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Abstract: SQL injection attack is considered one of the most dangerous vulnerabilities exploited to
leak sensitive information, gain unauthorized access, and cause financial loss to individuals and
organizations. Conventional defense approaches use static and heuristic methods to detect previously
known SQL injection attacks. Existing research uses machine learning techniques that have the
capability of detecting previously unknown and novel attack types. Taking advantage of deep
learning to improve detection accuracy, we propose using a probabilistic neural network (PNN)
to detect SQL injection attacks. To achieve the best value in selecting a smoothing parament, we
employed the BAT algorithm, a metaheuristic algorithm for optimization. In this study, a dataset
consisting of 6000 SQL injections and 3500 normal queries was used. Features were extracted based
on tokenizing and a regular expression and were selected using Chi-Square testing. The features
used in this study were collected from the network traffic and SQL queries. The experiment results
show that our proposed PNN achieved an accuracy of 99.19% with a precision of 0.995%, a recall of
0.981%, and an F-Measure of 0.928% when employing a 10-fold cross-validation compared to other
classifiers in different scenarios.

Keywords: cybersecurity; SQL injection attacks; deep learning; probabilistic neural network; BAT
optimization algorithm

1. Introduction

The IT infrastructure is experiencing swift growth, and our dependence on technology
is increasing at an unprecedented pace, fueled by exponential expansion. This growth
has revolutionized the way we live and work, bringing with it both opportunities and
challenges. Nearly all of the applications that we use in our daily life are web-based.
These applications are made available online without borders to make human lives better.
Since these applications can be accessed from any part of the world, this brings a security
challenge in the form of uncontrolled and unauthorized access [1]. While using these
online web applications or websites, data are generated from the user stored in these web
applications or the website’s backend database. These databases are managed by DBMS,
which work by running the statements or queries written in SQL. The front-end application
and backend databases are vulnerable to many types of attacks as they are being accessed
through the internet. Among the reported vulnerabilities by OWASP, SQL injection attacks
are included in the top 10 vulnerabilities [2]. According to recent trends, the attack rate has
increased by over 300% over the last ten years, with attackers using sophisticated methods,
such as obfuscated code and encryption to avoid detection [3]. An SQL injection attack is
performed by injecting or inserting an SQL query through the data input field from the
client side into the web application or website [4]. The user input query can be malicious,
and if the query is executed successfully it may lead to modifying the database, spoofing
identity, leaking sensitive information, and causing repudiation [5].
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SQL injection attacks are one of the most dangerous flaws that attackers use to obtain
private data without permission, steal money, and hurt reputations [6]. Information
disclosure, data manipulation, account takeover, code execution, and denial of service are
some of the most hazardous vulnerabilities exploited as a result of SQL injection attacks.
Attackers may access and reveal sensitive data, including usernames, passwords, credit
card numbers, and personal information via SQL injection attacks. This data can then be
exploited for identity theft, fraud, and other nefarious purposes. Moreover, they have the
ability to alter, remove, or even seize control of all of the database’s data, which might result
in the loss of crucial information as well as financial and reputational harm. Moreover,
attackers have the ability to run malicious code on the targeted machine, obtain remote
access to it, and take control of it. This allows for the theft of confidential data, data
destruction, and other nefarious actions. Moreover, SQL injection attacks may be used
to conduct denial-of-service attacks by bombarding the targeted system with many SQL
queries, resulting in the system crashing or going down and inflicting harm to the system’s
reputation and finances [7,8]. By adopting security best practices, performing routine
vulnerability assessments, and using sophisticated detection and prevention methods, such
as machine learning-based approaches, companies may take proactive steps to stop and
identify SQL injection attacks.

Web applications need to learn and sanitize the user input from external sources
for any possible malicious SQL injection. Obtaining unauthorized access may be due to
software developers’ poor programming practices and the cybercriminals who intentionally
design the attack behind the scenes [9]. Cybercriminals regularly work on practices to get
hold of sensitive data to achieve their objectives. Four types of SQL injection attacks are
Error based SQL injection, UNION based SQL injection, Blind SQL injection, and Out of
band SQL injection [10]. The Out of band SQL type is termed one of the common attacks,
occurring when an invalid common is entered as an input, which triggers the response from
the database server. The database server may respond with an error message containing
the details about the data structure, version of DBMS, type and version of operating
stem running and, in some cases, display the complete query results. UNION-based SQL
injection attacks use the UNION operator of SQL, allowing multiple statements to be
combined into at least one among the combined query performing the malicious activities
by extending the output generated by the original query. In a Blind SQL injection attack,
a query is inserted, requiring the database to respond to the true or false question [11].
Attackers analyze the response to a question and can obtain sensitive information. Out of
band SQL injection is a very uncommon attack type, for the most part; it relies on features
allowed on the database server to be utilized by the web application. Fundamentally, this
attack is performed when an attacker is inept at utilizing the same attack channel to obtain
the results.

In recent times, deep learning, a subset of machine learning, has played an essential
role in the classification of natural language processing and image pattern recognition [12].
Several studies have been conducted on how to benefit from machine learning in cyber-
security [13–15]. A neural network, a part of deep learning that imitates the human brain
by making a network of neurons that are combined and modelled as a neural network,
has been applied in detecting malicious code attacks [16]. The significant advantages
provided by the neural network have led to the elimination of machine learning problems
by increasing detection accuracy, and many studies have reported the same.

To improve the accuracy of SQL injection attacks, researchers have developed var-
ious techniques, including signature-based detection and anomaly-based detection [17].
However, these techniques often have limitations in their ability to accurately detect and
prevent SQL injection attacks. The main contribution of this work is the development of a
PNN-based model for detecting SQL injection attacks. The model is trained using a large
dataset of SQL queries, both legitimate and malicious, and is able to accurately distinguish
between the two types of queries. This allows the model to identify and block SQL injection
attacks with a high degree of accuracy, while minimizing false positives. Our experiments



Appl. Sci. 2023, 13, 4365 3 of 11

uncover how PNN performed better when smoothing parameters were selected using
the BAT optimization algorithm. Therefore, it establishes that the proposed approach can
effectively detect SQL injection attacks.

The rest of the paper is organized as follows: Section 2 provides the details about
related work. Section 3 details the overview of the proposed approach for detecting SQL
injection using a Probabilistic Neural network. In Section 4, the experimental results and
implementation details are provided. Section 5 concludes the work.

2. Related Work

The majority of conventional SQL injection attack detection methods depend on
anomaly- and signature-based detection techniques. The use of pre-established patterns,
rules, or signatures to identify known SQL injection threats is known as signature-based
detection [18,19]. This strategy often entails constructing a database of known SQL injection
attack patterns and evaluating the incoming traffic against this database to detect possible
attacks. Nevertheless, signature-based detection has drawbacks since it cannot identify
attacks that were previously undetected and is readily thwarted by attackers who alter the
attack pattern.

Conventional SQL injection attack detection approaches also include the use of two
input validation methods, such as whitelist and backlist [20]. Whitelisting works by filtering
the content of the input. If any character or set of characters is present in the SQL query,
such a query will be blocked for further processing. Although whitelisting works inversely
to blacklisting, if a character or set of characters is absent, such a query will be blocked
from further processing. The major challenge with such validation methods is that they
cannot detect new SQL injections, and lists need frequent updating. The amount of time
between the detection of a new SQL injection query and updating the list may be long, and
cybercriminals may benefit from the time gap and may perform the attack.

Several studies have applied machine learning for the detection of malware attacks.
Among the most popular include SQL injection, cross-site request forgery, cross-site script-
ing, distributed denial of service, broken authentication, phishing, etc. A study by [21]
proposed an approach for SQL injection that employs a Naive Bayes classifier built on
role-based access control. The experimental results show an accuracy of 93.3% with a
precision of 1.0% and recall of 0.89%. The study is limited only to a specific type of SQL
injection attack. A study by [22] proposed an approach for the prevention of SQL injection
by using four different classifiers, such as Support Vector Machines (SVM), Artificial Neural
Networks (ANN), Boosted Decision Tree and Decision Tree. In this study, the authors have
used a database of 1100 vulnerable samples of SQL injection. The comparison of results
among the four classifiers shows that the Decision Tree performed better. The downside
of this approach is its huge processing time. A study by [23] proposed REGEX, a regular
expressions filter approach for SQL injection attack detection. In this study, a dataset
of 20,474 queries was used. The downside of using the regular expressions filter is that
it cannot detect novel SQL injection attacks. A few studies have been conducted using
artificial neural networks, including a study by [24] that proposed an approach based on
deep learning and random projection to detect malicious JavaScript. For feature extraction,
denoising auto-encoders were used. This study is limited to the detection of only malicious
JavaScript attacks. A study by [25] proposed and implemented a Fuzzy neural network
to build an expert system for SQL injection attack detection. Expert systems are complex
in their development and time-consuming. A study by [26] proposed an approach called
CODDLE to detect malicious injection attacks based on deep learning. A Convolutional
Deep Neural Network was used, and the new encodes of SQL/XSS symbols were at the
pre-processing stage. Experimental results show that an accuracy of 95% was achieved,
along with a precision of 99% and a recall value of 92%.
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3. Detection of SQL Injection Using Probabilistic Neural Network

The presented method of detecting SQL injection attacks is based on probabilistic
neural networks to achieve the highest detection accuracy. The methods employ a self-
learning approach that is adept in the detection of unknown SQL injection attacks. The
self-learning approach, coupled with deep learning, enables the selection of complex
features from an SQL query to distinguish between malicious and benign SQL queries. The
steps involved in this proposed approach are presented in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 11 
 

3. Detection of SQL Injection Using Probabilistic Neural Network 
The presented method of detecting SQL injection attacks is based on probabilistic 

neural networks to achieve the highest detection accuracy. The methods employ a self-
learning approach that is adept in the detection of unknown SQL injection attacks. The 
self-learning approach, coupled with deep learning, enables the selection of complex fea-
tures from an SQL query to distinguish between malicious and benign SQL queries. The 
steps involved in this proposed approach are presented in Figure 1. 

 
Figure 1. Architecture of the Proposed Approach. 

3.1. Data Collection 
SQL injection datasets are not publicly accessible, and some organizations are not 

willing to share the dataset. In this approach, we collected data from a python library 
known as Lib-injection, which contains all forms of SQL injections [27]. We collected 6000 
SQL injection queries and 3500 normal SQL queries. 

3.2. Pre-Processing 
The next stage after the data collection is pre-processing. Data pre-processing is the 

crucial stage in developing a machine learning-based model. Data pre-processing enables 
the cleaning and preparing of the data from the raw data and making it fit for the model. 
During pre-processing the data are standardized, noise and repeated data are removed, 
and missed values are identified. In this study, we performed tokenizing on the SQL que-
ries where the query is broken down into strings, such as keywords, symbols, phrases, 
and punctuation marks, also called tokens. In this approach to detect the SQL injection, 
each character is kept, and the token is produced through regular expressions. We utilized 
the RegEx module of Phyton for regular expressions [28]. 

3.3. Feature Extraction 
Feature extraction, a dimensionality reduction, helps identify important features in 

the given feature space. It is a known rule of machine learning that not all of the extracted 
features will contribute to achieving the accuracy required to build an efficient model. In 
this study, we use the Chi-Square test for the feature section. A Chi-Square test is a statis-
tical test used to test the independence of two events. Based on the two variables, the ob-
served O and expected E Count are computed. Chi-Square calculates the deviations of E 
from O. Equation (1) represents the formula for the Chi-Square. The advantages of using 
Chi-Square are its robustness regarding the data distribution, it is computational and it 
extracts comprehensive test information. The features used in this study were collected 
from the network traffic, and the SQL queries are given in Table 1. The extracted set of 
features has never been used in the detection of SQL injection attacks. c denotes the degree 
of freedom. 

Table 1. List of Selected Features. 

Feature Name Feature Description 
Token_Count Counts the presence of specific tokens in the whole dataset 

Token_Type 
Category to which the token belongs, such as plain text or SQL 
injection attack 

Token_Value The actual parameter value of the token 
Type_Protocol Transmission Control Protocol (TCP) 

Figure 1. Architecture of the Proposed Approach.

3.1. Data Collection

SQL injection datasets are not publicly accessible, and some organizations are not
willing to share the dataset. In this approach, we collected data from a python library
known as Lib-injection, which contains all forms of SQL injections [27]. We collected 6000
SQL injection queries and 3500 normal SQL queries.

3.2. Pre-Processing

The next stage after the data collection is pre-processing. Data pre-processing is the
crucial stage in developing a machine learning-based model. Data pre-processing enables
the cleaning and preparing of the data from the raw data and making it fit for the model.
During pre-processing the data are standardized, noise and repeated data are removed, and
missed values are identified. In this study, we performed tokenizing on the SQL queries
where the query is broken down into strings, such as keywords, symbols, phrases, and
punctuation marks, also called tokens. In this approach to detect the SQL injection, each
character is kept, and the token is produced through regular expressions. We utilized the
RegEx module of Phyton for regular expressions [28].

3.3. Feature Extraction

Feature extraction, a dimensionality reduction, helps identify important features in
the given feature space. It is a known rule of machine learning that not all of the extracted
features will contribute to achieving the accuracy required to build an efficient model.
In this study, we use the Chi-Square test for the feature section. A Chi-Square test is a
statistical test used to test the independence of two events. Based on the two variables, the
observed O and expected E Count are computed. Chi-Square calculates the deviations of E
from O. Equation (1) represents the formula for the Chi-Square. The advantages of using
Chi-Square are its robustness regarding the data distribution, it is computational and it
extracts comprehensive test information. The features used in this study were collected
from the network traffic, and the SQL queries are given in Table 1. The extracted set of
features has never been used in the detection of SQL injection attacks. c denotes the degree
of freedom.

x2
c∑

(
oi − Ei)

2

Ei
(1)
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Table 1. List of Selected Features.

Feature Name Feature Description

Token_Count Counts the presence of specific tokens in the whole dataset

Token_Type Category to which the token belongs, such as plain text or SQL
injection attack

Token_Value The actual parameter value of the token

Type_Protocol
Transmission Control Protocol (TCP)
Internet Protocol (IP)
Internet Control Message Protocol (ICMP)

Length_TCP Data Offset; The size of the TCP header in 32-bit words

http_content_length Length of Entity Body

Type_Port_Req Port Type

Source_Data_length Number of Characters in a String

3.4. Probabilistic Neural Network

A neural network consists of interconnected layers of artificial neurons. The neurons in
the input layer are connected to the neurons in the hidden layer, which are then connected
to the output neuron. The weight of each connection represents how much impact that
particular connection has on a neuron’s activity. One of the most popular neural networks is
called a probabilistic neural network (PNN) [29]. PNNs are based on Bayesian inference and
are used for classification and regression tasks, such as predicting prices or ranking search
results. Every time the PNN model creates a piece of text, it becomes better at predicting
which words are likely to come next. This process is similar to the way humans learn
language and grammar from the environment. The PNN predicts the value of a variable
by combining information from other variables in an inferred probabilistic way [30]. The
kernel performs the basic operation in PNN. It is used to compute the probability of a
particular outcome given an input. A kernel can be seen as a function that takes an input
and maps it to another dimension (feature map). The kernel is then multiplied by all the
dot products with each feature map. The advantage of using PNN is that it is significantly
faster in training, produces more accurate results than multilayer perceptron networks, and
is relatively insensitive to outliers. In view of the advantages of PNN, we extend it to the
detection of SQL injection attacks.

PNNs have four types of layers, an input layer, a pattern layer, a summation layer, and
an output layer; inputs flow through a series of “hidden” layers before reaching an output
level, as shown in Figure 2 [31]. The function of the input layer is to obtain the input and
distribute it to the neurons. Once the input is delivered from the input layer to the pattern
layer in the form of a pattern xij, which is the neuron vector, the output is computed by the
pattern layer using Equation (2).

∅ij(x) =
1

(2π)
d
2 σd

exp[
(x− x ij)

T(x− xij
)

2σ2 ] (2)

where d represents the dimension related to the pattern vector x, and σ represents the
parameter for smoothing. The summation layer performs the estimation of the maximum
likelihood of pattern x being categorized in Ci classes. The outputs produced by neurons are
combined and averaged according to which particular class they belong. The summation
layer is based on Equation (3).

pi(x) =
1

(2π)
d
2 σd

1
Ni

∑Ni
j=1 exp[

(x− x ij)
T(x− xij

)
2σ2 ] (3)
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Ĉ(x) = argmax{pi(x)}, i = 1, 2 . . . , m (4)
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Based on the Bayes criterion, the final output is computed using Equation (4). Where
C(x) represents the class estimation with respect to the pattern x. m denotes the total
samples in a class.

3.5. Smoothing Parameter Selection

The performance of the proposed approach is based on the PNN for SQL injection
attack detection and relies on the smoothing parameters, which show the distribution
spread and define how many data are utilized to fit each local polynomial. Regardless
of the complex nature of the PNN, it only has one training parameter in the form of a
smoothing parameter. It is crucial that a smoothing parament must have the best value for
performance enchainment. Obtaining the best value for the smoothing parameters can be
achieved through either a numerical or heuristic-based natural technique. Conventionally,
the best value of soothing paraments was achieved through the hit and error method. The
downside of using the hit and error method is that it is a very time-consuming procedure
that will affect the neural network’s performance. We employ the BAT algorithm in this
approach, a nature-inspired optimization algorithm based on the bat developed by [32].
Compared to other optimization methods, this one can find nearly optimal solutions to
hard optimization problems in a reasonable amount of time. This is because the BAT
algorithm uses a well-balanced approach to exploration and exploitation to search the
solution space and avoid local optima. The BAT algorithm can be used to solve many
optimization problems because it is easy to set up, flexible, and doesn’t need many tuning
parameters. The BAT algorithm also has the ability to work in noisy and dynamic situations,
which are typical of real-world issues. Overall, the BAT algorithm is a powerful method of
optimization that has many benefits, such as being effective, adaptable, and resilient.

A bat typically expands its sensing capabilities to detect prey efficiently, and this
behavior guides it towards the articulation of an optimization algorithm and it can be
employed for solving a real-time problem. Suppose a bat B at a certain position pi flies
with a velocity vi to hunt prey, with a changing wavelength λ and a loudness A0 even
in complete darkness [33]. Algorithm 1 defines the working of a standard bat algorithm
obtained from [34].



Appl. Sci. 2023, 13, 4365 7 of 11

Algorithm 1: Standard Bat Algorithm

Begin
Initialize position, velocity and other parameters for each bat
While (Stop criteria is met?)

Randomly generates the frequency
Update the velocity
Update the position

If rand<rt
i

Update the position
End

Calculate the fitness;
If (rand<At

i )&& ( f
(

xt
i
)
< f (x∗))

Replace the position with the new one
Update rt

i and At
i

End
Select the current global best position

End
Output the best position

End

3.6. Model Evaluation

In this study, the evaluation of the model is performed with the help of a confusion
matrix. The confusion matrix provides a powerful statistical tool for measuring the model’s
performance by evaluating binary classifiers. It enables one to determine how well a
classifier conducted testing on a held-out set is. If the classifier is performing poorly or
the model is not able to be understood, then it is likely that the model will perform poorly
on a test set. The best way to catch and improve upon these types of errors is to perform
an analysis. This involves taking the test set predictions and comparing them with actual
values. After processing the test set, we can see that our classifier has generated some false
positives and negatives. Given this information, we might decide to retrain our model
or make a few tweaks to improve the classifier’s performance. Confusion matrices for a
classifier are typically displayed as cells in a 2 × 2 grid. The first row describes the “true
state” of each example in the dataset, and the second row describes the “predicted state”
based on the classification rule as given in Figure 3.
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Based on the confusion matrix, we used four evaluation methods to evaluate the
proposed model, including the accuracy, precision, recall, and F-Measure, as given in
Equations (5)–(8).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)
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Precsion =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F−Measure = 2× Precesion∗Recall
Precesion + Recall

(8)

4. Experimental Results and Implementation Details

The experiments were conducted using a PC with an Intel(R) Core i7-7500 CPU @
2.70 GHZ, 2 Core(s), 4 Logical Processor(s) with 4 GB of primary memory, and the whole
environment was simulated using the python programming language and the PyTorch
deep learning framework [35]. The dataset used in the proposed approach comprised
malicious and benign network traffic generated from a virtual traffic server designed to
mimic a real environment. The dataset included 6000 malicious and 3500 benign SQL
queries, captured inbound to a web application that included features such as TCP and
HTTP information about packets. The web traffic also carried malicious and benign SQL
injection attack queries. The SQL features were generated using a tokenizing method, such
as token count, token type, and token value. The features extracted for this study were
selected by employing the Chi-Square testing method to obtain such features that would
contribute towards high accuracy; these were retained and are given in Table 1.

In this study, a 10-fold cross-validation scheme was employed to distribute the data
equally for training and testing. A k-fold cross-validation scheme divides the original
dataset into a training set to train the model, and a testing set to test the predictive model.
The range of k varies from 1 to k − 1. The 10-fold cross-validation divides the entire dataset
into 10 distinct data subsets. During the experiment for each data subset, the remainder
of the 9 subsets are used to train the classifier, and the final subset is taken as a final test
set. The results obtained from the experiments using the proposed approach, and the
comparison with other machine learning algorithms, are shown in Table 2.

Since we used the BAT algorithm as the smoothing parameter estimation, which
helped us to achieve the best value and great prediction accuracy, the parameter settings
used in the approach were given as:

1. The bat size was limited to 30, and the number of iterations was set to a maximum of
100, as represented in Equation (9).

Tmax = 100 (9)

2. For each bat, the position was calculated randomly. The position of the bat gave the
smoothing parameter h.

3. The bat’s primary position was randomly generated with a uniform distribution of [0,
10].

4. The fitness function ff, as given in Equation (10), was used; this takes the induvial
solution of a problem as the input and generates the output to define “how fit and
good” the solution is with respect to the actual problem.

f f = min
1
n∑n

i=1

(
yi − ŷi)

2 (10)

5. The position of the bat was updated to:

Bnew = Bold + A0 (11)

6. Steps 4 and 5 were repeated until Tmax was achieved.
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The experiments were conducted in three scenarios based on the data partition, as
given in Tables 2–4. All the classifiers’ parameters were kept the same, and the feature size
was also kept the same. The experimental results show that the PNN in all three scenarios
performed better. While using the 10-fold cross-validation, an accuracy of 99.19% was
achieved compared to all classifiers in all three scenarios.

Scenario 1: Using 100% Training Data.

Table 2. Results obtained using 100% Training.

Classifier Accuracy Precision Recall F-Measure

PNN 98.69% 0.975% 0.961% 0.964%
SVM 95.62% 0.95% 0.884% 0.878%
Decision Tree 96.31% 0.917% 0.926% 0.916%
ANN 97.25% 0.984% 0.876% 0.932%

Scenario 2: Partitioning the data into 80:20 Training and Testing.

Table 3. Results obtained using 80:20 partition.

Classifier Accuracy Precision Recall F-Measure

PNN 98.11% 0.978% 0.972% 0.917%
SVM 96.65% 0.942% 0.975% 0.978%
Decision Tree 97.42% 0.96% 0.889% 0.881%
ANN 98.18% 0.984% 0.876% 0.932%

Scenario 3: Using 10-Fold Cross Validation.

Table 4. Results obtained using 10-Fold Cross Validation.

Classifier Accuracy Precision Recall F-Measure

PNN 99.19% 0.995% 0.981% 0.928%
SVM 96.32% 0.96% 0.889% 0.881%
Decision Tree 97.33% 0.972% 0.968% 0.938%
ANN 98.54% 0.98% 0.963% 0.924%

5. Conclusions

SQL injection attacks continue to be one of the topmost security challenges affecting
financial, health, and other essential data. The challenge of detecting SQL injection attacks
has increased its importance as our dependence on the internet is growing exponentially.
The main objective of this study was to investigate the effectiveness of the proposed
PNN for SQL injection detection. In this study, it has been established that using the
BAT algorithm for optimization helped achieve high accuracy. The selection of the best
smoothing parameter enabled the PNN to achieve an accuracy of 99.19% with a precision of
0.995%, a recall of 0.981%, and an F-Measure of 0.928%. Compared to the studies [21,22,24],
the proposed approach performed better. The advantage of this study is that high accuracy,
fast performance, and low false positive rates have been achieved. However, the main
challenge is the high complexity and the sensitivity to noise on irrelevant features.

Author Contributions: Conceptualization, F.K.A. and N.A.K.; Methodology, F.K.A. and N.A.K.;
Validation, F.K.A.; Formal analysis, F.K.A. and N.A.K.; Investigation, N.A.K.; Writing—Original draft,
F.K.A. and N.A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for
Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia, [Grant No. 2896].

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2023, 13, 4365 10 of 11

Informed Consent Statement: Not applicable.

Data Availability Statement: https://pypi.org/project/libinjection-python (accessed on 1 March
2023).

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. Khan, N.; Abdullah, J.; Khan, A.S. Defending Malicious Script Attacks Using Machine Learning Classifiers. Wirel. Commun. Mob.

Comput. 2017, 2017, 5360472. [CrossRef]
2. OWASP: Top 10 Web Application Security Risks. 2021. Available online: https://owasp.org/www-project-top-ten/ (accessed on

1 March 2023).
3. SQL Injection Attacks Rise Over 300% in 10 Years, Imperva. Available online: https://www.imperva.com/blog/sql-injection-

attacks-rise-over-300-in-10-years/ (accessed on 1 March 2023).
4. Khan, N.; Abdullah, J.; Khan, A.S. Towards vulnerability prevention model for web browser using interceptor approach. In

Proceedings of the 2015 9th International Conference on IT in Asia (CITA), Sarawak, Malaysia, 4–5 August 2015. [CrossRef]
5. Jain, V.; Gaur, M.S.; Laxmi, V.; Mosbah, M. Detection of SQLite Database Vulnerabilities in Android Apps. In Proceedings of

the Information Systems Security: 12th International Conference, ICISS 2016, Jaipur, India, 16–20 December 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 521–531. [CrossRef]

6. Kareem, F.Q.; Ameen, S.Y.; Salih, A.A.; Ahmed, D.M.; Kak, S.F.; Yasin, H.M.; Ibrahim, I.M.; Ahmed, A.M.; Rashid, Z.N.; Omar, N.
SQL Injection Attacks Prevention System Technology: Review. Asian J. Res. Comput. Sci. 2021, 6, 13–32. [CrossRef]

7. Aldhyani, T.H.H.; Alkahtani, H. Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep
Learning Model. Mathematics 2023, 11, 233. [CrossRef]

8. Aldhyani, T.H.H.; Alkahtani, H. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection
Systems: Cloud Computing Environments. Sensors 2022, 22, 4685. [CrossRef]

9. Su, G.; Wang, F.; Li, Q. Research on SQL Injection Vulnerability Attack model. In Proceedings of the 5th IEEE International
Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 23–25 November 2018; pp. 217–221.

10. Lee, I.; Jeong, S.; Yeo, S.; Moon, J. A novel method for SQL injection attack detection based on removing SQL query attribute
values. Math. Comput. Model. 2012, 55, 58–68. [CrossRef]

11. Lavecchia, A. Deep learning in drug discovery: Opportunities, challenges and future prospects. Drug Discov. Today 2019, 24,
2017–2032. [CrossRef]

12. Torres, J.M.; Comesaña, C.I.; Garcia-Nieto, P.J. Machine learning techniques applied to cybersecurity. Int. J. Mach. Learn. Cybern.
2019, 10, 2823–2836. [CrossRef]

13. Alkahtani, H.; Aldhyani, T.H.H. Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices.
Sensors 2022, 22, 2268. [CrossRef] [PubMed]

14. Yavanoglu, O.; Aydos, M. A review on cyber security datasets for machine learning algorithms. In Proceedings of the 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2186–2193.

15. Khan, N.A.; Alzaharani, M.Y.; Kar, H.A. Hybrid Feature Classification Approach for Malicious JavaScript Attack Detection using
Deep Learning. Int. J. Comput. Sci. Inf. Secur. 2020, 5, 18.

16. Alqarni, A.A.; Alsharif, N.; Khan, N.A.; Georgieva, L.; Pardade, E.; Alzahrani, M.Y. MNN-XSS: Modular Neural Network Based
Approach for XSS Attack Detection. Comput. Mater. Contin. 2022, 70, 4075–4085. [CrossRef]

17. Khan, N.; Abdullah, J.; Khan, A.S. A Dynamic Method of Detecting Malicious Scripts Using Classifiers. Adv. Sci. Lett. 2017, 23,
5352–5355. [CrossRef]

18. Alkahtani, H.; Aldhyani, T.H.H. Developing Cybersecurity Systems Based on Machine Learning and Deep Learning Algorithms
for Protecting Food Security Systems: Industrial Control Systems. Electronics 2022, 11, 1717. [CrossRef]

19. Khan, N.; Johari, A.; Adnan, S. A Taxonomy Study of XSS Vulnerabilities. Asian J. Inf. Technol. 2017, 16, 169–177.
20. Aliero, M.S.; Qureshi, K.N.; Pasha, M.F.; Ahmad, A.; Jeon, G. Detection of structure query language injection vulnerability in web

driven database application. Concurr. Comput. Pract. Exp. 2020, 34, 5936. [CrossRef]
21. Joshi, A.; Geetha, V. SQL Injection detection using machine learning. In Proceedings of the 2014 International Conference on

Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari District, India, 10–11 July
2014; pp. 1111–1115.

22. Kamtuo, K.; Soomlek, C. Machine Learning for SQL injection prevention on server-side scripting. In Proceedings of the 2016
International Computer Science and Engineering Conference (ICSEC), London, UK, 29 June–1 July 2016; pp. 1–6.

23. Kranthikumar, B.; Velusamy, R.L. SQL injection detection using REGEX classifier. J. Xi’an Univ. Archit. Technol. 2020, 12, 800–809.
24. Wang, Y.; Cai, W.-D.; Wei, P.-C. A deep learning approach for detecting malicious JavaScript code. Secur. Commun. Netw. 2016, 9,

1520–1534. [CrossRef]
25. Abaimov, S.; Bianchi, G. CODDLE: Code-Injection Detection With Deep Learning. IEEE Access 2019, 7, 128617–128627. [CrossRef]
26. Kusy, M.; Zajdel, R. Probabilistic neural network training procedure based on Q(0)-learning algorithm in medical data classifica-

tion. Appl. Intell. 2014, 41, 837–854. [CrossRef]

https://pypi.org/project/libinjection-python
http://doi.org/10.1155/2017/5360472
https://owasp.org/www-project-top-ten/
https://www.imperva.com/blog/sql-injection-attacks-rise-over-300-in-10-years/
https://www.imperva.com/blog/sql-injection-attacks-rise-over-300-in-10-years/
http://doi.org/10.1109/cita.2015.7349842
http://doi.org/10.1007/978-3-319-49806-5_31
http://doi.org/10.9734/ajrcos/2021/v10i330242
http://doi.org/10.3390/math11010233
http://doi.org/10.3390/s22134685
http://doi.org/10.1016/j.mcm.2011.01.050
http://doi.org/10.1016/j.drudis.2019.07.006
http://doi.org/10.1007/s13042-018-00906-1
http://doi.org/10.3390/s22062268
http://www.ncbi.nlm.nih.gov/pubmed/35336437
http://doi.org/10.32604/cmc.2022.020389
http://doi.org/10.1166/asl.2017.7374
http://doi.org/10.3390/electronics11111717
http://doi.org/10.1002/cpe.5936
http://doi.org/10.1002/sec.1441
http://doi.org/10.1109/ACCESS.2019.2939870
http://doi.org/10.1007/s10489-014-0562-9


Appl. Sci. 2023, 13, 4365 11 of 11

27. Libinjection-Python. Available online: https://pypi.org/project/libinjection-python/ (accessed on 5 January 2023).
28. Regular Expression Operations. Available online: https://docs.python.org/3/library/re.html (accessed on 5 January 2023).
29. Zeinali, Y.; Story, B.A. Competitive probabilistic neural network. Integr. Comput.-Aided Eng. 2017, 24, 105–118. [CrossRef]
30. Chang, D.T. Probabilistic Deep Learning with Probabilistic Neural Networks and Deep Probabilistic Models. arXiv 2021,

arXiv:2106.00120.
31. Zhu, H.; Lu, L.; Yao, J.; Dai, S.; Hu, Y. Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering

and probabilistic neural network model. Sol. Energy 2018, 176, 395–405. [CrossRef]
32. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization; Springer:

Berlin/Heidelberg, Germany, 2010.
33. Naik, S.M.; Jagannath, R.P.K.; Kuppili, V. Estimation of the Smoothing Parameter in Probabilistic Neural Network Using

Evolutionary Algorithms. Arab. J. Sci. Eng. 2020, 45, 2945–2955. [CrossRef]
34. Zhang, M.; Cui, Z.; Chang, Y.; Ren, Y.; Cai, X.; Wang, H. Bat algorithm with individual local search. In International Conference on

Intelligence Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 442–451.
35. PyTorch Machine Learning Framework. Available online: https://pytorch.org (accessed on 5 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://pypi.org/project/libinjection-python/
https://docs.python.org/3/library/re.html
http://doi.org/10.3233/ICA-170540
http://doi.org/10.1016/j.solener.2018.10.054
http://doi.org/10.1007/s13369-019-04227-5
https://pytorch.org

	Introduction 
	Related Work 
	Detection of SQL Injection Using Probabilistic Neural Network 
	Data Collection 
	Pre-Processing 
	Feature Extraction 
	Probabilistic Neural Network 
	Smoothing Parameter Selection 
	Model Evaluation 

	Experimental Results and Implementation Details 
	Conclusions 
	References

