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Abstract: In this paper, the head stabilization problem of the snake robot in planar motion is studied.
When the snake robot performs a planar movement with an inchworm locomotion gait, the head
controller of the snake robot swings up and down due to a fluctuation in the joint angle of the
neck joint. However, the snake robot usually has a laser radar and other visual instruments on
the head, and the swing of the head causes the visual instrument to fail to obtain external visual
information normally, which affects the navigation and detection of the snake robot. In this paper, a
head stabilization method for a snake robot in planar motion is proposed. The inertial sensor is used
to obtain the direction parameters to control the swing of the head when the snake robot moves, and
the effectiveness of the method is verified by a simulation and an experiment of the real robot.
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1. Introduction

A snake robot has a relatively unique movement mode, and it moves with the friction
force between itself and the ground as power. Due to its high degree of freedom (DOF),
snake robots have high flexibility. Equipped with cameras, sensors and other equipment,
snake robots can complete corresponding tasks on various complex terrains [1]. Snake
robots can carry out search and rescue work in the ruins of a disaster area [2]; they can
perform search work in narrow spaces [3]; they can complete a fire-fighting task at a
dangerous fire scene [4]; due to the slender external structure of snake robots [5], they
can complete an exploration operation underground or in a pipeline [6]; they can replace
humans in an environment full of poisonous gas and other dangerous areas to complete
investigations; they can complete tasks such as investigation, assassination and blasting on
dangerous battlefields due to their relatively concealed movements; and in the direction
of aerospace, they can replace ordinary robots to complete tasks such as detection and
sampling, and other tasks in complex and unknown environments, and can also perform
maintenance on a space station. In addition, snake robots can be used in the medical
field [7]. Since snake robots are slender overall, their control method in the elastic variable
channel can be used to promote the multi-directional development of medical endoscopes.
Due to the various advantages of snake robots, they are full of research value.

Snake robots with visual sensors such as cameras or lidars can detect and navigate
in some unknown environments [8]. However, due to the movement characteristics of
the snake robot, its head bobs when it is moving, which causes the head vision sensor
to fail to obtain external visual information normally and affects the robot’s navigation.
Therefore, the study of the head stabilization of snake robots in planar motion is an
important research topic.

Carnegie Mellon University used the mode decomposition method to keep the head
of the snake robot in the same direction during the rolling gait [9]. This method can ensure
that the head camera of the snake robot works normally during the rolling gait. H. Yamada
et al. stabilized the head of the snake robot by controlling the motion of its neck [10].
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However, when the method is converted from a continuous model to a discrete model, it
causes the head position to move forward and backward, and the control of the robot is
impacted. Z. Bing compensated for the head offset angle of the snake robot by calculating
the derivative of the snake curve with respect to time [11]. Wu et al. introduced a virtual
joint as the desired direction and analyzed the joint angle relationship between the virtual
joint and the first two joints of the head in HNC (head navigation control) [12]. However,
this lacks validation on the effect of head navigation, and it is difficult to tune parameters
using a cyclic inhibition model. G. Qiao et al. achieved partial control and proposed to
divide the snake robot into different parts such as the head, neck and torso. The torso is
used to push the snake robot forward, while the neck and head are used to control the
snake robot’s direction [13]. However, this method needs to treat multiple modules as
the neck part, so the number of joints increases, which is difficult to apply to the CPG
model based on curvature control. G. Dao et al. described the direction of motion with a
virtual coordinate system model, and studied HNC using the Kuramoto oscillator model
based on a single-chain bidirectional coupling network [14]. Based on a CPG network [15],
X. Wu et al. used virtual joints to stabilize the head. Although this solution can effectively
ensure the head stabilization of a snake robot [16], it lacks the feedback of head position
information, and the efficiency is not high. The authors of [17] used the main ailerons and
the tail elevators to counteract the pitch angle.

The above strategies for head stabilization of wheeled snake robots are divided into
the following two types. The first type is to place the head of the snake robot into a snake
curve and compensate for the head direction by calculating the snake curve; the other type
is to introduce virtual joints and calculate the virtual joint angles by using the trunk joint
angles, thereby controlling the neck joints to keep the head stable. These two types of
methods need to obtain the compensation angle of the head stabilization by calculating the
joint angle or the snake curve. Compared with directly obtaining the compensation angle,
these methods have large errors, and the above methods are not suitable for non-wheeled
snake robots. In the inchworm locomotion gait [18,19], since the serpentine curve of the
inchworm locomotion gait is affected by its own gravity, the calculation of the serpentine
curve and the virtual joint angle produces errors. This paper proposes a non-wheeled
snake robot head stabilization compensation strategy based on an inertial sensor (IMU) [20].
The head controller is fed back the direction data by the sensor, and the head controller is
stabilized by head joint compensation. In this paper, the scheme is analyzed theoretically,
and the method is verified by simulation and experiment.

The reminder of this paper is organized as follows: In Section 2, we introduce the
previous work. In Section 3, we analyze the head stabilization of a snake robot. In Section 4,
we validate the head stabilization strategy for the snake robot through simulations. In
Section 5, we further validate the head stabilization algorithm through experiments on
the snake robot. In Section 6, we conduct an analysis and discussion of the results from
the experiments and simulations, and finally, the conclusion of this paper is discussed
in Section 7.

2. Previous Related Work

This section introduces some of our previous work on snake robots. We developed
a non-wheeled snake robot with 16 DOF. The robot consists of 16 modular joints, a head
module and a tail battery module. The robot is shown in Figure 1. The joint modules
of the snake-like robot are orthogonally connected and can perform three-dimensional
movements in space. The tail battery module is responsible for powering the snake-like
robot. The head module contains a head controller, inertial sensors, a laser rangefinder and
other devices. The head controller of the snake-like robot is a computing stick responsible
for processing sensor information and overall motion planning of the robot. Relevant work
is described in [21].
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Figure 1. Snake robot integration.

The dynamic equation of the snake robot can be represented as follows [21]:

u = M(q)
..
q + V(q,

.
q) + F

.
q + g(q) (1)

In Equation (1), M(q) represents the mass matrix, V(q,
.
q) represents the matrix of

centrifugal and Coriolis torques, F represents the friction matrix and g(q) represents the
gravity matrix.

The control law for the snake robot can be represented as follows:

y =
..
qd + kd

.
eq + kpeq (2)

where qd represents the desired joint matrix, eq represents the tracking error, kd and kp are
positive definite matrices to ensure stability. The specific control block diagram is shown in
Figure 2.
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3. Head Stabilization Strategy Analysis

The specific work on the dynamics and control laws of snake-like robots is detailed
in [21].

To ensure the stable operation of the head of snake robot, the first joint (pitch direction)
needs to be planned and controlled separately. Head stabilization requires the first joint to
meet the following conditions [12]:

1. The direction of the head module is consistent with the direction of movement;
2. The first joint angle frequency is consistent with other joint angle frequencies;
3. The period of the first joint is the same as that of other joints, but the phase and

amplitude are different.

In Figure 3, 1, 2 and 3 represent the first three links of the robot, θ1 represents the
original joint angle of the first joint, θ2 represents the joint angle of the second joint and θh
represents the joint angle of the head joint. It can be seen from the figure that θh and θ1 − θ2
have the same phase and frequency but different amplitudes. Set the original joint angle
of the first joint as f (t), and the phase difference of adjacent joints as ϕ, the ideal angle
equation θh can be expressed as (3).

θ1 = f (t)
θ2 = f (t− ϕ)
θh = Ahead(θ1 − θ2) = Ahead[ f (t)− f (t− ϕ)]

(3)
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Figure 3. (a–d) Four typical cases of head navigation motion.

From (3), it can be seen that the main problem of controlling the head direction has
been changed to solving the value of the front amplitude coefficient. Add a virtual angle θv
that is out of phase with the first joint the same as that of the first and second joints. Taking
this virtual joint as a reference, the crossing time tcross of θ1 and θv can be calculated. At the
same time, since θh is equal to θ1 at this time, the value of the amplitude coefficient Ahead
can be obtained through (4).

Ahead =
f (tcross)

[ f (tcross)− f (tcross − ϕ)]
(4)

Add a virtual CPG signal in the CPG network to calculate the head navigation angle,
as shown in Figure 4. According to (3), the correction signal is yout of the head joint, the
head in the head navigation motion is calculated by the output of the first CPG (yout, 1) and
the second CPG (yout, 2). The final calculation model is:

yout,head(t) = Ahead[yout,1(t)− yout,2(t)]
yout,1(tcross) = yout,virtual(tcross)
yout,1(tcross) = yout,head(tcross)

Ahead =
yout,1(tcross)

[yout,1(tcross)−yout,2(tcross)]

(5)
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Through the above methods, the ideal direction of the head can be obtained indirectly,
and the head can be stabilized when wheeled snake robot is in a serpentine gait. However,
in the actual application process, due to the lack of sideslip constraints [22], the planar
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movement of non-wheeled snake robots cannot perform serpentine gaits [23]. The direction
of movement is parallel to the ground, which is the horizontal direction.

−−−−→
snake //

→
H (6)

Among them,
−−−→
snake represents the movement direction of snake robot, and

→
H is the

direction of the horizontal plane. The head pose of snake robot is shown in Figure 5. With
the help of IMU inertial sensor, it is relatively easy to obtain the real-time direction and
horizontal offset angle of the head joint, namely

θ(pitch) = imu.pitch (7)

and head stabilization can be facilitated with the aid of measurement information.
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Figure 5. Schematic diagram of snake robot head pose.

In Figure 6, 1 represents the connecting rod where the head module is located, 2
and 3 represent the second and third links of the robot, respectively and h represents the
horizontal direction. When the head module deviates from the horizontal direction, the
inertial sensor IMU obtains the vertical offset angle θ of the head joint and performs real-
time compensation through the neck joint angle to restore the head joint to the horizontal
direction.

θ(1) = kp(0− θ(pitch)) + kd(0−
.
θ(pitch)) (8)

where kp and kd are PD control parameters [24]. Through the above control method, the
stable control of snake head is realized. Since IMU can measure the direction of the head
module in real time, eliminating the error obtained from the calculation of the neck joint
angle, the accuracy of the vertical offset angle of the head obtained in real time is higher,
and the head will be more stable.
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4. Head Stabilization Simulation

In this paper, we use ROS GAZEBO to simulate the head stabilization of the snake
robot. Figure 7 shows the simulation model established in gazebo. The simulation model
basically restores the real snake robot, equipped with a 360◦ laser radar, IMU inertial sensor
and other equipment.
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Figure 7. Snake robot simulation model.

In this article, we made improvements to the CPG model in Figure 4, as shown in
Figure 8. We divided the robot into two parts: the head and the torso. The head of the snake
robot consisted of the head module and the first joint of the robot body; the torso of the
snake robot consisted of the remaining 15 joints and the battery module. In the improved
CPG model, the data obtained from the IMU for the head joint are used for feedback, which
is controlled through the head controller.
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In Gazebo, given the inchworm locomotion gait of a snake robot [25,26], the inchworm
locomotion gait equation is:

θ =

{
A cos(ωtt + ωnn), n = odd
0, n = even

(9)

On the basis of the inchworm locomotion gait, the joint angle of the neck joint of the snake
robot is compensated by Formula (8). The simulation process is shown in Figures 9 and 10.
Figure 9 represents the simulation without the stable algorithm, while Figure 10 represents
the simulation with the stable algorithm. The simulation results are shown in Figure 11.

In Figure 11, α represents the vertical component of the head module of the snake
robot, t represents time, the red curve represents the vertical component of the head module
without a stabilization algorithm and the blue curve represents the vertical direction of the
head module when the stabilization algorithm is the added portion. It can be seen that the
stabilization effect of the stabilization algorithm is relatively good.
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5. Head Stabilization Experiment

It can be seen from the simulation experiment that the stabilization algorithm can
effectively help the head of the snake robot to stabilize. On this basis, the head stabilization
experiment of the real snake robot is carried out to verify the head stabilization effect.

This experiment is carried out with a 16-DOF snake robot [21] with a head controller
and a battery module. The ground uses rubber as the playground for the snake robot to in-
crease static friction to ensure the operating efficiency of the snake robot. The experimental
scene is shown in Figure 12.
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Figure 12. Experimental Scene.

The experiment uses the motion capture system VICON to verify the head stabilization
control. The head posture change of the snake robot is tracked through the pose of VICON’s
marker point coordinate system in the VICON coordinate system to verify the effect
of head stabilization control. The experiment mainly involves the VICON coordinate
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system {Ov:xv,yv,zv}, the head coordinate system {Oh:xh,yh,zhsss} and the marker coordinate
system {Om:xm,ym,zm}. The following relationship is observed between the attitudes of the
coordinate systems:

Rv
h = Rv

mRm
h (10)

Among them, Rv
h, Rv

m and Rm
h , respectively, represent the attitude rotation matrix of

the head coordinate system relative to the VICON coordinate system, the marker coordinate
system relative to the VICON coordinate system and the head coordinate system relative
to the marker coordinate system. To simplify the calculation, the head coordinate system
coincides with the marker point coordinate system during the experiment, as shown
in Figure 13.
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Based on the robot’s inchworm locomotion gait, experiments were carried out on
the movement of the snake robot with and without the stabilization algorithm. The
experimental procedure is shown in Figures 14 and 15 and the experimental results are
shown in Figure 16.
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(c) phase is π; (d) phase is 3 π/2.
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From Figures 14 and 15, it can be seen that when the stable algorithm is not applied,
the swing amplitude of the robot’s head is larger, while under the stable algorithm, the
swing amplitude of the robot’s head is significantly reduced.

Through experimental data, it can be seen that the compensation algorithm can
effectively help the head controller of the snake robot to stabilize, thereby helping the laser
radar to work stably.

6. Discussion

The simulation and experimental data are analyzed in the following.
Figure 17 is the comparison of the head pitch angle with and without the stable

algorithm in the simulation and experimental environments. By calculating the peaks and
troughs of the curve, the average value of the peaks without the stable algorithm under
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the simulation is shown to be 6.74◦, and the average value of the troughs is −7.98◦. The
average value of the peaks with the stable algorithm under the simulation is 2.86◦, and
the average value of the troughs is −0.30◦. By calculation, the reduction ratio of the head
stabilization amplitude in the simulation environment is shown to be 21.47%. The average
value of the peaks without the stable algorithm under the experiment is 6.13◦, the average
value of the troughs is −1.57◦, the average value of the peaks with the stable algorithm
under the experiment is 1.77◦, and the average value of the troughs is 0.08◦. By calculation,
the reduction ratio of the head stabilization amplitude in the experimental environment is
shown to be 22.08%.
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without stabilization algorithm under experiment.

In Figure 17a, the Root Mean Square Error (RMSE) of the simulation without the
stability algorithm is 5.10, and the RMSE of the simulation with the stability algorithm
is 1.57; the RMSE between the simulations with and without the stable algorithm is 4.42.
In Figure 17b, the RMSE of the experiment without the stability algorithm is 3.23, and
the RMSE of the experiment with the stability algorithm is 0.94; the RMSE between the
simulations with and without the stable algorithm is 2.68.

According to the calculation results, the head stabilization efficiency of the snake robot
in this scheme is high, which can effectively restrain the head fluctuation and ensure the
stabilization of its head.

As can be seen from Figure 18, the stabilized joint angle under the simulation is
approximately 0◦ to 3◦, and the stabilized joint angle under the experiment is approximately
0◦ to 2◦; this is because the head of the snake robot is affected by its own gravity. When the
head of the snake robot bobs upwards, due to the influence of gravity and the compensation
algorithm, the upward swing of the head is very small, almost zero. Therefore, in the
simulation and the experiment with the stable algorithm, the joint angle is basically above
0◦. In Figure 18a, the RMSE between the simulations and experiments without the stable
algorithm is 13.57, while the RMSE between the simulations and experiments with the
stable algorithm is 2.07 as shown in Figure 18b. It can be seen that after adding the stability
algorithm, the simulation and experimental data are significantly closer, both converging
towards 0◦.

In Figure 18, the pitch angle of the head module under the experiment is smaller than
that of the simulation. This is due to the limitation of the material of the head module of
the snake robot. When the snake robot performs an inchworm gait movement, the head
module is affected by other joints to swing up and down, and due to the low rigidity of the
head module material, it is difficult to achieve the predetermined joint angle, so the overall
pitch angle of the head module under the experiment is smaller than the simulation data,
especially when the head of the snake robot bobs upwards. Since the snake is affected by
the gravity of its head and its own material, it is difficult for the head of the snake robot to
bob upwards, so the head direction angle under the experiment is basically above 0◦.
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7. Conclusions

Aimed at solving the problem that the traditional head stabilization method for non-
wheeled snake robots has large errors when the snake robot moves in the plane, a method
based on inertial sensor feedback compensation is proposed for the non-wheeled snake
robot with an inchworm locomotion gait. The stabilization control of the head controller
is carried out, and it is verified by a simulation and an experiment. In the simulation, the
pitch angle amplitude of the head of the snake robot under the stabilization algorithm is
reduced by a ratio of 21.47%, and the ratio in the experiment is 22.08%. The results show
that this method can effectively improve the head stabilization of the non-wheeled snake
robot with an inchworm locomotion gait.
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