with Different Features

To further verify the effectiveness of the matching approach of the HashMatch,
some different local features including BRISK, ORB, AKAZE, KAZE, SIFT, SURF & VGG,
SIFT & VGG, have been integrated into the HashMatch, and we evaluated them using
the Samper sequence of Strach’s dataset (http://cvlabwww.epfl.ch/data/multiview/
denseMVS.html, accessed on 10 April 2019). The statistical results are listed in Table 2,
where the “Features” denote the number of input local features, and the “Matches” repre-
sent the number of generated feature correspondences. As shown in Table 2, “SURF + HM”
has the highest number of feature correspondences; thus, the effectiveness of the HashMatch
is proved once again. In addition to statistical results, we also provide some visualized re-
sults in Figure 9, in which all combiners can produce accurate feature correspondence. This
is an excellent property of various computer vision tasks, especially in 3D reconstruction
based on images.

Table 2. Statistical results (correct matches) of the Semper sequence of Strach’s dataset, where HM
represents HashMatch, “SURF + VGG” represents SURF detector and VGG descriptor, and “SIFT +
VGG” represents SIFT detector and VGG descriptor.

Quantitative
Analysis

Method

BRSK + HM ORB + HM AKAZE +
HM

KAZE +
HM SIFT + HM SURF + HM SURF + VGG

+ HM
SIFT + VGG

+ HM

Features 19,808 20,000 11,896 11,434 38,991 45,944 45,944 38,991
Matches 3037 3857 4571 4699 6437 8539 7945 4808
Ratio of
Inliers 79.34% 81.14% 88.56% 89.67 91.56 97.72 89.76 84.62

4.3. Evaluation on the Open-Source Dataset

To verify the effectiveness of the HashMatch in 3D reconstruction, we integrated it
into the Bundler and evaluated it by using the open-source dataset (https://github.com/
rperrot/ReconstructionDataSet, accessed on 12 April 2021). It should be noted that this
dataset contains nine sequences. In our experiment, the “AvignonHotelDesMonnaies” (in
the following section, we call it a “Hotel” for convenience) was adopted because it is the
most challenging sequence. Figure 10 presents the samples of the Hotel sequence, there
are many repeated features on the surfaces of the sampling images, and this raises a big
challenge for the image matching method. The matching results of the compared methods
are depicted in Figure 11, where it can be seen that the BFM has the most incorrect feature
correspondences, meaning that BFM had the lowest matching precision among these image

http://cvlabwww.epfl.ch/data/multiview/denseMVS.html
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html
https://github.com/rperrot/ReconstructionDataSet
https://github.com/rperrot/ReconstructionDataSet
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matching methods. Although the RatioTest can remove some outliers, there are also many
incorrect feature correspondences in the collection of matches. The ENFT obtained a better
result than that of the KNN + RatioTest because of its use of the two-pass matching strategy.
The HashMatch yielded the best results among these methods as there were no outliers in
the collection of feature correspondences.
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Figure 11. Feature correspondences of the Hotel sequence. The HashMatch has the most correct
feature correspondences. This proves that the HashMatch has more robustness to repeated features
than that of the others.

Three ways are adopted to evaluate the performance of the HashMatch in 3D recon-
struction, namely sparse reconstruction by Bundler, dense reconstruction by the PMVS,
and surface reconstruction via the Poisson surface reconstruction. The sparse point clouds,
dense point clouds, and textured models are provided in Figures 12–14, respectively. In each
stage, the reconstructed model had a high geometry consistency with the real scene. More-
over, the HashMatch to one minute to generate feature correspondences. To this end, all of
our results (Figures 11–14) prove the effectiveness of the HashMatch in 3D reconstruction.

4.4. Evaluation on Strecha’s Dataset

To further assess the effectiveness of the HashMatch in 3D reconstruction, we inte-
grated it into COLMAP and evaluated its effectiveness by using Strecha’s dataset [66]. It
should be noted that this dataset contains six sequences. In our experiment, the “Herz-Jesu-
P25” is used because it is the most challenging sequence. Figure 15 presents the samples of
Herz-Jesu-P25, and it can be observed that there are many repeated features on the surfaces
of the sampling images, and this raises a big challenge for the image matching methods.
The matching results of the HashMatch are depicted in Figure 16. Only correct feature
correspondences are visible, indicating that the HashMatch had the highest matching
precision compared to state-of-the-art methods. In summary, the proposed HashMatch has
the best performance matching precision.
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Three ways are used to evaluate the performance of the HashMatch in 3D reconstruc-
tion, namely sparse reconstruction by COLMAP, dense reconstruction by the PMVS, and
surface reconstruction via the Poisson surface reconstruction. The sparse point clouds,
dense point clouds, and textured models are provided in Figures 17–19, respectively, and
in each stage, the reconstructed model has high geometry consistency with the real scene.
Moreover, the HashMatch only took a few minutes (0.75 min) to generate feature corre-
spondences. To this end, all of our results (Figures 16–19) prove the effectiveness of the
HashMatch in 3D reconstruction.
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5. Conclusions

In this article, we propose an efficient image matching method for 3-D reconstruction.
The proposed method was named HashMatch because it makes use of hash indexing to
achieve large-scale feature matching in a short amount of time. We adopted the SURF
feature to describe images, resulting in high-quality feature points and robust feature
descriptors. We suggest using hash coding to generate a large hash table for the image
set, so as to quickly index. Multiple verifications are utilized to reject incorrect feature
correspondences. The results of systematic experiments show that the HashMatch is better
than the state-of-the-art methods as it had the highest matching precision on all challenging
datasets. In addition to this, the proposed method has good extensibility, which can work
well with different feature detectors or feature descriptors. In short, our method is fast
and accurate.

In the future, we also plan to design parallel architecture with the CUDA SDK for the
HashMatch to provide more generic, fast, and accurate solutions for real-time image matching.
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