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Abstract: Meat color research from the last two decades suggests that a combination of different
intrinsic (ultimate pH, age of the animals, muscle position, breed, slaughter weight, and sex) and
extrinsic factors (production systems and feeding, pre-mortem stress, slaughter season, and chilling
rates) might have a deep impact in the color of beef muscle and influence consumers’ acceptance
of fresh meat. Ultimate pH and muscle position were perceived as the most determinant intrinsic
factors, whereas production systems, feeding, and ante-mortem stress were the extrinsic factors
that more strongly influenced beef color attributes. From an industrial perspective, the extrinsic
factors can be improved through the technological process at a higher ratio than the intrinsic ones.
This review aims to evaluate the effect of each of those factors on myoglobin oxidation and beef
color traits from a comprehensive standpoint. All the information discussed in this manuscript
focuses on an industrial environment and offers possible solutions and recommendations for the
global meat industry.

Keywords: ultimate pH; age of the animals; muscle position; slaughter weight; production systems;
feeding; pre-mortem stress; slaughtering season; chilling rates

1. Introduction

Visual stimuli have a major impact on consumers’ opinions about meat because this
first perception might be the difference between buying or rejecting a particular meat
product. Since myoglobin content is higher in post-mortem bovine muscle than in pork
or chicken, this is much more critical in determining consumers’ criteria about color
attributes in beef than in muscles from other species. Due to the central role of color in beef
commercialization, the intention of this review is to explore the influence of intrinsic factors
such as ultimate pH, age of the animals, muscle position, breed, slaughter weight, and sex,
and of the extrinsic factors such as production systems and feeding, pre-mortem stress,
slaughter season, and chilling rates. Systematic research is included in the methodology
section so that other researchers in the field can easily access the information presented in
this review.

Color is considered the most important quality property affecting the consumer’s
judgment of meat because red is highly preferred over purple or brown colors [1]. From all
color parameters, redness is considered the single most robust value for predicting meat
color acceptability [2,3]. Myoglobin’s primary role in living tissues is to transport oxygen
to the mitochondria, which are the cellular organelles responsible for respiration and ATP
synthesis [4,5]. However, after animal slaughter, myoglobin is the main heme protein that
determines the color of beef muscle [6]. Even if myoglobin oxidation in vivo occurs regu-
larly, inherent reducing mechanisms can rapidly transform metmyoglobin to its original
form [5,7]. As animal respiration ceases after slaughtering, post-mortem muscle switches
from aerobic to anaerobic [8]. These physiological changes result in structural alterations in
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myoglobin, which can eventually be converted into one of its three oxidation states [5,9].
Depending on the ligand bound to the sixth coordinate of myoglobin and on the redox
status of the heme iron, three different forms of myoglobin can be produced: deoxymyo-
globin (purplish-red color, ferrous iron, and no ligand attached), oxymyoglobin (bright
cherry-red color, ferrous iron, and oxygen attached), and metmyoglobin (dull-brown color,
ferric iron, and water attached) [10]. Myoglobin oxidation/reduction is dictated by oxygen
amounts, antioxidant availability, and enzymatic activity [11]. Metmyoglobin reduction
can be achieved either from enzymatic, non-enzymatic, or mitochondrial-mediated path-
ways [12]. All these three processes require electrons produced from NADH regeneration
via lactate dehydrogenase (LDH) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
activity [9,13]. Metmyoglobin enzymatic reduction that happens in the mitochondrial
membrane through cytochrome b5 reductase is considered the most important cellular
enzymatic process involved in meat color development because of its critical importance in
cellular electron transport [14,15]. The metmyoglobin formed during the oxidation phase
is the compound that more strongly affects the meat’s color and appearance, and it can
ultimately determine the consumer’s purchase willingness [16]. Oxidative changes that
affect meat color have been traditionally quantified using three linear color coordinates, as
detailed in Figure 1: L* (lightness), which ranges from 0 value for black and 100 for white;
a* (redness), which ranges from green if negative to red if positive; and b* (yellowness),
which ranges from blue if negative to yellow if positive. Other color scores such as ∆E
(total color difference), C* (chroma), and h* (hue angle) might also be included in some
publications to describe differences of color between two stimuli, three-dimensional percep-
tion of color and the degree of vividness, respectively [16–18]. Meat color measurements
can be performed using a spectrometer, which determines different myoglobin fractions at
specific depressions in the light spectrum, or a colorimeter, which quantifies meat color
by a mean calculation of different points scanned on the meat surface [16,17]. Recently, a
CVS (computer vision system) was implemented as a more accurate technique for color
determination [18,19] due to less light deviation through the meat matrix and a higher
scope area of the sample [17,19]. It was reported that the color intensity of fresh meat is in-
fluenced by an interaction of multiple intrinsic and extrinsic factors during muscle-to-meat
conversion [20]. Intrinsic factors are those characteristics mostly defined by the animals’
genotype, which are difficult or impossible to change. On the contrary, extrinsic factors are
circumstances related to human handling of the animals during feeding, transportation,
slaughtering, and chilling that might be more flexible to adjust through the technological
process, and that can be improved to a greater stage than the intrinsic ones. This review
paper aims to evaluate the influence of both type of factors on meat color and to establish
the interaction of those parameters during muscle-to-meat conversion. It also seeks to
find the best strategies that might be helpful for the producers and the meat industry in
preventing or reducing these color defects in fresh beef meat.
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Figure 1. Graphic diagram of the quantitative coordinates used for meat color determination.

2. Materials and Methods
2.1. Data Collection and Eligibility Criteria

This systematic review manuscript followed the research steps cited in the guidelines
of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [21].
For this purpose, the authors followed a manual pre-selection and evaluation of papers
published between 2000 and 2022, focusing primarily on the topics and abstracts of those
articles. English was preferred as the language for paper selection, and only research
articles were considered to ensure the information quality for this investigation. Other
reviews, correspondence letters, dissertations, expert opinions, lectures, books, or chapters
of books were excluded. Duplicate articles were only considered once. The study was
considered relevant when: (i) it included information about the color change of fresh meat;
(ii) it had information about instrumental color measurements; (iii) evaluated color changes
during retail display time; (iv) no freezing, cooking, curing, or thawing processes in fresh
meat were involved; (v) the article was conducted as a unique research manuscript.

2.2. Focus Questions

The search for papers was performed similarly in all databases following the PICO
(Patient, Intervention, Comparison, and Outcome) strategy [22] to articulate the research
questions considering population (P): fresh beef meat; intervention (I): color; comparison
(C): intrinsic and extrinsic factors; and outcome (O): color change. The focus questions
were: (i) how do intrinsic and extrinsic factors influence the color change of fresh beef
meat? (ii) which strategy can be implemented to reach the best factor combination that
favors the color change in beef meat?

2.3. Information Sources and Search Strategy

The literature selection was based on a manual validation using several different
databases, i.e., Scopus, Science Direct, Wiley Online Library, and PubMed. The exploring
and screening for eligible articles were performed from October 2022 until December 2022.
The combination of keywords used for this investigation was: “meat” AND “color” AND
“beef” OR “fresh” OR “light” AND/OR “scattering” OR “slaughter” AND/OR “season”
AND/OR “weight” OR “diet” AND/OR “finishing” OR “chilling” AND/OR “rate.”
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2.4. Literature Search

A total of 13,151 publications were identified as potential material for this review
paper. Of them, 9211 were found in Science Direct, 1584 in Scopus, 313 in Wiley Online, and
2043 in Pub Med. From all the databases, 1512 records were screened, and 112 papers were
selected for eligibility. From them, 28 papers were excluded because they were outside the
topic or not related to fresh beef. This means that 84 articles were selected from databases,
and 26 other papers that matched the eligibility criteria were manually selected from
citations to complete a total of 110 articles suitable for this review paper (Figure 2). Detailed
information about the main ideas of all papers cited in this manuscript can be downloaded
from the Supplementary Materials (Tables S1 and S2).
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Figure 2. PRISMA flow chart for article selection between the years 2000 and 2022 in the influence of
intrinsic and extrinsic factors in beef meat color [21].

3. Results and Discussion
3.1. Intrinsic Factors
3.1.1. Ultimate pH

Some authors considered that ultimate pH is one of the most significant and discrim-
inating criteria in determining meat color [2,23]. It is commonly agreed that depleted
glycogen reserves in animals during stressful pre-mortem events might cause limited lactic
acid formation in post-mortem muscle and insufficient pH decline [23,24]. Since high-pH
beef muscle fails to reach a bright-red color, this condition is referred to as dark-firm-dry
(DFD) meat [13,25]. DFD carcasses had lower glycolytic potential than those with normal
pH values, resulting in less glycogen availability for lactic acid formation post-mortem [25].
Previous data also showed that muscle glycogen amounts lower than 50 µmol/g at slaugh-
ter could be indicative of DFD meat [26]. The darker color in DFD meat also resulted in
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a higher accumulation of myoglobin oxidation products and less light reflectance on the
meat surface [23,27]. DFD beef showed a higher percentage of oxidative type I muscle
fibers and a lower percentage of glycolytic type II muscle fibers, indicating higher myo-
globin and mitochondria contents than normal pH muscles [13]. Previous data showed
that higher mitochondrial counts and mitochondrial activity in DFD meat resulted in a
darker meat surface color due to higher tissue oxygen consumption, which restricted the
capacity for myoglobin oxygenation during blooming [9,13,27]. Greater water-holding
capacity in DFD meat resulted in more swollen fibers that increased light scattering from
the myoglobin fractions and generated the typical darker superficial appearance of DFD
muscle [28,29]. Recently, it was suggested that higher amounts of tricarboxylic acid cy-
cle (TCA) metabolites present in DFD meat could be further used for cellular respiration
that increased mitochondrial oxygen consumption and deoxymyoglobin formation [13].
Higher myoglobin concentrations and inefficient mitochondria abundance revealed that
animals predisposed to DFD-related issues had an oxidative metabolism that accelerated
glycogen depletion as the degree of darkening in DFD meat increased [24,25]. It was also
suggested that lower phosphorylation degree of sarcoplasmic proteins in intermediate
(5.7 < pH < 6.09) and high pH groups (pH > 6.09) could have influenced the activity of
certain metabolic enzymes associated with the development of DFD meat color [30]. Ad-
ditional proteome studies also showed higher metabolic enzymatic activity in DFD meat
with eight overabundant metabolic enzymes compared to normal-pH meat. However,
normal-pH meat showed increased LDH-D activity, thus improving meat color [29]. Due
to variations in the management systems, handling of the animals, slaughterhouse policies,
consumer preferences, and the pH thresholds that the local food authorities may assign to
this defect, the incidence of problems involving DFD cattle varies across different countries.
However, until now, early detection of animals predisposed to a DFD status has not been
substantiated and results still have partial repercussions. The most common strategies
have been related to the measurement of some enzymes or hormones in the bloodstream of
animals before and during slaughtering, such as cortisol, creatine kinase (CK), and lactate
dehydrogenase (LDH). Clear interactions were found between higher production of those
substances and animal welfare, but, no relationships were found for ultimate pH or meat
color [31–33]. Infrared eye temperature determination also showed contradictory results to
predict the incidence of DFD problems in beef [34]. Reliable markers that can determine the
relationships between pre-mortem processes and the ultimate pH in meat still need to be
validated. DFD carcasses are usually reduced in price due to the meat’s undesirable color.
This problem results in significant economic losses for the global meat industry. Therefore,
any improvement in the color of DFD meat may increase the income for all actors in the
supply chain while preventing the waste of valuable environmental resources assigned for
meat production.

3.1.2. Age of the Animals

Higher myoglobin and iron levels were detected in the meat of older animals and
resulted in darker muscle colors, probably caused by more oxidative muscle fibers [27,35].
Increasing the slaughter age in cattle also resulted in a higher proportion of red oxidative
fibers that grew at a faster pace than the glycolytic ones in the muscles of older animals and
generated an overall negative effect on meat color [36]. The meat of older animals from
discontinuous growth systems (24 months of age) showed lower L*, a*, b*, and pH values
in muscle than younger animals (18 months of age) from continuous growth systems [37].
It was also documented that extending the slaughter age in cattle from 14 to 18 months
produced similar L* and slightly higher pH and a* values in the meat of older animals [38].
Another study reported that extending the average slaughter age for three additional
months produced beef muscles with lower L* and higher a* and b* values, probably due
to higher pH found in the meat of older animals [39]. Interestingly, it was observed that
higher myoglobin amounts in the muscles of older animals resulted in significantly lower a*
and higher C* values [40]. Significantly higher L*but almost steady a* values were reported
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when bulls were slaughtered at 17 instead of 12 months of age, probably due to similar
meat pH values [41]. It was also reported that steers slaughtered at 30 months of age
produced higher pH and a* but lower L* values than animals slaughtered at 18 months [42].
Increasing the slaughter age in cows (up to 11 years) resulted in lower L*, a*, and b*
values in fresh meat due to higher inherent lipid oxidation and radical production in the
muscles of old cattle, even though there was higher production of antioxidant enzymes such
as catalase, superoxide dismutase, and glutathione peroxidase [35,43]. This manuscript
agrees that higher quality of feed provided to animals with increased growth rates could
consistently shorten the time to achieve commercial slaughter weight, thus increasing
L* values in meat. Most of the references also claimed that myoglobin amounts in meat
proportionally increased with higher biological age of the animals, thus showing higher a*
values in the meat of older animals. Lower myoglobin contents in the muscles of younger
animals might positively influence in producing brighter and less red fresh beef muscle.

3.1.3. Muscle Position

High color-stability muscles were defined to have a lower oxygen consumption rate,
lower oxidative rancidity, and lower myoglobin content in comparison with muscles classi-
fied as color-unstable [44]. Different authors have recorded higher L*, a*, and b* readings
for fresh color-stable m. longissimus lumborum (LL) in comparison with color-unstable m.
psoas major (PM), therefore validating the color difference between these two groups of
muscles [15,45]; however, pH differences between color-stable and color-unstable muscles
were not discriminant for meat color, as shown in Table 1. It was stated that LL muscle
contained more antioxidant proteins (β-enolase and creatine kinase) than PM muscle, sig-
nificantly reducing myoglobin and lipid oxidation [46]. Previous data also suggested that
higher LDH activity was representative of glycolytic muscle fibers, while higher ICDH
(isocitrate dehydrogenase) activity was mostly found in oxidative muscle fibers [36]. It
was also reported that higher lipid contents in color-unstable muscles proportionally in-
creased the probability of lipid oxidation to occur [45,46]. It was proposed that lower
oxidation-reduction potential rates (ORP) could be related to less cytochrome c release, less
oxidative stress, and lower oxygen consumption in LL muscle when compared to PM [8].
Higher mitochondrial integrity in ovine LL muscle resulted in lower metmyoglobin accu-
mulation compared to PM [9]. This is consistent with other studies that found that higher
metmyoglobin-reducing activity (MRA) and greater amounts of sarcoplasmic NADH in LL
were associated with less accumulation of myoglobin oxidation products on meat surfaces
than PM [7,9,47]. Lower myoglobin, iron content, and mitochondrial amounts were related
to predominant type II white fibers in color-stable muscles; in contrast, a predominant pres-
ence of oxidative-type I red fibers in color-unstable muscles made them appear comparably
darker [27,48]. Lower levels of taurine and coenzyme Q10 and higher levels of carnosine,
creatine, and creatinine were recorded in color-stable muscles, which were related to a
higher amount of type II white fibers in comparison with color-unstable muscles [49].
Overall, variations in inherent histological functionality between different bovine muscles
played a key role in meat color characterization. These differences between muscle’s color
stimuli can be calculated using the total color difference (∆E) Equation [16,18].

∆E =

√
(L*1 − L*2)

2 + (a*1 − a*2)
2 +

(
b*1 − b*2)

2 (1)

It was stated that when ∆E values are higher than 1, color differences can be discernable
by the human eye [50]. The ∆E values were calculated from several publications found in
the literature, as described in Table 1. This information suggested that, overall, consumers
can visually identify color variations between different groups of muscles. Thus, the meat
industry needs to focus on designing innovative muscle-specific technological solutions
that might prolong meat color shelf-life for a more prolonged time. Additionally, consumer-
based marketing tactics should be prioritized in promoting faster consumption of those
muscles described as less color-stable.
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Table 1. Color and pH differentiation between color-stable and color-unstable muscles in fresh beef.

Muscle pH Parameter Value ∆E Difference Publication

LL 5.5

L* 36.77

4.31 [46]

a* 29.5

b* 21.84

PM 5.59

L* 40.63

a* 30.5

b* 23.48

LL 5.73

L* 45

4.53 [15]

a* 32.1

b* 24.3

PM 5.77

L* 47.04

a* 29

b* 21.7

LL 6.65

L* 43.63

5.76 [45]

a* 27.4

b* 20.6

PM 6.87

L* 41.78

a* 24.3

b* 16.11

LL 5.5

L* 41.3

5.28 [51]

a* 34.4

b* 27.1

PM 5.7

L* 46.3

a* 33.4

b* 25.7

LL 5.73

L* -

- [25]

a* 17.06

b* -

PM 5.77

L* -

a* 17.67

b* -

LL 5.57

L* -

- [8]

a* 30.6

b* -

PM 5.61

L* -

a* 29.5

b* -
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Table 1. Cont.

Muscle pH Parameter Value ∆E Difference Publication

OSM -

L* 39.1

10.41 [52]

a* 29.13

b* 21.21

ISM -

L* 47.65

a* 32.75

b* 25.92

OSM 6.52

L* 40.8

13.01 [53]

a* 30.8

b* 23.4

ISM 6.47

L* 52.8

a* 34

b* 27.3
PM: Psoas major; LL: longissimus lumborum; OSM: Outside semimembranosus; ISM: Inside semimembranosus.

3.1.4. Breed

Commercial meat cattle breeds are divided into two big groups: Bos taurus, which
are cattle of European ancestry, and Bos indicus, which are cattle typically designed for
production under tropical weather conditions. Pure Bos taurus crosses (Hereford x Angus)
exhibited higher carcass weight, improved fat deposition, and intramuscular marbling than
Bos indicus x Bos taurus animals (Sahiwal or Brahman x Hereford or Angus) [54]. Due to
hybrid vigor, beef producers also noted that crosses between the two cattle groups resulted
in higher resistance and increased potential for muscle accumulation [55]. However, more
aggressive temperament from pure Bos indicus (Brahman) or Bos indicus crosses resulted
in darker muscle color and higher pH values in meat compared to Angus (Bos taurus) cattle,
especially when animals were pasture-fed [56,57]. Significantly lower L*, a*, and b* scores
and higher pH values were also found in the meat from feedlot-finished Nellore x Aberdeen
Angus crosses in comparison to meat from the pure Nellore breed [58]. It was described that
although a more excitable temperament of Braford (Bos indicus x Bos taurus) crosses than
pure Hereford (Bos taurus) animals, no effects in meat color were found [55]. A study using
only pure Hereford (Bos taurus) steers showed that calmer animal temperament had no
major influence on muscle glycogen concentration or meat color [59]. On the other hand, a
study performed in three Bos indicus African races suggested that aggressive behavior seen
in long-horn Red Bororo cattle was also correlated with higher injury frequency, especially
during unloading operations [60]. Indeed, more bruises in Bos indicus x Bos taurus cattle
were correlated to high pH values and DFD-related problems in meat [61,62]. It was
also found that Bos indicus carcasses showed similar differences between the so-called
color-stable and non-color-stable muscles as the Bos taurus counterparts [45]. In our view,
pure Bos taurus breeds or crosses with a high percentage of Bos taurus blood offer the
best temperament profiles for enhancing meat color. Also, due to higher fat deposition
in the meat of Bos taurus animals, muscles had a brighter color compared with the meat
of Bos indicus cattle [56]. Breed selection should also take into consideration individual
nutritional requirements and management systems to obtain brighter beef muscles.

3.1.5. Slaughter Weight

Feed intake and production systems might considerably influence the final carcass
weight and consequently affect the ultimate pH and color of beef [36,63]. Meat industries
worldwide have struggled to cool down beef carcasses at a constant rate due to higher
animal-weight variation in the last few years. This inconsistency in heavy-carcass tempera-
ture and pH decline might increase the risk of heat shortening and myoglobin autoxidation
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processes to occur [64]. It was also evidenced that when animals were slaughtered at the
same age, grain-based systems produced heavier animals than pasture-based, due to an
average higher calorie diet from the former [49,63]. Improved L*, a*, and b* measurements
from heavier cattle were also a result of higher-energy diets that were offered to the ani-
mals before leaving for the abattoir, which promoted slower glycogen degradation until
slaughtering [65]. Different authors reported either higher L* [64], higher L* and a* [41], or
overall higher L*, a*, and b* values [37,63] in the meat of heavier than lighter cattle. Other
publications reported that heavier Charolais cattle showed improved a*, b*, and C* values
but lower L* scores. This experiment concluded that the preference for heavier animals
paradoxically created darker lean muscles [20]. Significantly lower L* values were also
reported in bulls’ meat compared to young bulls’ meat, even if bulls weighed 90 kg more
when slaughtered [66]. Heavier cattle tend to produce meat with increased L*, a*, and
b* attributes than lighter cattle. This effect was associated with a high-caloric diet that
promoted better fat deposition, and because slower glycogen decline could be achieved
from heavier cattle, which also benefited the formation of lactic acid in the muscles of
those animals. The meat industry needs to find the means to standardize the weight of the
animals to prevent major differences in meat color.

3.1.6. Sex

It was reported that male cattle exhibited higher physiological stress, increasing the
probability of obtaining DFD meat, particularly when kept in lairage at high stocking
densities [66,67]. Lower L*, higher a* and b*, and pH values were reported in the meat of
male cattle compared to the meat of female cattle [66]. Similarly, lower carcass fat deposition
in bulls resulted in lower L* and C* values when compared to cows’ carcasses [20,68]. It
was also found that bulls’ meat reached lower ante-mortem glycogen levels and higher
pH values due to more aggressive behavior compared to immunocastrated animals, steers,
and heifers [59,69]. It was determined that steers were 47% more likely to have DFD meat
than heifers due to lower glycogen pre-mortem levels exacerbated by mounting [70]. It
was also reported that even if heifers were more susceptible to pre-mortem stress, this
was not related to pH decline in meat; however, higher meat pH and lower color scores
were promoted due to agonistic bull behavior [71]. A different study reported that male
cattle showed more stressed behavior, resulting in lower L*, a*, and b* meat values for
feedlot-finished bulls compared to heifers in the same production system [69]. It was also
stated that steers produced meat with significantly higher L*, a*, and b* values than bulls
and cows; however, between the last two, cows showed higher L* and similar a* and
b* values than bulls [72]. Conversely, some authors reported that heifers might tend to
produce meat with higher pH values if estrus activity is not controlled prior-slaughtering by
hormone supplementation [65]. Others determined that bulls produced meat with slightly
higher L* and a* values, despite higher intramuscular fat content in heifers [38]. Most
publications reported lower color values from bulls’ carcasses due to less fat deposition
and more aggressive behavior, especially during close social contact. Therefore, improved
beef color might be obtained if animals are kept separated during transport and lairage
and if hormone supplementation is controlled for female cattle before slaughter.

3.2. Extrinsic Factors
3.2.1. Production Systems and Feeding

Management systems and diet compositions might variably influence the color of fresh
beef muscle, mainly due to predominant muscle fiber type, number of calories fed to the
animals, fatty acid profile, and inter- and intra-muscular fat deposition. Production systems
greatly influence lipid oxidation processes, which are strongly associated with myoglobin
oxidation and the generation of off-odors and off-flavors in beef [73,74]. Higher total fatty
acid content was recorded in the meat of fed concentrate-based animals rather than grass-
or silage-based cattle [75,76]. It was also described that higher amounts of saturated fatty
acids (SFA), monounsaturated fatty acids (MUFA), and n-6 polyunsaturated fatty acids
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(PUFA) portions were likely to be found in concentrate-finished animals than in pasture-
and silage-fed animals [75,77]. In addition, most publications agreed that higher PUFA and
n-3 PUFA fractions were obtained from pasture-based diets than from concentrate-based
diets [78,79]. Precisely, meat from pasture-fed animals exhibited higher amounts of PUFAs,
which could have resulted in higher oxidative phosphorylation than meat from grain-fed
animals because it was more accessible for the action of lipases [43,73]. Higher thiobarbi-
turic acid reactive substances (TBARS) values were reported in the meat of grain-fed rather
than in pasture-fed cattle, mostly due to an antioxidant defensive mechanism against lipid
oxidation in the latter [80]. Animal diet might have a large influence on the generation of
lipid oxidation products such as HNE, which decreases both electron transport-mediated
and NADH-dependent metmyoglobin reduction processes, thus increasing oxymyoglobin
oxidation [52,81]. Moreover, it is generally regarded that intensive-managed (grain, con-
centrate, feedlot) produced brighter muscles (higher L* values) than extensive-managed
animals (silage, pasture, grass) [63,75]. This effect is associated with a higher amount of
calories fed to the animals in intensive systems, promoting a glycolytic metabolism and
increasing total and intramuscular fat compared to the extensive counterparts [63,82]. The
quality, the amount, and the duration of concentrate feeding in different management
systems might have a variable influence on a* values in meat [82,83]. At constant slaughter
weights, similar a* values were obtained for concentrate and grass-based animals [76,83]. It
was also described that grazing periods up to 98 days during the finishing phase did not
produce any significant effects in a* values [84]. Increasing the feeding intensity on bulls
during the growing and the finishing phase also did not show any differences in pH or meat
color between treatments, probably because all animals received a high-calorie diet, which
also led to similar slaughter weights [85]. Another publication reported that grain-based
diets resulted in meat with lower pH and higher a* values than grass-based animals [86]. It
was also found that when gradually increasing the level of concentrate supplementation in
a pasture-based diet, the highest a* values were attained at 0.8% of live-weight concentrate
replacement, regardless of marbling or myoglobin concentrations in muscle [82]. It was also
observed that the higher pigment concentration in the meat of grass-fed animals resulted
in higher a* values when compared to grass-based exemplars [87,88]. This was probably
a consequence of higher physical activity due to more time spent walking, standing, or
feeding, which increased the proportion of oxidative muscle fibers [89,90]. It was shown
that the oxidative metabolism of cattle-fed pasture-based diets led to higher pH values
and darker muscle appearance than their grain counterparts, even if no differences were
found in lactate or glycogen concentration (typical for pre-mortem stress) [86]. Production
systems can largely affect the color of fresh beef muscle. L* values were consistently higher
in intensive compared to extensive systems. Almost similar a* scores were documented in
different production systems as a function of neglectable meat pH variations, as shown in
Table 2. Previous studies also suggested that consumers tend to reject the meat once it has
reached a* value below 14.5 [3]. Those critical values were not reached for most of the data
researched in this review (Table 2). Also, despite having a higher proportion of PUFA, meat
from pasture-fed animals is less likely to experience lipid oxidation due to a protective
antioxidant effect gained from higher α-tocopherol concentration diets. However, meat
color or pH values were not affected by α-tocopherol amounts found in fresh beef meat [91].



Appl. Sci. 2023, 13, 4382 11 of 19

Table 2. Consumer’s acceptability related to meat color and pH differentiation between color-stable
and color-unstable muscles in fresh beef.

Management System L* a* pH Consumer’s
Acceptability Publication

Concentrate-finished 39.4 17.36 5.56 Accepted
[83]

Grass-finished 37.6 17.3 5.55 Accepted

Concentrate-finished 35.56 20.42 5.7 Accepted
[75]

Pasture-finished 33.8 20.45 5.7 Accepted

Concentrate-finished 36.85 15.66 5.63 Accepted
[82]

Pasture-finished 36.37 15.16 5.62 Accepted

Concentrate-finished 33.18 22.59 5.55 Accepted
[84]

Grazing + concentrate finishing 32.1 22.62 5.55 Accepted

Concentrate-finished 36.4 11.3 - Rejected
[76]

Pasture-finished 35 11.1 - Rejected

Concentrate-finished 37.9 19.1 - Accepted
[88]

Pasture-finished 29.4 23.2 - Accepted

Feedlot-finished 38.6 15.15 5.56 Accepted
[92]

Pasture-finished 37.8 15 5.66 Accepted

Grain-finished 40.43 22.66 5.77 Accepted
[87]

Pasture-finished 40.94 22.95 5.77 Accepted

Concentrate-fed + straw 38 15.5 5.52 Accepted
[93]

Silage-fed + concentrate 37.4 15.9 5.53 Accepted

3.2.2. Pre-Mortem Stress

Accumulative ante-mortem stressors imposed on animals during loading, transport,
unloading, lairage, and slaughtering might consistently deplete muscles’ glycogen stores
and increase the likelihood of producing DFD meat. It was hypothesized that pre-mortem
stress conditions in cattle might increase involuntary movements and mitochondrial bio-
genesis in DFD muscle, which can result in higher mitochondrial oxygen consumption of
fresh meat [13]. The sum of all stress stimuli has an overall negative effect on the psycho-
logical and physical status of the animals, which could adversely affect the welfare and
meat color [31]. For instance, when long transportation times were combined with only
a few hours for cattle to recover after the journey, it drastically increased the probability
of producing DFD carcasses [94]. Long processing times also meant that animals typically
had access only to water, which can lead to starvation and reduce the glycogen levels in
the blood and produce meat with lower L*, a*, and b* values [31]. Conversely, reducing
the processing times and good animal handling might increase slaughterhouses’ efficiency,
lead to better conditions for the animals, and improve the color values in the meat.

Strange environments could also be detrimental to meat color since some animals
might be especially sensitive to sounds and movements made by workers or other animals
during routine transportation, lairage, and slaughtering operations [31]. It has been claimed
that the incidence of DFD-related problems can be reduced when animals are managed
in the same group from the previous weeks before slaughtering [95]. Lower meat pH
values were also recorded when bulls were not mixed during the finishing phase due to
the calming effect of social interaction between animals of the same group [31]. The risk of
obtaining DFD carcasses also decreased when animals came directly from the producing
farms instead of when animals were bought from markets or auctions [62]. The separation
of cattle into different compartments inside the same truck increased the meat color values,
even if animals had the same sex or were collected from different farms [67]. It was also
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suggested that mixing the animals right after loading could increment aggressivity and
mounting behavior [96].

Extended lairage times in poor conditions (temperature > 18 ◦C and RH > 70%)
increased the risk of producing DFD carcasses from less than 1% to around 40% when
animals had to spend more than 19 h before slaughtering, instead of only 7 h [97]. Similarly,
lairage times higher than 16 h doubled the probability of obtaining DFD meat when
compared to 8 h of lairage [67]. Another study reported that animals staying in lairage
for more than 72 h without extra feeding had an 85% probability of producing DFD
carcasses [23]. It was also determined that for every extra hour animals spent in lairage,
the ultimate pH in meat increased by around 0.013 points [98]. It was also documented
that regardless of transportation times, animals kept long holding periods were more
susceptible to producing bruises and lesions due to more frequent aggressive reactions [62].
On the other hand, it was suggested that short lairage times (3 h) produced more stressed
animals and higher pH values in meat when compared with animals kept overnight (15 h)
due to recovery of glycogen stores after a quiet night of rest [55]. It was also observed that
after long transportation distances (approximately 1800 km), the incidence of obtaining
DFD meat was 40% when cattle spent 72 h in lairage, instead of 90% when lairage time was
24 h or 60% for 48 h resting time [94]. Another study determined that 48 h of lairage was the
best treatment for cattle to replenish their glycogen stores after a long trip of approximately
18 h [99]. It was also suggested that lairage time higher than 17 h contributed to glycogen
restoration in muscle and reduced the risk of obtaining DFD meat [31]. Another manuscript
claimed that reducing lairage time from 18 h to 3 h in cattle that traveled less than 6 h and
with no signs of exhaustion had no effect on the meat’s ultimate pH [100].

It has been reported that there were no significant differences in meat pH values when
cattle were not stunned, electrically stunned, or percussively stunned, even if glycogen
concentrations were different between treatments [101]. Another publication mentioned
that animals stunned more than once had higher cortisol levels resulting in lower lactic
acid production and DFD-related problems [102]. Similarly, it was determined that when
incorrect desensitizing of the animals occurs, the probability of obtaining dark-cutting meat
increases by 10% [97].

Random mixing of the animals during transportation and lairage might increase the
probability of obtaining DFD carcasses, whereas maintaining the animals in the same
social groups in which they were grown might enhance the color of their meat. Long
transportation and extended lairage times might drastically reduce the glycogen reserves
of cattle and generate lower L*, a*, and b* values in the meat of those animals. However,
long and quiet lairage with enough food is recommended if animals need to be transported
for long distances so that glycogen reserves can be replenished before slaughtering and
the incidence of DFD problems can be reduced to a minimum. A simple and continuous
training program about animal handling should also be provided to the workers with direct
contact with cattle to optimize slaughterhouse operations, animal welfare, and meat color.
Additionally, stunning needs to be precise and performed only by trained personnel to
reduce the risk of DFD carcasses.

3.2.3. Slaughtering Season

Heat or cold stress might have different effects on the physical and psychological status
of the animals, especially shortly before being slaughtered, which might result in meat
with high pH and DFD-like conditions. Hot temperatures might impair the body’s heat
dissipation and increase animal stress, while cold temperatures might increase muscular
shivering, which can rapidly deplete pre-mortem glycogen reserves. Slaughtering cattle
during wintertime produced meat with significantly lower L*, a*, and b* scores and higher
pH due to harsh average temperatures (−3.3 ◦C) and low relative humidity (57.73%) during
this season. It was also recommended that when cattle were processed at temperatures
higher than 5 ◦C, the L*, a*, and b* beef values also increased [72]. It was demonstrated that
longer showering times (2 h, water at 10 to 15 ◦C) during cold days increased the incidence
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of DFD meat due to higher muscle pH and lower L* and b* values [103]. Another study
concluded that winter temperatures (12 ◦C) slightly produced more stress in the animals
than summer temperatures (21 ◦C), but no significant differences were observed in meat
color [33]. It was also reported that increased stress in bulls started at daily temperatures
higher than 18 ◦C during the summer months, resulting in higher DFD-meat incidence
than in winter months [31]. Lower L*, a*, and b*, and higher pH values were also found
when animals were slaughtered during summer months with an average temperature
of 23 ◦C [104]. Similarly, it was reported that cattle were more susceptible to reaching
DFD conditions during summer months (average pH = 5.92), compared to winter months
(average pH = 5.8), probably due to higher stress caused by heat [66]. Another study
determined that there was a higher probability of obtaining DFD meat during the summer
months (15.7%), compared to spring (13.32%) and winter (12.63%), due to temperatures
that reached up to 35 ◦C [67]. It was also documented that slaughtering animals during
the hot season (average temperature = 34 ◦C) drastically depleted the glycogen amounts
pre-mortem and increased the probability of obtaining DFD carcasses up to 59% versus
none during the cool season [105]. It was also found that 15.4% of the carcasses were
classified as DFD during the hot season, where temperatures in the lairage pens attained
values up to 48 ◦C versus only 8.15% during the cold season [106]. It seemed that cattle
were overall more stressed for hot rather than for cold temperatures. Harvesting cattle
at temperatures higher than 18 ◦C might be problematic in increasing animal heat stress,
thus increasing the probability to produce DFD meat. Unnecessary stressors like long
cold showers during cold days should be strictly avoided to increase beef color values.
Pre-mortem conditions should guarantee a comfortable environment for the animals to
reduce temperature-induced stress and improve meat color.

3.2.4. Chilling Rates

The temperature at which carcasses are processed might influence the uniformity of
meat color parameters. Heavier and fatter animals processed under intensive systems
were more prone to experience slower chilling rates and faster pH decline post-mortem,
which might develop in high-rigor temperatures, also referred to as PSE (pale, exudative,
and soft) meat [107,108]. The high-rigor condition occurs when pH decreases at values
lower than 6 when the muscle temperature is higher than 35 ◦C [108]. This defect might
also promote shrinkage in muscle fibers, longer sarcomeres, and improved light scattering,
which resulted in lighter (higher L*) muscle color [109]. Intramuscular color variations
were reported in m. semimembranosus (SM), due to a difference in chilling rates that
caused a faster pH decline in the inner part of the muscle when the temperature was
higher than 35 ◦C compared to the outer part [52,53]. Another important quality defect
arises when carcasses attain 0 ◦C in less than 5 h, which might result in the so-called cold
shortening [110]. It was reported that cold-shortening defects are more frequent than
high-rigor under industrial operations [111]. Carcasses with low fat/meat conformation
are more likely to confront this problem and may generate high inconsistency in the
meat color under industrial operations [111,112]. In ovine muscle, fast chilling (0 ◦C
in 5 h) resulted in higher pH and superficial metmyoglobin accumulation and lower L*
values than in the conventional chilling treatment (2.75 ◦C in 14.5 h). It was reported that
cold shortening reduced the visual appearance of ovine carcasses below the consumer’s
acceptability threshold (metmyoglobin: oxymyoglobin ratio lower than 3.5) [110]. In
beef, cold-shortening was related to small carcasses, which showed slower pH decline
rates, leading to meat toughness [111]. Cold-shortening might also decelerate carcasses’
glycolysis processes which can eventually result in DFD meat [96]. In conclusion, chilling
rates post-mortem might play a key role in preventing meat quality problems and in
achieving uniform carcass colors. As mentioned before in this paper, the meat industry
needs to standardize the animal weight at slaughter, in a way that the carcasses can be
evenly cooled under commercial conditions.
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4. Conclusions

Intrinsic and extrinsic factors were evaluated in the influence of myoglobin oxidation
and its superficial accumulation in fresh beef muscle color. The information provided in
this manuscript suggested that the intrinsic factors were mostly related to genetic variations
of the animals, which were impossible or very difficult to change during the muscle-to-
meat conversion. From all the intrinsic factors, ultimate pH, and muscle position were
probably the most important parameters determining meat color. On the other hand,
correctly managing extrinsic factors could improve meat color at a greater scale. Production
systems and feeding, and pre-mortem stress were considered the most important extrinsic
parameters defining meat color.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13074382/s1, Table S1: Summary of the papers related to the
influence of intrinsic factors on meat color; Table S2: Summary of the papers related to the influence
of extrinsic factors on meat color.
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