
Citation: Zhao, B.; Jiang, H.; Sun, J.;

Zhang, D. Research on the

Hydrodynamic Performance of a

Pentamaran in Calm Water and

Regular Waves. Appl. Sci. 2023, 13,

4461. https://doi.org/10.3390/

app13074461

Academic Editor: Francesca

Scargiali

Received: 3 March 2023

Revised: 20 March 2023

Accepted: 28 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on the Hydrodynamic Performance of a Pentamaran in
Calm Water and Regular Waves
Bowen Zhao 1,2,3 , Haoyu Jiang 1,*, Jiyuan Sun 2 and Dapeng Zhang 3

1 School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2 Ocean College, Zhejiang University, Zhoushan 316021, China
3 Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
* Correspondence: jianghy@gdou.edu.cn

Abstract: As a typical multi-hull ship, the pentamaran has a wider deck, higher damage stability,
and low-speed seaworthiness in harsh sea conditions compared with other multi-hull types such as
the catamaran and trimaran, having more potential for becoming a new type of freight merchant
ship in line with the development trend of the marine economy. In this paper, on the basis of the
finite volume method, the numerical simulations and detailed comparative analysis of the monohull
and pentamaran in viscous flow were carried out. The resistance prediction in calm water and
regular waves and the changes of each resistance component of the pentamaran were explored. The
dynamic fluid body interaction (DFBI) module was used for the calculations in calm water, and the
overset mesh was used for the calculations in regular waves. The results show that in calm water, the
adverse effect of the side hulls on the resistance was mainly reflected in the low-speed range. In the
high-speed range, the influence of the side hulls on the resistance can be ignored. At high speeds,
the main hull and side hulls of the pentamaran will produce favorable wave-making interference,
thereby improving the wave-making performance of the pentamaran. In regular waves, although
the added resistance of the pentamaran increased most of the time, its amplitude was smaller than
that of the monohull under the same wave condition. This work provides a technical basis for the
research on the design and hydrodynamic performance of the pentamaran.

Keywords: pentamaran; monohull; RANS; regular waves; hydrodynamic performance

1. Introduction

Global climate change may be one of the most challenging environmental problems
facing society [1,2]. Freight merchant ships and containerships are among the largest
maritime emitters of CO2. The scarcity of fossil fuels and rising concern about global
warming have prompted international organizations to improve vessel efficiency and push
the development of ship energy technologies such as wing systems, propeller boss cap fins,
reaction rudders, and high-performance ships [3,4].

The pentamaran is a new type of high-performance ship developed at the end of the
20th century. Its structure consists of a slender main hull and four side hulls distributed
on both sides of the main hull. Due to its advantages of low high-speed resistance, good
stability, and high seaworthiness, the pentamaran has good application prospects in both
commercial and military ships [5]. It is believed that a pentamaran can carry more cargo
compared to traditional commercial containerships, thereby increasing cargo volume and
reducing polluting gas emissions. At the same time, the speed range of the pentamaran
varies widely and is also suitable for speed variations from low to high. This also has a
positive effect on environmental protection [6].

Since it was proposed, many scholars have studied the hydrodynamic performance
of the pentamaran. Nigel et al. [7] and Duson [8,9] completed the preliminary design of a
transatlantic pentamaran container ship with a loading weight of up to 8000 tons and a
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service speed of 40 knots, carrying out model tests and optimization of the pentamaran.
The pentamaran designed by Nigel et al. is shown in Figure 1. This was a relatively early
pentamaran design proposal. Most subsequent studies were conducted on the basis of this
design. Wu and Moan [10] conducted nonlinear time-domain simulations of ship motion
and load effects on a same pentamaran container ship under different sea conditions.
The results showed that when the ship’s hull was treated as a rigid body, the predicted
wave-induced design vertical sagging and hogging bending moments amidships were
comparable to the rule values. The structural dynamic effects, mainly whipping, would
increase the design values by 30% to 50% in the numerical prediction. He et al. [11]
explored the resistance characteristics of the pentamaran using experiments and studied
the influence of parameters of rear side hulls including the shape line, position, and
displacement on the resistance characteristics. The results showed that the rear side
hulls should use a conventional molded line. Duan [12,13] and Chen [14] studied the
hydrodynamic performance of the pentamaran in calm water. Through the research, it was
shown that the computational fluid dynamics (CFD) method could be used to calculate
and simulate the hydrodynamic characteristics of the multi-hull ship with free surface.
Combined with the classical linearized free surface conditions, Tarafder [15] proposed a
boundary element method based on the potential flow theory to predict the hydrodynamic
performance of a pentamaran in unbounded water at a constant speed. He came to the
conclusion that when Froude number Fn was greater than 0.8, the wave-making interference
between the main hull and side hulls was small, which could significantly reduce the
wave-making resistance. Waskito et al. [16–18] studied the resistance characteristics of the
pentamaran with variable side hull spacing and position using the towing tests, finding
that the influence of the side body position on the resistance was closely related to Fn. In
recent years, Yanuar and his team have been active in the research of the pentamaran,
covering the overall arrangement of side hulls [19], the installation layout of symmetrical
and asymmetrical side bodies [20,21], drag reduction of X-shaped pentamarans [22], and
the optimization of main and side hulls profiles [23,24]. Cui et al. [25] investigated the
resistance performance of a pentamaran with different outrigger inclination angles. The
results showed that the influence of the front outrigger inclination angle change on the
resistance of the pentamaran had a certain rule, and the resistance of the pentamaran could
be reduced by adjusting the front outrigger inclination angle.
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Figure 1. The concept design of a pentamaran [7].

Most of the above research was carried out via experiments, and some of them were
carried out through numerical simulations. The biggest advantage of experimental research
is to provide reliable data for subsequent research to replicate. Ship model tests are
commonly used to analyze the hydrodynamic performance of ships. The accuracy of ship
model tests has also been widely recognized by the engineering community. However,
the disadvantages of ship model tests are also obvious: time-consuming nature and high
economic costs. The data that can be measured each time are very limited, and during the
test process, uncertain factors such as scale effects and test equipment accuracy can bring
many test errors that need to be corrected. CFD is a numerical simulation method that
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considers the effect of fluid viscosity [26–29]. With the continuous improvement of CFD, the
application of CFD in ship hydrodynamics is becoming increasingly more common [30–37].
Akbarzadeh et al. [38], for example, used the finite volume method to numerically simulate
the flow field around a Series60 ship in the range of medium and low speeds. Yang et al. [39]
studied the additional resistance of three different bows of KVLCC2 in short waves using
CFD. Cheng et al. [40] combined the optimization algorithm and CFD to optimize the bow
of a 1300TEU container ship and realized the optimal design of drag reduction for this ship
type. Ali et al. [41] used the open source CFD software OpenFOAM to numerically predict
the hydrostatic resistance of two fishing boats. Cheol-Min Lee et al. [42] used a 66KDWT
bulk carrier as the parent ship and calculated the resistance characteristics of the pointed
bow and the blunt bow in calm water and waves using CFD. Larsson et al. [43] predicted
the wave induced force of irregular waves on slender ships on the basis of CFD and found
that the CFD results were in good agreement with the experimental fluid dynamics (EFD)
results through comparison. Carrica et al. [44] used the CFD method to directly simulate
the zigzag maneuver of KCS in shallow water, finding that they can better predict the
parameters such as force and torque. According to the literature, on the basis of viscous
flow theory, the CFD method has the advantages of short cycle and low cost, which cannot
be replaced by ship model experiments. The simulation results can also achieve high
calculation accuracy.

This paper aims at investigating the hydrodynamic performance of the pentamaran in
calm water and regular waves. According to the literature, the hydrodynamic performance
of the pentamaran has been discussed and verified. However, most of the research on the
performance of the pentamaran was conducted in calm water. There are few reports on
hydrodynamic performance of the pentamaran in waves. In most cases, ships do not sail
in calm water, but in waves. Therefore, the study of the hydrodynamic performance of a
pentamaran in waves is helpful for its hydrodynamic design, thereby playing a positive role
in the shipping industry and in environmental protection. On the basis of the CFD method,
the dynamic fluid body interaction module and the overset mesh were used to simulate the
motion response of the pentamaran. The simulation results were also compared with those
of the monohull in order to explore the changes in the resistance components and reveal
the drag reduction mechanism of the pentamaran during high-speed sailing.

2. Geometry and Simulation Conditions
2.1. Geometry of the Model

The pentamaran used in this paper is based on a shuttle SV-O monohull with a simple
modification of the shape line to accommodate the installation of the front and rear side
hulls of the pentamaran. An X-shaped symmetrical shape was selected, and the Wigley
hull was used as the front and rear side hulls [11]. The main particulars and the geometry
of the full-scale monohull are shown in Table 1 and Figure 2, respectively.

Table 1. Main particulars of the monohull.

Particulars Symbols/Unit Value

Overall length LOA/m 22.022
Length at the water line Lwl/m 21.484

Breadth Bwl/m 3.742
Molded depth D/m 1.927

Draft d/m 1.000
Displacement ∇/m3 26.877

Wetter area S/m2 72.250
Waterline coefficient Cw 0.687

Block coefficient Cb 0.342
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Figure 2. The geometry of the monohull.

The main hull of the pentamaran is the same as the monohull. The design of the front
and rear hulls usually meets three conditions: first, the length of the rear hull generally
does not exceed 1/3 of the waterline length of the main hull; second, the displacement
of the rear hull is controlled within 15% of the total displacement; third, the front hull is
usually higher in the horizontal position than the rear hull and can be lifted out of the
water surface when sailing at high speed. On the basis of the above conditions, this paper
designed a side hull shape line with a thinner front than the rear (shown in Figure 3). The
main particulars of the front hull and the rear hull are shown in Tables 2 and 3, respectively.
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Figure 3. The geometry of the pentamaran.

Table 2. Main particulars of the front hull.

Particulars Symbols/Unit Value

Overall length L1/m 4.899
Breadth B1/m 0.686

Draft d1/m 0.543
Displacement ∇1/m3 1.325

Wetter area S1/m2 7.420

Table 3. Main particulars of the rear hull.

Particulars Symbols/Unit Value

Overall length L1/m 5.270
Breadth B1/m 0.672

Draft d1/m 0.965
Displacement ∇1/m3 2.015

Wetter area S1/m2 11.07

2.2. Simulation Conditions

In order to comprehensively analyze and compare the hydrodynamic performance of
the pentamaran and the monohull, there are five speeds in calm water, two low speeds, one
medium speed, and two high speeds. The choice of speeds is based on the Froude number
Fn [25]. When a ship is sailing, motions such as pitch, heave, roll, sway, and yaw occur. It is
generally believed that the pitch and heave motions are the main reasons for the increase
in ship resistance. Therefore, in order to simplify the calculation, only the two degrees of
freedom, pitch and heave, are released. The simulation conditions in calm water are shown
in Table 4.
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Table 4. Simulation conditions in calm water.

Case Speed/kn Speed/(m/s) Fn Degree of Freedom

1 5 2.572 0.175 Pitch and heave
2 10 5.144 0.351 Pitch and heave
3 15 7.716 0.527 Pitch and heave
4 20 10.288 0.703 Pitch and heave
5 25 12.860 0.879 Pitch and heave

The inlet flow velocity is set according to the Froude number Fn based on hull length,
where the Fn is defined as follows:

Fn =
V√
gL

(1)

In the wave simulation, the speed is fixed at Fn = 0.527 and two head wave environ-
ments are selected with different wave periods. The simulation conditions in waves are
shown in Table 5. At the initial moment of calculation, the hull remains upright, and the
degree of freedom of the hull is released after 0.5 s. The calculation time is 20 s.

Table 5. Simulation conditions in calm water.

Case Speed/kn Wave Height/m Wave Period/s Degree of Freedom

6 10.288 1 π Pitch and heave
7 10.288 1 π/2 Pitch and heave

3. Mathematical Formulation
3.1. Governing Equation

The RANS equation was used for the numerical simulations. For the three-dimensional
incompressible flows, the continuity and momentum equations are written as follows:

∂ (ρui)

∂x
= 0 (2)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρ fi −
∂p
∂xi

+
∂

∂xj
(µ

∂ui
∂xj
− ρu′iu

′
i) (3)

where p is the mean pressure, and ρ and µ define the density and dynamic viscosity of fluid,
respectively. ui is the averaged velocity vector and u′iu

′
i denotes the Reynolds stresses.

The CFD simulations were carried out in the commercial software STAR-CCM+. The
finite volume method (FVM) was used to discretize the RANS equations. The Realizable k-ε
model was applied as the turbulence model. The convective terms were discretized using a
second-order upwind scheme, the diffusion terms were discretized by a central differences
scheme, and the temporal terms were discretized by adopting a second-order backward
Euler scheme. The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algo-
rithm was applied to deal with pressure–velocity coupling. The volume of fluid (VOF)
method was used to capture the evolution of free surface for the two-phase flow. The all-Y+
treatment was employed for near wall modeling, which applies wall function for coarse
meshes and resolves viscous sub-layer for fine meshes. The dynamic fluid body interaction
(DFBI) module combined with overset mesh was applied to consider ship motions in pitch
and heave degree of freedom.

3.2. Overset Mesh

Overset mesh is composed of a series of finite mesh volume grids, which overlap
each other to form a single computational domain. In overset mesh, grid cells are grouped
into active, inactive, or receptor grid cells. In the active grid element, the discrete control
equations are solved. In inactive grid cells, no equations are solved, but if the overset mesh
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area is moving, these grid cells can become active. The main advantage of this method is
that it can deal with complex geometric structures and relative motion of objects in dynamic
simulation. Generally, the computational domain consists of a background grid and one
or more small overlapping grid regions [45,46]. The overset mesh is an efficient form of
dealing with complex shape mesh layouts and is widely used due to its convenience of
mesh generation. It is very convenient to use dynamic overset mesh for complex structures
with relative motion. The relative motion between sub-domains does not require mesh
deformation, nor does it need to regenerate the mesh. It is only necessary to define its
motion law in the sub-domains. The schematic diagram of the overset mesh is shown in
Figure 4, where C represents the node center of overset area and N represents the node
center of the surrounding mesh used for data exchange.
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3.3. Wave-Generating Method

For wave generation, a fifth-order wave was modeled with a fifth-order approximation
to the Stokes theory of waves with the given wave height and wave period. The relevant
equations of the Stokes fifth-order wave are as follows:

Velocity potential function:

Φ =
c
k∑5

n=1 λncosh nk(z + d)sin n(kx−ωt) (4)

Wave surface equation:

η =
1
k ∑5

n=1 λncos n(kx−ωt) (5)

The velocity of the water mass point in the horizontal and vertical directions:

ux =
∂Φ

∂x
= c∑5

n=1 nλncosh nk(z + d)cos n(kx−ωt) (6)

uz =
∂Φ

∂z
= c∑5

n=1 nλnsinhnk(z + d)sin n(kx−ωt) (7)

The acceleration of the water mass point in the horizontal and vertical directions:

ax =
∂ux

∂t
= ωc∑5

n=1 n2λncosh nk(z + d)cos n(kx−ωt) (8)

az =
∂uz

∂t
= −ωc∑5

n=1 n2λnsinhnk(z + d)sin n(kx−ωt) (9)

where c refers to the wave velocity, k refers to the wave number, ω refers to the angular
frequency, d refers to the water depth, and λ is a constant for each wave.
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To avoid the reflection from the exit boundary, a damping method was used for
the wave generation [47]. The expression of the momentum equation after damping
modification is defined as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= gx −
1
ρ

∂p
∂x

+ v
[

∂2u
∂x2 +

∂2u
∂y2

]
− µ(x)u (10)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= gy −
1
ρ

∂p
∂y

+ v
[

∂2v
∂x2 +

∂2v
∂y2

]
− µ(x)v (11)

where µ(x) is the damping coefficient varying with the x-position as follows:

µ(x) =
{

as(x− x0)/Ls x > x0
0 x ≤ x0

}
(12)

where x > x0 is defined as the damping region; Ls refers to the length of damping region;
and as refers to the wave-absorbing coefficient.

4. Numerical Modelling
4.1. Computational Domain and Boundary Conditions

Since the hull model is symmetrical with respect to the mid-longitudinal section, the
numerical modeling can be taken in half, with the advantage of saving computing resources
and time. For different simulations with calm water and regular waves, the ranges of the
background domain were set to be consistent in the y and z directions, and the domain
extended from −1.5 < y/L < 0, −1.5 < z/L < 0.5. The size of the domain was different for
the two type cases in the x direction, in which −4 < x/L < 1 for the calm water and −3 <
x/L < 1 for the regular waves. The reduced distance for the regular waves aimed to reduce
the number of meshes and save computing resources.

The boundary conditions were set as follows: the velocity inlet boundary conditions
were applied on the front, top, and bottom of the background domain; the pressure outlet
boundary condition was applied on the end of the background domain; two sides were
set as the symmetry boundary condition; three surfaces of the overset domain were set as
the overset mesh boundary condition; and the surfaces of the hull were set as the non-slip
boundary condition. The computational domain and boundary conditions are shown in
Figure 5.
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4.2. Mesh Generation

Mesh is a very important aspect of numerical simulation and one of the most time-
consuming processes. The quality of the mesh directly affects the accuracy and efficiency
of CFD simulations. The fully structured overset mesh was applied in the present study,
which can be divided into two parts before the overset: background mesh and overset
mesh. The two parts were both generated as trimmed-type topology. For wave problems,
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the number of meshes of the free surface is the key factor for the accuracy of the numerical
simulation. In the mesh division of free surface, 10~20 layers of meshes in one wave height
and 30~50 layers of meshes in one wavelength are needed. The mesh size ratio of element
mesh in wave region in x, y, and z directions was 2:2:1. In order to ensure the accuracy of
the overset mesh in the interpolation calculation, the y+ value of wall grid was between 30
and 300. The background meshes were also encrypted in the region where the overset mesh
pitches and sinks, which occupied a large part of the number of meshes and increased the
calculation time. Figure 6 shows the mesh division in the wave condition.
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Figure 6. The background mesh and overset mesh of the pentamaran in the wave condition.

For the computations in calm water, only a certain degree of mesh refinement was
required in the Kelvin wave region behind the stern to capture the Kelvin wave system. For
the computations in waves, further refinement of the meshes near the free surface occurred
in order to better simulate the incoming regular waves. More than 50 cells per wave length
and 15 cells per wave height were used. Prism layers were applied on the hull surface,
making the y+ range from 100 to 300 according to the ITTC recommendation [48]. Figure 7
shows the horizontal section of the mesh in calm water and waves. The mesh size of the
monohull and pentamaran surface was 0.1 m. The mesh size of the free surface in the z
direction was 0.1 m. The total mesh number in calm water and waves is listed in Table 6.
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Table 6. Mesh number in calm water and waves.

Simulations Background Overset Total

Calm water 2,697,325 681,023 3,378,348
Regular waves 5,901,263 681,713 6,582,976

The time step size was 0.01 s, and the convective courant number was 1.25. At the
beginning of the calculation, the flow field was relatively rough, and a small time step was
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used to control the range of the courant number between 0.5 and 1. When the calculation
was relatively stable, the time step size and the courant number could be increased to save
the calculation time.

4.3. Validation of the Numerical Method

To evaluate the reliability of the numerical method, it is necessary to validate the
numerical model. One of the best ways to do this is to compare simulation data with
experimental data. However, there are no relevant test data applicable to the pentamaran or
monohull. Another method is to carry out numerical simulations of the standard hull model,
which can also prove the reliability of the numerical method. KCS is a modern container
ship designed by KRISO (Koera Research Institute of Ship and Ocean Engineering) in Korea
and was listed as one of the standard ship types for CFD assessment and verification in
the Gothenburg-2000 conference [43]. The KCS ship model has a large bulbous bow and a
complex tail surface, belonging to the hypertrophy ship category [49]. The main particulars
and the geometry of the full-scale monohull are shown in Figure 8 and Table 7, respectively.
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Figure 8. The geometry of the KCS model.

Table 7. Main particulars of the monohull.

Particulars Symbols/Unit Value

Scaling ratio λ 31.60
Length between perpendiculars Lpp/m 7.278

Breadth Bwl/m 1.01
Molded depth D/m 0.60

Draft d/m 0.341
Displacement ∇/m3 1.649

Wetter area S/m2 9.512
Waterline coefficient Cw 0.818

Block coefficient Cb 0.65

The total mesh number was 3,000,000. Figure 9 shows the section of the mesh and the
mesh at the bow and stern.
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For the computations in calm water, six conditions were selected in the range of low
and medium speeds. The validation objects were total resistance coefficient, heave, and
pitch. The total resistance coefficient was calculated as follows:

Ct =
Rt

0.5ρU2S
(13)

where Ct is the total resistance coefficient, Rt is the total resistance, ρ is the density of water,
U is the speed, and S is the wetted area of the hull. This is the same as Cp and Cf.
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Figure 10 shows the simulation results of the total resistance coefficient of KCS at
different speeds. The simulation results are in good agreement with the experimental data.
Among the six calculation conditions, the largest error 2.29% occurred at Fn = 0.108, which
was due to the difficulty of resistance convergence at low speed. When the speed was high,
the simulation results were in good agreement with the experimental values. From the
changing trend, the resistance coefficient first decreased with the increase in the speed, and
then increased rapidly after reaching the condition of Fn = 0.195.
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Figure 11 shows the comparison of the hull motions of KCS between the simulation
results and experimental data. The heave and pitch values were generally similar to the
experimental data. From the changing trend, the heave value increased with the increase
in the speeds, and the growth rate also increased. The pitch value first increased in the
direction of the negative value (stern inclination), reached the maximum value in the
negative direction at Fn = 0.26, and then changed in the direction of the positive value.
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The global view of the wave pattern of the KCS at Fn = 0.26 is shown in Figure 12.
Compared with the experimental result, the calculated waveform was in good agreement
with the experimental waveform in terms of wavelength and wave shape. The VOF method
used in numerical simulation can accurately capture Kelvin waves for large ships. It should
be noted that only the starboard side was measured and reflected on the port side for
plotting. It was observed that a wave existed inside a certain angle known as the Kelvin
angle from linear potential wave theory. The bow wave, having the maximum height on the
hull surface, gradually disappeared, followed by a trough and crest lines of divergent wave
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components with decreasing amplitude along the edge of the wave region. Transverse
wave components were seen inside the divergent wave patterns.
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For the computations in waves, with reference to the work of Zhang et al. [50], the
wave height a was 0.123 m, the wavelength L was 1.15 LPP, the speed Fn = 0.26, and the
wave model was the fifth-order Stokes wave. The validation objects were added resistance,
heave, and pitch. Since the motion and resistance of the hull in waves are periodic, for the
convenience of comparison, Fourier transform was performed on the motion and force
of the hull. The added resistance and motion of KCS in waves were compared with the
experimental data, as shown in Table 8.

Table 8. Comparison of added resistance and motion of KCS in waves with experimental data.

Item CFD Experiment Error

Caw 10.9 10.0 9.00%
Heave/mm 49.7 55.4 −10.28%
Pitch/deg 2.64 2.38 10.92%

Caw =
−

Raw−Rcalm
(ρga2 B)/Lpp

; Error = (CFD − EXP)/EXP.

It can be seen from Table 8 that the simulation results of resistance in waves was
relatively close to the experimental data, but the accuracy was lower than that of the
calm water condition, especially the error of ship motion, which was slightly larger. The
reason may have been that there was strong mutual interference between the ship model
wave-making and incoming waves in waves, and the nonlinearity in the simulation was
greatly increased, with the amplitude of the motion in the waves being high-order, so the
calculation accuracy was greatly challenged. However, on the whole, the simulations were
able to reflect the motion characteristics and force of the ship.

Figure 13 shows the wave pattern at typical time in regular waves. The wave pattern
in regular waves was well captured. When the KCS hull sailed in waves, in addition to the
ship traveling waves related to the sailing speed and water depth, another wave related
to the hull motion induced by the incident waves was also generated. These two kinds
of waves will consume the energy of the hull and superimpose each other, so the energy
consumed by the ship when sailing in waves will be higher than that in still water, and the
additional energy loss is the so-called added resistance.
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In general, the simulation results of KCS were in good agreement with the experimen-
tal results. Through the numerical simulation of KCS in calm water and regular waves, the
reliability of the numerical method in this paper was verified.

5. Results and Discussions
5.1. Hydrodynamic Performance in Calm Water

In this section, the hydrodynamic performance of the pentamaran in calm water is
discussed and compared with the monohull, including the resistance performance, degrees
of freedom, the wave pattern, and the streamline distribution.

5.1.1. Resistance Performance

According to the direction of force, the total resistance can be divided into pressure
resistance Rp and friction resistance Rf. Pressure resistance Rp is the force acting on the hull
surface vertically caused by wave making and vortex. The calculation results of Rp and Cp
under five cases are shown in Table 9 and Figure 14.

Table 9. Calculation results of pressure resistance.

Case
Rp/N Cp × 103

Monohull Pentamaran Monohull Pentamaran

1 773.8 1511.4 3.238 4.183
2 2519.0 4633.0 2.635 3.206
3 5920.2 8892.8 2.752 2.735
4 10,859.6 14,553.4 2.840 2.517
5 16,319.4 21,816.0 2.731 2.415

It can be known from Table 9 and Figure 14 that
(1) The change trends of the Rp curve of the monohull and the pentamaran were

basically the same. The difference of Rp increased with the increase in the speed. Under
case 1 and case 2, the pressure resistance of the pentamaran was about twice that of the
monohull. With the increase in the speed, the increment of the pressure resistance of the
pentamaran relative to the monohull was about 1/3 of that of the monohull. The Cp of
the monohull decreased significantly, while the Cp of the pentamaran was always in a
downward state. Both had the same value at the speed of 15 kn.
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(2) The Cp is a dimensionless dimension of Rp, which mainly depends on the pressure
difference between the bow and stern, and it can reflect the wave-making ability of the
hull to a certain extent. In the medium-speed range, the Cp of the pentamaran was larger
than that of the monohull, indicating that the wave-making ability of the pentamaran was
weaker than that of the monohull. It was preliminarily inferred that the waves arising from
the side hulls and the main hull were superimposed on each other, resulting in unfavorable
interference. In the high-speed range, the Cp of the pentamaran was slightly lower than
that of the monohull, indicating that the waves arising from the side hulls and the main
hull at this time had favorable interference.

In conclusion, the calculation results show that whether it was a monohull or a
pentamaran, the speed change had a significant impact on the Cp. The pentamaran may
have better wave-making performance than the monohull in high-speed range.

The friction resistance Rf is the tangential force of the water point along the hull
surface, which is mainly affected by the wetted surface area. The calculated values of Rf
and Cf under five cases are shown in Table 10 and Figure 15.

Table 10. Calculation results of pressure resistance.

Case
Rf/N Cf × 103

Monohull Pentamaran Monohull Pentamaran

1 539.0 840.0 2.256 2.325
2 1875.2 3260.6 1.961 2.256
3 3950.8 6859.8 1.837 2.109
4 6459.0 11,848.6 1.689 2.049
5 9659.6 18,036.8 1.617 1.997
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(1) The Rf of the pentamaran was always about twice that of the monohull. There was
little difference between the two in the low-speed range. The difference was obvious in the
high-speed range.

(2) The Cf of the pentamaran was always greater than that of the monohull. It is
worth noting that the Cf curve of the monohull showed a significant downward curve
in the entire speed range, while the downward trend of the pentamaran was relatively
slow. Considering that the hull model used in this paper was a high-speed shuttle hull, the
reason for this phenomenon was preliminarily inferred as follows: due to the addition of
two front hulls, the pentamaran had a smaller tilting motion than the monohull at medium
and high speeds, and the immersion area of the pentamaran at high speed was larger than
that of the monohull.

In conclusion, the calculation results show that the side hulls had an adverse effect on
the friction resistance of the pentamaran.

Total resistance Rt is the sum of Rp and Rf. The calculated values of Rt and Ct under
five cases are shown in Table 11 and Figure 16.

Table 11. Calculation results of pressure resistance.

Case
Rf/N Cf × 103

Monohull Pentamaran Monohull Pentamaran

1 1312.8 2351.4 5.349 6.508
2 4394.2 7893.6 4.596 5.461
3 9871.0 15,752.6 4.589 4.844
4 17,318.6 26,402.0 4.529 4.567
5 25,979.0 39,852.8 4.348 4.412
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5.1.2. Degrees of Freedom

The calculated heave and pitch values of the monohull and pentamaran under five
cases are shown in Figure 17.

It can be known from Figure 17 that
(1) The variation trend of the heave values of the two ship types was the same, which

increased with the increase in the speeds. The difference was that the heave values of the
monohull were increasing from a positive value, while that of the pentamaran were increas-
ing from a negative value, indicating that the pentamaran will sink slightly in the low-speed
range. The heave values of the monohull were always greater than that of the pentamaran,
indicating that the wetted area was smaller than that of the pentamaran, resulting in the
friction resistance of the monohull being smaller than that of the pentamaran.

(2) Both ship types were unable to produce a large pitch angle at low speed, and the
difference between the two was not large. With the increase in the speeds, the stern of the
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pentamaran was smaller than that of the monohull, and the difference increased with the
increase in the speeds.
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The results of heave and pitch further proved the above inference on the friction
resistance: although the motion of the pentamaran was gentler than that of the monohull,
it would also increase the friction resistance of the pentamaran.

5.1.3. Wave Pattern

Figure 18 shows the wave patterns of monohull and pentamaran in calm water. It can
be known from Figure 18 that

(1) At a low speed of 5 kn, there were two obvious Kelvin wave patterns at the bow
and stern of the monohull, and there was almost no wave interference in the middle section
of the hull. The Kelvin wave generated by the side hulls of the pentamaran was fused and
superimposed with the bow and stern, forming a longer scattered wave. At the speed of
10 kn, the Kelvin wave pattern of the pentamaran was significantly larger than that of the
monohull. Wave peaks were generated between the front hulls and the main hull, and the
wave peaks generated by the head of the rear hulls and the main hull were superimposed,
which was unconducive to wave-making resistance. The wave trough at the stern of a
catamaran is larger than that of a monohull, and the range of wave peaks after the stern is
reduced.

(2) At medium and high speeds of 15 kn, 20 kn, and 25 kn, there was almost no wave
making in the inflow area in front of the bow of the two ship types, which was related
to the special bow shape of the monohull, and its bow was thin and pointed. There was
a cock-tail flow in the tail area, which was divided into two strands at the rear area, and
the cock-tail was formed into an arrow shape. Due to the installation of the side hulls, the
wave trough generated by the main hull at the position of the side hulls met the side hulls,
which would cancel each other out with the wave crest generated by the side hulls, thereby
causing the trough area to move backwards. In addition, the waves generated at the tail of
the rear side hulls and the waves generated at the tail of the main hull were coupled to each
other to form multiple wave valleys, which reduced the wave crest area behind the stern.

In conclusion, the wave patterns of the monohull and pentamaran in calm water show
that the waves between the side hulls and the main hull of the pentamaran superimposed
each other at low speeds, resulting in unfavorable interference and wave resistance. At
medium and high speeds, the range of the wave crest at the stern of the pentamaran was
reduced, and the range of the wave trough was increased. The wave-making of the rear
side hulls was able to offset part of the waves of the main hull. The impact of the front
hulls on the wave-making of the main hull was small. The influence of the rear hulls on the
wave-making was mainly reflected in the wave valley area.
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5.1.4. Streamline Distribution

Figure 19 shows the streamline distribution of the monohull and pentamaran in calm
water. Streamlines were rendered with a pressure function. It can be known from Figure 19
that the distribution of the head streamlines did not change much under different cases.
Because of the transom stern, the streamline was disordered when the speed was high.
When the streamline flowed through the transom stern, it shrunk inwards, resulting in a
turbulent vortex at the stern of the monohull under cases 2 and 4. The streamlines at the
stern of the pentamaran under the same cases were more regular, indicating that the rear
hulls had a rectification effect.

5.2. Hydrodynamic Performance in Regular Waves

In this section, the hydrodynamic performance of the pentamaran in regular waves is
discussed and compared with the monohull, including the resistance performance, ship
motion response, and the wave patterns.

5.2.1. Resistance Performance

For calculations in waves, the model remained positive floating at the initial time. The
degree of freedom of the hull was released after 0.5 s. The total physical time was 20 s.
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Figure 20 shows the time history curve of total resistance under case 6. The horizontal
axis represents the physical time, the vertical axis represents the total resistance, and the
dotted line represents the total resistance in calm water. It can be known from Figure 20
that

(1) When sailing in the regular head waves, the total resistance of the monohull and
pentamaran showed obvious periodic changes.

(2) When the wave period was π, the change trend of the total resistance of the
monohull ship was relatively intense, and the time history curve of the total resistance
was not a regular positive (cosine) chord curve, indicating that the total resistance of the
monohull was strongly nonlinear under such wave conditions. The change trend of the total
resistance of the pentamaran was slower than that of the monohull, and the time-history
curve of the total resistance was a relatively regular sine (cosine) wave, indicating that the
total resistance of the pentamaran was linear under such wave conditions.

(3) Compared with the resistance in calm water, the total resistance of the monohull
was smaller most of the time in an encounter cycle, while the pentamaran showed the
opposite trend. It was preliminarily speculated that due to the additional four side hulls,
the total weight of the pentamaran was heavier than that of the monohull, the hulls sunk in
the wave, the trim range in the wave was smaller, and the wetted area increased.

Figure 21 shows the time history curve of total resistance under case 7. The horizontal
axis represents the physical time, the vertical axis represents the total resistance, and the
dotted line represents the total resistance in calm water. It can be known from Figure 21
that when the wave period changed from π to π/2, the amplitude and frequency of the
total resistance curve of the monohull did not change significantly. The amplitude of the
total resistance of the pentamaran decreased from about 18,500 N to about 10,000 N. This
showed that as the wave period became shorter, the resistance increment of the pentamaran
became smaller in the wave.
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In conclusion, the calculation results show that the total resistance of the monohull
oscillated near the calm water resistance, while the total resistance of the pentamaran was
in an increasing state most of the time in an encounter cycle. The total resistance of the
pentamaran was more affected by the wave period (wavelength). As the wave period
became shorter, it developed in the direction that was conducive to drag reduction.

5.2.2. Ship Motion Response

Figures 22 and 23 show the heave motion of the monohull and pentamaran under cases
6 and 7. The horizontal axis represents the physical time, and the vertical axis represents
the heave amplitude. Negative heave amplitude means the hull sinks. It can be known
from Figures 22 and 23 that

(1) Under wave conditions, the heave amplitudes of the monohull and pentamaran
both showed periodic changes. The difference was that the heave of the monohull could
be positive or negative, while the heave of the pentamaran was always negative, which
indicates that the side hulls would sink the whole ship during wave navigation. It proves
the conclusion that the resistance of the pentamaran increases in most encounter cycles.

(2) When the wave period changed from π to π/2, the heave amplitude of the mono-
hull and pentahull decreased, which indicates that the shorter the wavelength, the smaller
the heave amplitude of the hull.

(3) No matter the wave period being π or π/2, the heave amplitude of the pentamaran
was always smaller than that of the monohull, which indicated that the navigation state of
the pentamaran in the waves was more stable than that of the monohull.
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Figure 22. The time history curve of heave amplitude under case 6: (a) monohull; (b) pentamaran.

Figures 24 and 25 show the pitch motion of the monohull and pentamaran under cases
6 and 7. The horizontal axis represents the physical time, and the vertical axis represents
the pitch angle. Negative pitch angle means the hull is tilted towards the stern. It can be
known from Figures 24 and 25 that

(1) Under the same wave period, the pitch motion amplitude of the pentamaran was
smaller than that of the monohull, the bow inclination of the two types of hulls was not
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much different, and the stern inclination of the pentamaran was slightly smaller than that
of the monohull.

(2) When the wave period changed from π to π/2, the stern inclination of both
monohull and pentamaran decreased, indicating that the shorter the wavelength, the
smaller the trim amplitude of the hull.
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In conclusion, the calculation results show that the motion response of the monohull
was more severe than that of the pentamaran in regular waves, and the pentamaran was
more stable in regular waves.
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5.2.3. Wave Pattern

From the above analysis, it can be seen that both the monohull and pentamaran had
a certain periodicity in wave navigation. Therefore, this paper selected two states of bow
encountering a wave crest and bow encountering a wave trough to show the situation of
the wave pattern. Figures 26 and 27 show the wave patterns in regular waves. It can be
known from Figures 26 and 27 that

(1) When the wave crest reached the bow, the wave breaking phenomenon was the
most obvious at this time, and the bow draft was relatively serious. When the wave trough
reached the bow, the bow draft increased slightly, and the whole free surface was relatively
relaxed.
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(2) Under long waves with a wave period of π, there was a large area of waves on the
deck of the pentamaran, and the resistance of the pentamaran showed relatively strong
nonlinearity. When the wave period changed from π to π/2, the wave area on the deck
decreased.

6. Conclusions

In this paper, the hydrodynamic performance of a monohull and a pentamaran was
numerically simulated in calm water and regular waves. The RANS equation was solved on
the basis of the finite volume method. The resistance prediction of the pentamaran in calm
water and regular waves was completed, and the changes of each resistance component
compared with monohull were explored. This paper draws the following conclusions:

(1) In calm water, the adverse effect of the side hulls on the resistance is mainly reflected
in the low-speed range. In the high-speed range, the influence of the side hulls on the
resistance can be ignored. At high speeds, the main hull and side hulls of the pentamaran
will produce favorable wave-making interference, thereby improving the wave-making
performance of the pentamaran.

(2) The side hulls have a great influence on the pressure resistance but have no obvious
influence on the friction resistance. The rear hulls can rectify the tail flow field.

(3) In regular waves, although the added resistance of the pentamaran is increasing
most of the time, its amplitude is smaller than that of the monohull under the same wave
condition. The shorter the wave period, the more obvious this conclusion.

(4) The amplitude of heave motion and pitch angle of the pentamaran in waves are less
than that of monohull, which shows that the pentamaran is more stable in wave navigation,
and its seakeeping performance is better than that of a monohull ship in the same scale.

(5) It is worth noting that the pentamaran is always in a state of sinking during
wave navigation. The phenomenon of rising waves on the deck frequently occurs, and
the area of rising waves is large. Therefore, in the design of the pentamaran, the main
dimensions, speed, water environment, and the wave phenomenon on the deck should be
comprehensively considered.
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