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Abstract: This paper proposes an S/X-band single-layer shared-aperture array antenna for the
multifunction radars of military ships. A unit cell of the proposed antenna consists of one S-band
element and four X-band elements. The S- and X-band elements are printed on the same layer to
prevent a blockage effect by upper elements in the stacked shared-aperture antenna. Herein, the
S-band element has a mutual complementary configuration for the X-band elements. In addition,
the unit cell of the proposed antenna is designed in a symmetrical structure, which can be flexibly
extended to a full array configuration. To verify the antenna feasibility, antenna performances are
measured in a full anechoic chamber. The fractional bandwidths of the S- and X-band elements are
13.6% and 13.4%, respectively. Moreover, in the 2 × 2 array configuration, the S-band array gain in
the bore-sight direction varies from 5.4 dBi to 3.5 dBi when the main beam is steered from 0◦ to 45◦.
Under the same conditions, the measured X-band array gain in the bore-sight direction decreases
from 13.4 dBi to 11.6 dBi.

Keywords: mutual complementary configuration; single-layer antenna; shared-aperture antennas;
array antennas

1. Introduction

In recent years, there has been increasing demand for the use of multifunction radar
(MFR) systems in military ships. The MFR includes S- and X-band radars, which are
useful for surveilling and tracking enemy targets from a long distance [1–5]. However,
mounting the S- and X-bands separately requires a large aperture size, which increases
the radar cross section (RCS) of military ships [6]. To reduce the mounting area, shared-
aperture antenna technologies can be applied in the MFR, in which S- and X-band radars
share a limited aperture size. Therefore, shared-aperture antenna technologies can easily
reduce the RCS of the military ships compared to the other RCS reduction techniques [7,8].
In previous studies on the shared-aperture antenna, stacked structure antennas using
combinations of various elements such as patches [9,10], loops [11], and dipoles [12,13],
have been reported. However, in the stacked shared-aperture antenna, the upper elements
electromagnetically block the lower elements. This blockage effect causes a degradation
of the antenna performances in the lower elements [14]. To solve the blockage effect, a
single-layer antenna configuration can be applied in which the S- and X-band elements of
the shared-aperture antenna are printed on the same layer. However, in the single-layer
configuration, the S- and X-band radars can physically interfere with each other because
of the limited printing space. Various techniques such as using a small size radiator,
diagonal array, and thinned array configuration, have been tried to solve this problem for
the single-layer structure [15,16]. However, these studies do not provide sufficient antenna
bandwidths for the MFR when the aperture size is limited. In addition, these antennas are
not designed as a symmetrical unit cell, making it difficult to maintain the MFR through
radar element replacement [17].
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In this paper, we propose an S/X-band single-layer shared-aperture array antenna
for the MFRs of military ships. A unit cell of the proposed antenna consists of one S-band
element and four X-band elements. The S- and X-band elements are printed on the same
layer to prevent a blockage effect by upper elements in the stacked shared-aperture antenna.
Herein, the S-band element should have a small radiator to avoid physical interference
with the X-band elements, which cause the narrow bandwidth characteristics of the S-band
element. Therefore, a mutual complementary configuration for the X-band elements is
applied to the S-band element, which maximizes the area for printing the radiator and
improves the antenna bandwidth. To further improve the antenna bandwidth, the S-
band element is separated into one feeding patch and a pair of parasitic patches. This
configuration has small gaps between the feeding patch and the parasitic patches so that
the antenna bandwidth can be improved by adjusting the gap size. The X-band elements
are rectangular patch antennas, and the dielectric constant and thickness of the antenna
substrate are determined to have a low physical interference with the S-band element
and a wide antenna bandwidth of the X-band elements. In addition, the unit cell of the
proposed antenna is designed in a symmetrical structure, which can be flexibly extended
to a full array configuration. The proposed shared-aperture antenna with the single-layer
configuration has broad bandwidths while avoiding the blockage effect compared to other
previous work. Thus, this antenna design is suitable for the MFR system of military ships.
To verify the antenna feasibility, antenna performances such as reflection coefficients, bore-
sight gains [18], and radiation patterns are measured in a full anechoic chamber. The
proposed unit cell is extended to a 2 × 2 array configuration to examine the array gains
and beam-steering performance.

2. Design of a Unit Cell for the Single-Layer Shared-Aperture Antenna

Figure 1 presents the geometry of the S/X-band single-layer shared-aperture antenna
for the MFRs of military ships. A unit cell of the proposed antenna consists of one S-band
element and a 2 × 2 X-band array, both of which are printed on the same layer. Since this
configuration does not include an upper stacked element, the performance degradation of
the antenna due to the blockage effect can be prevented compared to a stacked structure
antenna. Herein, the S-band patch element contains a small size radiator with a length
l1 and a width w1 to avoid physical interference with the X-band elements. However,
the small size radiator has narrow bandwidth characteristics [19,20]. Therefore, the S-
band element consists of one feeding patch and a pair of parasitic patches, which have a
mutual complementary configuration to the X-band elements. A mutual complementary
configuration means that two different shapes have a maximum area without overlapping
within a limited area. Therefore, this configuration can maximize the area of the radiator,
which can improve the bandwidth of the S-band element. Herein, the gap size between
the feeding patch and the parasitic patches is g, and the antenna bandwidth can be further
improved by adjusting the gap size g. The parasitic elements have a half-cross shape
obtained by combining two rectangular structures of different lengths. In this element, the
long rectangle has a width w2 and a length l2, and the short rectangle has a width w3 and a
length l3. The X-band elements are rectangular patch antennas with a width wx and a length
lx. In general, the length of the patch antenna can be calculated using the wavelength and
the dielectric constant [18]. However, because of the coupling characteristics, the length of
the X-band element is adjusted more by the S-band patch parameters. To obtain the wide
antenna bandwidth of the X-band elements without causing physical interference to the
S-band element, an RF-60 substrate (εr = 6.05, tan δ = 0.0018) with a thickness h is applied
to the proposed antenna. In addition, the unit cell of the proposed antenna is designed
in a symmetrical structure, which can be flexibly extended to a full array configuration.
The design parameters are obtained using the CST electromagnetic simulator [21] and are
provided in Table 1.
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Figure 1. Geometry of the proposed single-layer shared-aperture antenna: (a) isometric view of the 
S-band element; (b) isometric view of the X-band array; (c) isometric view of the unit cell; (d) side 
view of the unit cell. 

Table 1. Geometrical parameters of the proposed antenna. 

Parameters Dimension (mm) 
s 17.0 
h 3.2 
l1 21.0 
l2 21.6 
l3 8.7 
g 2.5 

w1 5.5 
w2 3.2 
w3 10.1 
lx 4.2 

Figure 1. Geometry of the proposed single-layer shared-aperture antenna: (a) isometric view of the
S-band element; (b) isometric view of the X-band array; (c) isometric view of the unit cell; (d) side
view of the unit cell.

Table 1. Geometrical parameters of the proposed antenna.

Parameters Dimension (mm)

s 17.0
h 3.2
l1 21.0
l2 21.6
l3 8.7
g 2.5

w1 5.5
w2 3.2
w3 10.1
lx 4.2
wx 4.2
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Figure 2 illustrates the comparison of antenna performances according to the S-band
element configurations. Figure 2a (Case 1) shows a small size radiator for the S-band to
avoid physical interference with the X-band elements, which has narrow bandwidth char-
acteristics. To improve the antenna bandwidth, the mutual complementary configuration
can be applied to the S-band element, as shown in Figure 2b (Case 2). The use of a mutual
complementary configuration for X-band elements can maximize the area of the radiator,
which can improve the antenna bandwidth. To further improve the antenna bandwidth,
the S-band element is separated into one feeding patch and a pair of parasitic patches, as
shown in Figure 2c (Case 3). As shown in Figure 2d, the S-band element with the mutual
complementary configuration including small gaps has a fractional bandwidth of 14.0%,
which is 13.1% greater than that of the small size radiator, while the bore-sight gain for all
cases are not significantly different.
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increase, respectively. The element widths are determined by considering the bandwidths 
and the average reflection coefficients. 

Figure 2. Comparison of antenna performances according to S-band element configurations:
(a) without the mutual complementary configuration; (b) with the mutual complementary con-
figuration; (c) with the mutual complementary configuration and gap; (d) bandwidths and bore-sight
gains according to the S-band element configuration.

Figure 3 shows the reflection coefficient according to the patch widths. The bandwidths
of the S- and X-band elements increase as S- and X-band patch widths w1 and wx increase,
respectively. The element widths are determined by considering the bandwidths and the
average reflection coefficients.
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To examine the operating principles of the S-band element, this element is modeled
as an equivalent circuit. Figure 4 presents the impedance characteristics of the full EM
simulation (CST) and the equivalent circuit model. The equivalent circuit model is obtained
using a data-fitting method [22]. In the equivalent circuit model, the feeding patch and
the parasitic patches are expressed as parallel circuits using resistances (Rn), inductances
(Ln), and capacitances (Cn) [23,24]. In addition, n is the element index, where n = 1 refers
to the feeding patch, and n = 2, 3 refers to the parasitic patches. In addition, Lf is the feed
inductance, and Cmn is the capacitive coupling between the feeding patch and the parasitic
patches. The values of each lumped element are determined to minimize the difference
between the impedance characteristics of the equivalent circuit and the EM simulation, as
shown in Table 2. Figure 4b compares the real and imaginary characteristics of the antenna
impedance of the equivalent circuit model and the full EM simulation model. In this result,
averages of the real and imaginary impedance differences are 5.9 Ω and 3.4 Ω, respectively.
Thus, the tendency of the impedance characteristics of the equivalent circuit model is
similar to the results of the full EM simulation model. Figure 4c,d show the antenna
bandwidths of the equivalent circuit model and the full EM simulation model depending
on the parameters Cmn and g, respectively. As shown in Figure 4c, the bandwidth of the
equivalent circuit model varies when the capacitance Cmn is adjusted. The bandwidth of
the full EM simulation model is then changed by adjusting the gap g, as shown in Figure 4d.
This result is similar to that demonstrated in Figure 4c. Thus, these results demonstrate
that the relation between Cmn and g is similar to the tendency of the capacitance according
to the distance between conductors. Furthermore, the bandwidth of the S-band element is
improved by adjusting the capacitive coupling between the feeding patch and parasitic
patches. Figure 5 illustrates the normalized surface current distributions of the proposed
antenna. Strong surface currents are observed in both the feeding patch and the parasitic
patches, which indicate that the feeding patch and parasitic patch are electrically coupled.

Figure 6 shows the antenna performance variation of the X-band element according
to the substrate characteristics. As shown in Figure 6a, the isolation [25,26] between
the S- and X-band elements increases with the dielectric constant. However, radiation
efficiency decreases as the dielectric constant increases [27]. Figure 6b represents the
fractional bandwidth [25] and the front-to-back (F/B) radiation ratio of the X-band element
according to the substrate thickness. The bandwidth of the X-band element increases with
substrate thickness. However, because the radiation pattern of the antenna is distorted
as the substrate thickness increases, the F/B radiation ratio decreases [28,29]. Therefore,
considering these results, the RF-60 substrate, which has a dielectric constant of 6.05 and a
thickness of 3.2 mm, is used to design the proposed antenna.

Table 2. Lumped element parameters of the equivalent circuit model.

Parameters Value

Lf 1.5 pH
R1 240.6 Ω
C1 3.91 pF
L1 600 pH
R2 125.0 Ω
C2 3.30 pF
L2 710 pH

Cm2 0.52 pF
R3 125.0 Ω
C3 3.30 pF
L3 710 pH

Cm3 0.52 pF
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3. Measurement Results of the Proposed Antenna

Figure 7 illustrates the fabricated array antenna. The manufacturing process of the
proposed antenna is as follows: The antenna radiators of the proposed unit cell (one S-
band element and four X-band elements) are printed on the RF-60 substrate using etching
techniques, as shown in Figure 7a. We then make holes for inserting the antenna connectors,
and SMA connectors are mounted on the bottom face of the substrate for all elements. In
addition, the inner conductor of the SMA connector is connected to the radiator through
soldering. Finally, the unit cell of the proposed antenna is expanded to a 2 × 2 array
configuration. All elements of the array have their own ports that can be connected
to transmitter–receiver modules for digital beamforming, as shown in Figure 7b. The
average coupling characteristics in the operating frequency are examined, and these average
couplings for the nearest element are less than −10.1 dB in the S-band and −15.9 dB in the
X-band. Next, antenna performances such as reflection coefficients, bore-sight gains, and
radiation patterns are measured in a full anechoic chamber, as shown in Figure 7c.

Figure 8 shows the reflection coefficients of the proposed antenna. The measured and
simulated reflection coefficients are indicated by the solid and dashed lines, respectively. In
the S-band, the measured fractional bandwidth is 13.6% (2.87 GHz to 3.28 GHz), which is in
good agreement with the simulated result of 15.6%. In the X-band, the measured fractional
bandwidth is 13.4% (8.60 GHz to 9.82 GHz), which is also similar to the simulated result
of 14.1%.

To confirm the feasibility of the proposed shared-aperture antenna, the array antenna
characteristics, such as a bandwidth, a bore-sight gain, array spacing, number of elements,
and unit cell height, are compared with the other previous studies, as shown in Table 3.
The results demonstrate that the proposed antenna has broad bandwidths with a small unit
cell size compared with the other antennas in previous studies.

Figure 9 presents the 2D radiation patterns of the individual element of the proposed
antenna. In the S-band, the measured and simulated peak gains are observed in the bore-
sight direction, and their values are 2.4 dBi and 3.8 dBi, respectively. In addition, the half
power beam widths (HPBWs) of the S-band element in the zx- and zy-planes are 131.4◦and
95.9◦, respectively, which are in good agreement with the simulated HBPWs of 122.9◦

and 96.1◦. The measured bore-sight gain for the X-band element is 2.6 dBi, which is the
same as the simulation result. Herein, the direction of the main beam is slightly tilted, and
the measured and simulated peak gains are 4.8 dBi and 2.7 dBi, respectively. The X-band
element HPBWs in the zx- and zy-planes are 59.2◦ and 89.1◦, respectively, which are also
similar to the simulated HBPWs of 59.4◦ and 89.1◦.
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Figure 9 presents the 2D radiation patterns of the individual element of the proposed 
antenna. In the S-band, the measured and simulated peak gains are observed in the bore-
sight direction, and their values are 2.4 dBi and 3.8 dBi, respectively. In addition, the half 
power beam widths (HPBWs) of the S-band element in the zx- and zy-planes are 131.4°and 
95.9°, respectively, which are in good agreement with the simulated HBPWs of 122.9° and 
96.1°. The measured bore-sight gain for the X-band element is 2.6 dBi, which is the same 
as the simulation result. Herein, the direction of the main beam is slightly tilted, and the 
measured and simulated peak gains are 4.8 dBi and 2.7 dBi, respectively. The X-band ele-
ment HPBWs in the zx- and zy-planes are 59.2° and 89.1°, respectively, which are also 
similar to the simulated HBPWs of 59.4° and 89.1°. 

Figure 8. Reflection coefficients of the proposed antenna: (a) for the S-band; (b) for the X-band.
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Table 3. Comparison of the proposed antenna’s performances with previous studies.

Research Operating
Band Bandwidth Bore-Sight

Gain Array Spacing Number of
Elements

Unit Cell
Height

[9] S
X

13.2%
11.7%

12.6 dBi
13.7 dBi

0.54 λ

0.51 λ

8
32 0.1 λ

[10] S
X

11.6%
18.9%

14.0 dBi
21.0 dBi

0.73 λ

0.69 λ

4
36 1.4 λ

[11] C
X

4.6%
4.6%

10.0 dBi
12.0 dBi

0.55 λ

0.72 λ

4
4 0.1 λ

[12] S
Ka

50.3%
33.9%

10.7 dBi
14.8 dBi

0.30 λ

3.0 λ

4
4 2.2 λ

[15] S
C

3.2%
4.6%

20.0 dBic
20.8 dBic

1.0 λ

1.2 λ

32
32 0.02 λ

This work S
X

13.6%
13.4%

5.4 dBi
13.4 dBi

0.34 λ

0.51 λ

4
16 0.1 λ
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Figure 10 represents the beam-steering performance of the 2 × 2 array configuration.
To verify the beam-steering performance of the proposed antenna, the active element
patterns (AEP) for all array elements are measured in a full anechoic chamber. To measure
the AEP for each element of the array, a network analyzer with an RF cable is connected to
only one element, and all other elements are terminated. After repeating this procedure for
all elements, the total array gain of the proposed antenna is calculated using the obtained
AEPs based on the following equation [30,31]:

Parray(θ, φ) =

N
∑

n=1
wnvn(θ, φ)√

N
∑

n=1
|wn|

2
, (1)

where vn and wn represent the complex AEP vector and the weighting vector of the nth
element, respectively. In the S-band, the array gains in the bore-sight direction based on the
measurement and simulation are 5.4 and 6.1 dBi, respectively. Furthermore, the maximum
gain varies from 5.4 dBi to 3.5 dBi when the main beam is steered from θ = 0◦ to 45◦. In
the X-band result, the measured array gain in the bore-sight direction is 13.4 dBi, which
is in good agreement with the simulation result of 14.5 dBi. Herein, the bore-sight gain
decreases from 13.4 dBi to 11.6 dBi under the same beam-steering conditions. Figure 11
shows the total active reflection coefficients (TARCs) [32] and the envelope correlation
coefficients (ECCs) [33] of the proposed 2 × 2 array. The average TARCs for Port 1 and
Port 8 (port numbers are marked in Figure 5) are observed when the main beam is steered
from θ = 0◦ to 45◦. The average TARCs are −9.5 dB in the S-band and −11.8 dB in the
X-band, as shown in Figure 11a,b. In addition, the ECCs for the S-band (from Port 1 to
Port 4) and for the X-band (from Port 5 to Port 8) are also examined. The average ECCs for
the nearest element are observed as 0.07 in the S-band and 0.002 in the X-band, as shown
in Figure 11c,d. The result demonstrates that the proposed shared-aperture antenna is
suitable for MFR applications.
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4. Conclusions

We investigated the S/X-band single-layer shared-aperture array antenna for the MFRs
of military ships. The unit cell of the proposed antenna consisted of one S-band element
and four X-band elements, which were printed on the same layer to prevent the blockage
effect by the upper element in the stacked shared-aperture antenna. To improve the S-
band antenna bandwidth, the S-band element consisted of one feeding patch and a pair of
parasitic patches, which is a mutual complementary configuration to the X-band elements.
The unit cell was extended to the 2 × 2 array configuration to examine of the array gains
and beam-steering performances. The antenna bandwidths of the S- and X-band elements
were 13.6% and 13.4%, respectively. The array gains of the S- and X-bands in the bore-sight
direction based on the measurement were 5.4 and 13.4 dBi, respectively. The maximum
gain of the S-band element varied from 5.4 dBi to 3.5 dBi when the main beam was steered
from 0◦ to 45◦. Under the same conditions, the bore-sight gain decreased from 13.4 dBi to
11.6 dBi in the X-band. The result demonstrated that the proposed shared-aperture antenna
is suitable for MFR applications.
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