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Abstract: This study aimed to develop a deep neural network model for predicting the soil water content
and bulk density of soil based on features extracted from in situ soil surface images. Soil surface images
were acquired using a Canon EOS 100d camera. The camera was installed in the vertical direction above
the soil surface layer. To maintain uniform illumination conditions, a dark room and LED lighting were
utilized. Following the acquisition of soil surface images, soil samples were collected using a metal
cylinder to obtain measurements of soil water content and bulk density. Various features were extracted
from the images, including color, texture, and shape features, and used as inputs for both a multiple
regression analysis and a deep neural network model. The results show that the deep neural network
regression model can predict soil water content and bulk density with root mean squared error of
1.52% and 0.78 kN/m3. The deep neural network model outperformed the multiple regression analysis,
achieving a high accuracy for predicting both soil water content and bulk density. These findings suggest
that in situ soil surface images, combined with deep learning techniques, can provide a fast and reliable
method for predicting important soil properties.

Keywords: deep neural network; soil surface image; digital image processing; water content;
bulk density

1. Introduction

Climate change is having a significant impact on water resources worldwide, which
in turn is affecting the agricultural environment. In this context, identifying the character-
istics of soil in the field has become increasingly important to predict changes in global
water resources. The infiltration rate and evapotranspiration of the surface layer can vary
depending on the change in soil water content and bulk density. Since topsoil properties
tend to change greatly over time, it is important to rapidly identify topsoil properties in
terms of the global hydrologic cycle [1].

The need for soil characterization is further increasing due to the expansion of smart
farms, which require an autonomous management system for large-scale agricultural
land [2]. Nowadays, various soil property prediction systems have been established,
ranging from wide-scale global monitoring using remote sensing to the precise monitoring
of points using IoT sensors [3,4]. Additionally, precision agriculture, driven by smart
farms, requires the development of various sensors for more precise soil management [5].
Therefore, it is crucial to develop the rapid and precise identification of soil characteristics
for both large-scale factory farming and small-scale precision agriculture.

Soil property prediction methods can be broadly categorized into experiments, sensors,
and feeling tests. Experiments are the most reliable method, but are time consuming and
costly [6]. Sensors collectively refer to devices that can collect information, and there are
various sensors on the market, such as permittivity sensors for predicting soil moisture,
pressure gauges, and electrical resistivity tomography for ground investigations [7–9].
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Optical equipment, such as satellites and digital cameras, can also be classified as sensors
because they collect information about an object’s wavelength or color. Sensory tests may
appear somewhat irrational and unscientific, but they have been used for a long time and
are still valuable in predicting soil properties. In feeling tests, the texture, color, and scent
are used to identify soil properties. The Munsell chart is widely used for classifying forest
soil and can be regarded as an example of a color-based feeling test [10]. In particular, soil
texture can be predicted with a high level of accuracy through feeling tests [11–13]. Soil
water content and bulk density can also be roughly estimated through feeling tests, but
quantitative values can be difficult to obtain [14,15].

Digital image processing (DIP) is a technique used to extract useful information from
digital images. This can be regarded as an extension of the feeling test using vision, in that
information is obtained based on the distribution of color information present in a digital
image [16]. Unlike qualitative and empirical feeling tests, DIP can provide quantitative and
repeatable information [17,18]. From digital images of soil, various information such as
color, texture, and the distribution of soil particles and voids can be obtained [19,20].

Deep neural network (DNN) models are useful tools for analyzing complex relation-
ships between input and output variables. These models can extract important features
from large and complicated datasets, enabling them to understand the data on a higher
level [21,22]. DNN models are especially effective for analyzing datasets with nonlinear
relationships between input and output variables. Furthermore, DNN models can be
generalized to new data well, making them suitable for accurate predictions on previously
unseen samples. There have been various attempts at using various deep learning models
including DNN to predict soil properties. For instance, Islam et al. [23] employed a total
of 46 parameters in their model to predict crop selection and yield. Other studies have
shown that it is possible to predict soil texture from images by extracting relevant features,
as exemplified by Kumar et al. [24] and Zhao et al. [20]. Similarly, Wu et al. [25] used a
convolutional neural network to predict permeability based on images. These examples
illustrate the potential of DNN models in analyzing complex relationships between input
and output variables for a wide range of applications. Therefore, using a DNN regres-
sion model is appropriate for predicting soil water content and bulk density based on the
extracted various features from soil surface images.

The objectives of this study were to investigate the potential of a DNN regression
model using in situ soil surface images for predicting soil water content and bulk density. A
digital image acquisition device was fabricated to acquire in situ soil surface images under
various soil water content and bulk density conditions. Through digital image processing,
features that can express color, texture, and shape were extracted from soil surface images
and used as input parameters for DNN regression models. Multiple regression analysis
was performed to compare the performance with the DNN regression models.

2. Materials and Methods
2.1. Soil Sampling and Measurement of Water Content and Bulk Density

Table 1 presents a summary of the properties of in situ soil samples used in this study,
along with the measurement results of two target variables: water content and bulk density.
This study selected three different locations, denoted as A, B, and C, each with soils of
different textures: silt loam (SiL), sandy loam (SL), and loamy sand (LS), respectively.

Table 1. Soil water content and bulk density of in situ soil samples.

Sampling
Point

Texture Location
Number of

Images
Water Content (%) Bulk Density (kN/m3)

Max Mean Min Range Max Mean Min Range

A SiL 37◦16′09.7′′ N
126◦59′18.9′′ E 128 17.8 9.2 1.2 16.6 12.7 10.9 7.8 4.9

B SL 37◦16′15.6′′ N
126◦59′15.9′′ E 144 22.3 12.7 4.6 17.8 14.7 11.2 8.3 6.4

C LS 37◦27′28.5′′ N
126◦56′52.6′′ E 96 21.6 14.7 9.6 12.0 16.2 12.4 9.1 7.1
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To obtain data on the soil surface, 128, 144, and 96 images were taken at points A, B,
and C, respectively. Following the image capture, soil sampling was conducted using a
metal cylinder with a diameter of 50 mm and a height of 51 mm. To ensure comprehensive
coverage of the area of the soil surface image, four samples were collected at each location
in a 2× 2 arrangement using four metal cylinders. Therefore, 512, 576, and 384 soil samples
were collected at points A, B, and C, respectively. The WC and BD for each location were
computed by taking the average of four samples. Accordingly, there existed 128, 144, and
96 data for WC and BD at points A, B, and C, correspondingly, matching the number of
digital images. WC and BD were determined by Equations (1) and (2), respectively.

WC(%) =
Ww

Ws
× 100 =

W2 −W3

W3 −W1
× 100 (1)

BD
(

kN/m3
)
=

Ws

Vs
(2)

where Ww is the weight of water, Ws is the weight of dry soil, W1 is the weight of the container
(metal cylinder), W2 is the weight of the container with wet soil, W3 is the weight of the
container with dry soil and Vs is the volume of soil (same as the volume of the container). To
measure the weight of dry soil, the soil samples were completely dried at 110 ± 5 ◦C for 24 h
using a drying oven (Changshin Science C-DOD3, Seoul, Republic of Korea). WC ranged from
a low of 1.2% to a high of 22.3%, ranging from very dry soil to moist soil. BD also includes
loose to dense soils, from a minimum of 7.8 kN/m3 to a maximum of 16.2 kN/m3.

2.2. Acquisition of Soil Surface Images

Figure 1 shows a camera setup used for acquiring soil surface images in the field.
The Canon EOS 100d camera model was used with specific settings, including a 35 mm
focal length, 1/4 sec exposure time, 9.0 aperture, and ISO sensitivity 100. The camera
was mounted vertically using a frame and camera bracket, with a focusing distance of
240 mm. The size of the digital image was 5184 × 3456 pixels, representing an area of
93.3 mm × 62.2 mm. Proper lighting conditions are crucial when capturing in situ images.
Changes in lighting conditions can alter the color distribution of the soil surface images,
which was a critical aspect of this study. Therefore, the lighting was carefully selected after
evaluating natural light, camera lighting, and LED lighting, ultimately choosing LED lights
that provide even illumination. To ensure consistent lighting conditions, a box-shaped
darkroom was constructed to prevent external light interference. In addition, a remote
shutter release was used to prevent shaking of the camera during shooting.

Figure 1. Camera setting for in situ image acquisition: (a) camera and lighting setting; (b) darkroom
and remote shutter release.

2.3. Features in Soil Surface Image

In this study, we extracted various features from soil surface images for use in a DNN
model and multiple regression analysis. Soil color is an effective factor in predicting soil
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characteristics [26]. Digital images are composed of pixels, each representing a point with
color information. The most commonly used color system is RGB, which stands for red,
green, and blue, and represents the amount of each color in each pixel. However, since each
component of RGB is highly correlated with each other, it is difficult to intuitively infer
the color of an image by looking at RGB values only. Therefore, color systems composed
of features representing different characteristics have been proposed. One such system is
HSV, which stands for hue, saturation, and value. Hue refers to the dominant color, with
red at 0 degrees, green at 120 degrees, and blue at 240 degrees. Saturation means the purity
of color and value refers to the brightness of color. These three features, hue, saturation
and value, were extracted from color images.

Grayscale images represent the overall lightness and darkness in the images. To
represent the brightness of the grayscale image, the average value of the gray values of all
pixels was obtained and set as one of the features. Skewness and kurtosis were calculated
by means of a histogram of the grayscale image to reflect the distribution of gray values.
Skewness represents the direction and degree of skew in the gray value histogram, while
kurtosis represents the tailedness of the histogram.

The gray level co-occurrence matrix (GLCM) was used to extract texture features to
reflect the texture characteristics of soil surface images. The GLCM is a matrix that describes
the distribution of gray levels between neighboring pixels in an image. Five texture features
were extracted from the GLCM: contrast, dissimilarity, homogeneity, energy, correlation [27].
The Scikit image library in Python was used for the calculation of GMCM texture features.

Hu moments were extracted to reflect the shape of the soil surface. Hu moments are a
set of mathematical features used to describe the shape of an object [28]. Hu moments have
been widely used in image processing and computer vision applications, such as object
recognition, face recognition, fingerprint recognition, and medical image analysis. The
Open CV library for Python was used for the extraction of Hu moments with a log scale.
Seven Hu moments were extracted and denoted as H0 to H6.

2.4. Multiple Regression Analysis

Regression models are widely used to analyze the relationship between dependent
and independent variables. In order to compare the performance of a DNN model with a
traditional statistical model, multiple regression analysis was performed as a control group.
This analysis involved using a number of features extracted from soil surface images as
independent variables to estimate the WC and BD.

However, due to the high degree of correlation between features, multicollinearity can
become a problem. To address this, a correlation matrix between variables was initially
reviewed to identify factors with high correlation. The Pandas library in Python was used to
calculate the pairwise correlation coefficient of features. Additionally, the correlation matrix
was visualized via the Seaborn library in Python using the result of pairwise correlation
coefficient of features. Furthermore, the variance inflation factor (VIF) of the independent
variables was computed to check the multicollinearity problem [29].

VIFi = 1/
(

1− Ri
2
)

(3)

where i is the i-th independent variable on the remaining ones. The VIF is a measure of
the amount of multicollinearity in a set of predictors, and values greater than 10 indicate
significant multicollinearity [30]. The independent variable with the highest VIF was
sequentially eliminated from the analysis until the VIF of all variables was below 10. This
process helped to ensure that the final model was free from multicollinearity and that each
predictor made a unique contribution to the analysis.

Following the selection of the features, multiple regression analysis was conducted
using them as independent variables to estimate the WC and BD. For multiple regression
analysis and the calculation of VIF, Python’s Statmodels library was used. The resulting
model was compared with the DNN model using evaluation metrics.
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2.5. Deep Neural Network Regression Model

In order to develop a robust DNN regression model for predicting soil properties, the
study utilized Python programming language and the MLPRegressor library. The dataset
was split into training and test sets at a ratio of 80% and 20%, respectively. Furthermore,
the training set was divided into 5 for the k-fold cross validation. The performance of the
model is then averaged over the k iterations to provide a more robust estimate of model’s
accuracy [31,32]. The k-fold cross validation process can provide a more generalized model.

Table 2 summarizes the values of the hyperparameters of the DNN regression model
used in this study. The input variables used in the model consisted of 18 features extracted
from the soil surface image. To optimize the neural network architecture, the number
of hidden layers was determined to be 3, with 5, 4, and 3 nodes, respectively. This was
achieved through a trial-and-error process [33–35].

Table 2. Hyperparameters of the deep neural network regression model.

Parameter Value

Number of hidden layers 3
Number of neurons 5, 4, 3
Activation function Tanh

Optimizer Adam
Initial learning rate 0.001

Batch size 200
Epochs 10,000

To ensure the model’s accuracy, all variables were normalized using data scaling [36,37].
This involved transforming each variable to have a mean of 0 and a standard deviation of 1.
Overall, these steps were taken to improve the model’s performance and increase its ability
to accurately predict soil properties. When training the DNN regression model, MSE was
selected as the loss function. MSE is sensitive to large errors, enabling the model to learn in a
way that prioritizes reducing these errors [38]. By penalizing larger errors more heavily, MSE
encourages the model to minimize its overall error and make more accurate predictions.

2.6. Evaluation Metrics

The evaluation of the regression model is essential to determine how well the model
fits the data. There are several metrics that are used to evaluate the regression model. In
this study, we used the following evaluation metrics:

Mean absolute error (MAE)

MAE =
1
n ∑n

i=1

∣∣∣∣Xi −Yi

∣∣∣∣ (4)

Mean absolute percentage error (MAPE)

MAPE =
1
n ∑n

i=1

∣∣∣∣Yi − Xi
Yi

∣∣∣∣ (5)

Correlation coefficient (R) and coefficient of determination (R2)

R2 = 1−∑n
i=1 (Xi −Yi)

2/ ∑n
i=1 (Y−Yi)

2 (6)

Mean squared error (MSE) and root mean squared error (RMSE)

MSE =
1
n ∑n

i=1 (Xi −Yi)
2 (7)

RMSE =
√

MSE (8)
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where Xi is the predicted i-th value and Yi is the observed i-th value. n is the number
of observations. MAE is a measure used to determine the average absolute difference
between predicted and actual values. MAE is most effective when there are outliers in the
data that can significantly impact the overall performance. On the other hand, MAPE is a
metric that measures the percentage difference between predicted and actual values. This
is particularly useful when it is important to consider the magnitude of the errors. Another
useful metric is R, which quantifies the strength and direction of the linear relationship
between two variables. R2 is a metric that measures the proportion of the variance in the
dependent variable that can be explained by the independent variables. RMSE is a metric
that measures the average difference between predicted and actual values, and it places
greater emphasis on larger errors than smaller ones when evaluating model performance.
MAE and RMSE have the same unit of data. The unit of MAPE is percent. The best value
for MAE, MAPE, MSE and RMSE is zero. For R2, 1 means a perfect linear relationship.

3. Results
3.1. Features in Soil Images

Figure 2 shows samples of soil surface images acquired at sampling points A, B,
and C, along with texture, WC, and BD. Since the in situ soil surface image was taken,
obstacles such as roots were also photographed on the surface layer. Depending on the
texture of the soil, the color appears differently, and the color of the soil of the same texture
appears differently depending on the conditions of WC and BD. At low BD, a distribution
of agglomerated soil particles on the soil surface was observed. In soils with high BD,
compacted soil solids were distributed on the surface and some cracks were observed.
Roots that are naturally mixed with soil or cracks caused by compaction can be regarded as
obstacles in soil surface images. However, as they are common elements in actual natural
environments, we treated them as observation noise and included soil surface images
containing them.

Figure 2. Sample soil surface images acquired from sampling point A, B and C.

Table 3 summarizes the features extracted from soil surface images in this study. A
total of 18 features were extracted and used as input data for the regression model. These
features were used as independent variables for multiple regression analysis and input
variables for DNN regression models.
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Table 3. Extracted features from soil surface images for deep neural network and multiple
regression analysis.

Source Feature Min Mean Max Range

Color features

Color image
Hue 12 14.6 24.6 12.6
Sat 37.6 108.3 168.9 131.3

Value 57.1 126.9 183.7 126.7

Grayscale image
Gray 41.5 105.4 172 130.5

Skewness −1.19 −0.27 0.82 2.01
Kurtosis −0.64 0.7 5.89 6.53

Texture features Gray level
co-occurrence matrix

Contrast 201.4 1185.2 2666.2 2464.8
Dissimilarity 9.9 24.6 39.3 29.4
Homogeneity 0.028 0.059 0.158 0.13

Energy 0.007 0.012 0.027 0.019
Correlation 0.1 0.47 0.8 0.7

Shape features Hu moment

H0 0.4 0.54 0.65 0.26
H1 1.63 1.91 2.2 0.57
H2 3.33 4.97 8.36 5.03
H3 3.42 5.18 7.81 4.38
H4 −15 4.4 15.2 30.2
H5 −10.8 3.6 8.8 19.6
H6 −14.6 0.6 15.9 30.6

Figure 3 shows coefficient of correlation (R) between soil properties (WC, BD) and
image-based features. WC and BD exhibit different correlation patterns with the various
features. WC has a strong relationship (|R| > 0.75) with Value and Gray. Additionally,
WC has a moderate relationship (0.5 < |R| < 0.75) with Skewness, Contrast, Dissimilarity,
Homogeneity and Correlation. BD has a moderate relationship with Kurtosis. In terms of
comparing WC and BD, it can be seen that WC has a stronger relationship with image-based
features than BD.

Figure 3. Relationship between soil properties and features from soil surface images: (a) coefficient
of correlation between water content and features; (b) coefficient of correlation between bulk density
and features.

3.2. Prediction by Multiple Regression Analysis

Figure 4 shows the correlation matrix of 18 soil surface image features. A number
of features showed a very strong relationship, such as Value and Gray, Dissimilarity and
Contrast, and H0 and H1. Hue, Sat, Value, Gray, and Skewness, which are color features,
showed high correlation with H0 and H1 among shape features. Texture features showed
low correlation with other features and relatively high correlation between texture features.
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Figure 4. Correlation matrix of color, texture, shape features extracted from soil surface images.

Table 4 summarizes the results of calculating the VIFs of 18 soil surface image features.
Since the VIF of 15 features exceeded 10, it was judged that multicollinearity would appear
if these features were used in multiple regression analysis. The process of removing the
feature with the highest VIF and calculating the VIF again was repeated until the VIF of all
features was less than 10.

Table 4. Variance inflation factor of color, texture, and shape features extracted from soil surface images.

Color features Hue Sat Value Gray Skewness Kurtosis

VIF 194.4 529.1 8052.3 6644.8 35.2 15.9

Texture features Contrast Dissimilarity Homogeneity Energy Correlation

VIF 875.6 3551.4 649.3 747.1 109.8

Shape features H0 H1 H2 H3 H4 H5 H6

VIF 4926.6 7755.0 85.2 97.6 1.4 1.7 1.0

Table 5 summarizes the VIF calculation results of the selected features after remov-
ing features that may affect multicollinearity. A total of seven features were selected, and
all VIFs were below 10. Multiple regression analysis was performed with these as
independent variables.
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Table 5. Variance inflation factor of features for multiple regression analysis.

Features Skewness Kurtosis Contrast Correlation H4 H5 H6

VIF 1.7 1.5 3.2 2.6 1.3 1.6 1.0

Table 6 summarizes the results of multiple regression analysis. For WC prediction,
A showed a best performance, with an RMSE of 1.71%. B and C showed slightly lower
performance than A. The model’s accuracy decreases when using the combined dataset
(A, B, C). The performance of the multiple regression analysis according to the sampling
point was the same in the predictions of the BD. According to the value of the MAPE, the
result of the WC prediction is ‘good forecasting’ in C, and A, B and the combined dataset
(A, B, C) are regarded as ‘reasonable forecasting’ [39]. The results of the BD prediction are
all evaluated as ‘highly accurate forecasting’ according to MAPE [39].

Table 6. Result of multiple regression analysis using features from soil surface images.

Independent
Variables

Dependent Variable Dataset
Metrics

MAE MAPE R R2 MSE RMSE

Skewness
Kurtosis
Contrast
Correlation
H4
H5
H6

Water content (%)

A 1.39 33.1 0.96 0.92 2.92 1.71

B 1.82 17.9 0.94 0.89 4.85 2.20

C 1.42 9.9 0.88 0.77 3.34 1.83

A, B, C 3.08 48.9 0.79 0.62 14.11 3.76

Bulk density (kN/m3)

A 0.45 4.4 0.91 0.83 0.32 0.56

B 0.54 4.9 0.91 0.83 0.47 0.68

C 0.55 4.7 0.95 0.91 0.46 0.68

A, B, C 1.09 9.6 0.67 0.45 1.84 1.36

3.3. Prediction by Deep Neural Network Regression Model

Figure 5 shows the loss curve of the DNN model. The loss is calculated using MSE,
but the unit differs from the actual value due to variable normalization during the training
process. Since the dataset was divided into a training set and a test set at a ratio of 8:2, and
cross validation was performed by dividing the training set into five. The training loss is
the average value of five validation losses. The test loss is observed to be higher than the
training loss, and this shows that overfitting is not present [38].

Figure 5. Loss curve of deep neural network regression model: (a) for soil water content prediction;
(b) for bulk density prediction.

Table 7 summarizes the performance of the DNN regression model. The results show
that DNN models outperformed the multiple regression analysis models for both WC and
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BD prediction. Among the three sampling points, point C had the best performance for WC
prediction, with an RMSE of 1.14%. For BD prediction, point A had the best performance,
with an RMSE of 0.45 kN/m3. When using the combined dataset (A, B, C), the DNN
models still performed better than the multiple regression analysis models, with an MAPE
of 16.9% for WC prediction and 5.7% for BD prediction. However, the accuracy of the
DNN models decreased slightly when using the combined dataset compared to using
individual datasets, indicating that the DNN models may perform better with more specific
and focused datasets. Overall, the DNN models provided more accurate prediction for
both WC and BD than the multiple regression analysis models, demonstrating the potential
usefulness of DNN models in soil analysis and prediction.

Figures 6 and 7 show the scatter plot of prediction results. During training of the DNN
regression model, the entire dataset was divided into a training set and a test set at a ratio
of 8:2, so the data from multiple regression analysis were shown about five times larger
than those from the DNN. Based on the evaluation metric, the DNN model demonstrated
superior performance compared to the results obtained through multiple regression anal-
ysis. This is evident even when looking at the scatter plot of the predicted and observed
values. In particular, when the entire dataset was used, the multiple regression analysis
produced significantly higher variance in the prediction results, leading to lower accuracy.
On the other hand, the DNN model displayed a relatively impressive performance. The
reason behind this is that the DNN model has the capability to learn intricate non-linear
relationships between features, enabling it to recognize differences between the features
extracted from different textures of soils during the training process [38].

Figure 6. Prediction result of water content using features from soil surface images produced by
multiple regression analysis and the deep neural network regression model.
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Table 7. Result of deep neural network regression models using features from soil surface images.

Input
Variables

Output Variable Dataset
Metrics

MAE MAPE R R2 MSE RMSE

Hue
Sat
Value
Gray
Skewness
Kurtosis
Contrast
Dissimilarity
Homogeneity
Energy
Correlation
H0, H1, H2, H3
H4, H5, H6

Water content (%)

A 1.01 27.2 0.98 0.95 1.84 1.36

B 1.13 11.4 0.97 0.94 2.43 1.56

C 0.92 6.5 0.97 0.93 1.29 1.14

A, B, C 1.23 16.9 0.97 0.94 2.32 1.52

Bulk density (kN/m3)

A 0.36 3.6 0.95 0.91 0.20 0.45

B 0.43 4.1 0.95 0.90 0.26 0.51

C 0.53 4.3 0.96 0.93 0.43 0.66

A, B, C 0.63 5.7 0.91 0.83 0.61 0.78

Figure 7. Prediction result of bulk density using features from soil surface images produced by
multiple regression analysis and the deep neural network regression model.

4. Discussion

This study aimed to predict the WC and BD through a DNN regression model, using
features extracted from in situ soil surface images. The DNN regression model outperformed
the multiple regression analysis, even when obstacles other than soil were present in the
in situ soil surface images. This model predicted the WC and BD with high accuracy and
demonstrated remarkable performance, even when learning soils of different textures together.

The significance of this study lies in its applicability in in situ agricultural land, where
the prediction of surface WC and BD can help in understanding how soil affects the
circulation of water resources. This is particularly important given the recent changes in
climate, which necessitate the more detailed management of soil moisture in agricultural
fields. Therefore, the findings of this study are expected to be highly relevant in this regard.
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This study focused on soils of three textures: SiL, SL, and LS, which are widely
distributed in agricultural land [40–43]. These soils have a high content of sand or silt, with
a clay content of less than about 27% [1]. However, clay has a higher cohesive strength and
water holding capacity than sand or silt due to their small particle size and high surface
area [44]. Therefore, the color, texture, and shape features of clayey soil surface images may
differ from those of the soil samples used in this study. Thus, further research is necessary
to develop a more general model by adding soil textures with a high clay content.

Furthermore, the camera system used in this study has the potential to be combined
with agricultural and construction machinery, enabling the easy observation of a wide area.
Currently, construction equipment such as tractors, dozers, and compactors are equipped
with various sensors. By combining the findings of this study with such equipment,
it is anticipated that they will significantly aid in soil management at large-scale sites.
Specifically, by integrating this system with a compactor at a construction site where
compaction management is essential, it can play a vital role in managing the optimal
moisture content and maximum dry density required for proper compaction.

Since the properties of soil can vary greatly depending on the texture, it is considered
necessary to construct new training data when applying the results of this study to soils
with different textures. Furthermore, as the behavior of soil may differ even among those
of the same texture due to the sand, silt, and clay content, calibration becomes essential
when applying the outcome of this research. If comprehensive databases on soil surface
images, including those from diverse locations and textures, are secured in the future, the
applicability of this study is expected to increase significantly.

In this study, the analysis was performed using color information in the visible light
region, which can be obtained from digital images taken with common commercial cameras,
to ensure that the study’s results can be widely applicable. The three bands of red, green,
and blue were converted to HSV and grayscale color space and used to extract color, texture,
and shape features. However, using multispectral or hyperspectral cameras can provide
additional information beyond visible light wavelengths. If it becomes possible to acquire
this information using standard image sensors in the future, we predict that more features
can be extracted to enhance the model’s accuracy.

Overall, the DNN regression model, based on features extracted from in situ soil
surface images, has proven to be a powerful tool for predicting WC and BD accurately. The
study’s findings have great potential to impact the fields of agriculture and construction,
paving the way for more effective soil management practices.

5. Conclusions

In this study, soil surface images were analyzed to predict two soil properties of WC
and BD using multiple regression analysis and DNN regression models. In situ images of
the soil surface were obtained and various features were extracted from them, including
color, texture, and shape features. A total of 18 soil surface image features were extracted,
and their relationships with soil properties were investigated. These features were used as
input variables for both multiple regression analysis and DNN regression models.

The results show that WC had a stronger relationship with image-based features than
BD. After removing the features that could affect multicollinearity, multiple regression
analysis was performed with seven selected features as independent variables. The results
showed that the multiple regression analysis models provided reasonable performance for
WC and BD prediction.

Furthermore, DNN regression models were developed to predict soil properties. The
results showed that the DNN models outperformed the multiple regression analysis models in
terms of accuracy for both WC and BD predictions. The accuracy of the DNN models slightly
decreased when using the combined dataset compared to using individual datasets. However,
the DNN models still provided more accurate predictions than the multiple regression analysis
models, demonstrating their potential usefulness in soil analysis and prediction.
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In conclusion, this study demonstrated that soil surface images can be used to predict
WC and BD, and the accuracy of the predictions can be improved by using DNN regres-
sion models. The results suggest that soil surface imaging combined with DNN models
has great potential in soil analysis and prediction, which can be beneficial for precision
agriculture and environmental monitoring. Further studies can be conducted to investigate
the application of this method in various soil types and environments.
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