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Abstract: The analysis of variance-projected difference resolution (ANOVA-PDR) was proposed and
compared with multivariate classification for its potential in detecting possible food adulteration in
extra virgin olive oils (EVOOs) by UV-Vis spectra. Three factors including origin, adulteration level,
and adulteration type were systematically examined by the ANOVA-derived methods. The ANOVA-
PDR quantitatively presented the separation of the internal classes according to the three main factors.
Specifically, the average ANOVA-derived PDRs of the EVOO origination and adulteration level,
respectively, is 4.01 and 1.78, while the conventional PDRs of the three factors are all less than 1.5.
Furthermore, the partial least-squares-discriminant analysis (PLS-DA) and the PLS regression (PLSR)
modeling with the selected sub-datasets from different origins were used to verify the results. The
resulting models suggested that the three main factors and their interactions were all important
sources of spectral variations.

Keywords: ANOVA-PDR; extra virgin olive oil adulteration; UV-Vis spectroscopy; partial least-squares

1. Introduction

Olive oil is a widely used food ingredient around the world. According to the Interna-
tional Olive Council, the global table olive production has more than tripled in the past
three decades, reaching over three million tons in the 2020–2021 crop year [1,2], with a
162% increase in consumption [1]. Despite its widespread acceptance, extra virgin olive oil
(EVOO) produced in Europe, particularly in Mediterranean countries such as Spain and
Italy, is considered to be of the highest quality and nutritional value. However, the table
olive production of the European Union is limited, accounting for less than one-third of
the world’s table olive production in 2020–2021 [2]. Furthermore, European EVOOs have a
higher market value, making them vulnerable to adulteration with cheaper vegetable oils
such as sunflower, rapeseed, corn, or soybean oils. As a result, reliable quality assurance
techniques are needed to protect consumers’ interests.

According to previous studies, the UV-Vis spectroscopy combined with chemometrics
is one of the important techniques for the adulteration detection, authentication of the
geographic location or the grade of a specific olive oil product. For instance, Torrecilla et al.
quantified the level of adulteration in Spanish EVOO from their UV-Vis spectra [3,4].
The level of adulteration was quantified using linear and nonlinear modeling based on
17 chaotic parameters calculated by UV-vis scans. Linear models with more independent
variables showed better statistical results. A radial basis network model with one input
node and one output neuron was used for nonlinear modeling. Jiang et al. established an ef-
fective detection model of Italian EVOO-vegetable oil combined with principal component
analysis (PCA) and partial least-squares regression (PLSR) using UV-Vis [5]. Further-
more, subsequent studies also reported that UV-Vis spectroscopy was applied to establish
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EVOO adulteration models [6,7]. The UV-Vis spectroscopy has been used to determine
the geographic origin of EVOO as well [8,9]. In these studies, UV-Vis spectroscopy and
high-performance liquid chromatography with a diode array detector were used to quantify
main pigments in several EVOOs and compared the advantages and disadvantages of both
techniques. The methods were applied to a selection of monovarietal EVOOs produced in
different geographical areas in Mediterranean countries. The differences among EVOOs
produced in different geographic areas were analyzed using principal component analysis
(PCA) and independent component analysis to evaluate the correlation between pigments’
content such as chlorophylls and carotenoids in olive oils and experimental factors such as
ripeness stage, geographic origin, and cultivars. For brevity, “experimental factor” is ad-
dressed as factors for all subsequent descriptions. Our previous research also demonstrated
that the microtiter plate reader can be utilized as a high-throughput UV-Vis spectrometer
to establish an effective differentiation model for different EVOO manufacturers [10]. The
advantages of UV-Vis are two-fold: both the cost is significantly lower and the sample
treatment is usually simpler compared with other methods such as chromatography, in-
frared, and Raman spectroscopy that require either relatively expensive instruments or
complex experimental procedures. However, the UV-Vis spectroscopy also has the tradeoff
of relatively low selectivity and sensitivity. Therefore, to establish an effective and robust
EVOO adulteration detection model, an in-depth understanding of the characteristics of
the spectroscopic fingerprints under different factors is necessary.

Multi-factors can significantly impact the chemical analysis procedure, such as accu-
racy, sensitivity, and reproducibility. In the case of EVOO adulteration detection, factors
such as origin, adulteration level, and type of the adulterant can affect the robustness of
the model. Analyzing the relationships between these factors can guide the establishment
of subsequent detection models and evaluate their significance. Techniques to analyze
the influence of multiple factors are highly desirable for accurate analysis of EVOOs from
different manufacturers.

The multivariate extensions of the analysis of variance (ANOVA), ANOVA-principal
component analysis (PCA) was proposed by Harrington et al. to separate the variation
of the experimental hypothesis from other sources of variation [11]. The ANOVA-PCA
effectively treats the factor impacts and interactions between factors. It has been applied in
determining the sources of variances in milk powder [12,13], as well as in agricultural prod-
ucts such as lettuce, broccoli, and dry bean, evaluating the impact of cultivar and growth
conditions [12,14,15]. Additionally, the pooled-ANOVA can test the difference between two
or more vectors by means of comparing the pooled variance of the variables [14,16]. The
pooled-ANOVA provides a conservative test for the differences between the level averages
of each factor, extending the ability of ANOVA to the multivariate domain [13].

Despite the previous successes of the various applications of ANOVA-PCA, there is
no simple metric of comparing the effect of class separation under the multivariate context.
The projected difference resolution (PDR) is a straightforward tool for the resolutions
between groups of multivariate data objects [17]. The PDR is a single figure similar to the
chromatographic resolution, so it is easy to interpret [18]. This method has been successfully
applied in the authentication of cannabis [19,20], identification of rice varieties [21], etc.
Analogous to ANOVA-PCA, the PDR can also be incorporated into ANOVA using the
factor matrix decomposed by ANOVA. The derived methods, referred to as ANOVA-PDR,
may provide useful supplemental information besides ANOVA-PCA and pooled-ANOVA.

The aim of this study was to propose a novel method, analysis of variance-projected
difference resolution (ANOVA-PDR), for detecting EVOO adulteration while consider-
ing multiple influencing factors, including origin, adulteration level, and adulteration
type. The UV-Vis spectra of adulterated EVOOs were comprehensively analyzed using
ANOVA-PDR techniques, and the results were validated using PLS-DA and PLSR to build
both quantitative and qualitative adulteration models. ANOVA-PDR can evaluate mod-
eling performance in relation to the multiple sampling factors of the EVOO adulteration
detection model.
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2. Materials and Methods
2.1. Sample Pretreament

Ten commercial EVOO samples produced from five countries including Spain (S1–S4),
Italy (I1–I3), Greece (G1), Portugal (P1), and Australia (A1) were purchased from local
grocery stores in China. Each sample was 300–500 mL, stored in their respective original
glass containers at ambient temperature, and kept sealed until analysis. Because Spain and
Italy are the main producers of olive oil, the corresponding sample sets consist of four and
three different manufactures, respectively. The other three EVOO origins were from the
other countries to compare the possible differences between geographic location. Three
commercial vegetable oils including corn, soybean, and sunflower oil were selected as
possible adulterants and were purchased from local groceries.

To simulate the adulteration of EVOOs, a series of binary blended oils were prepared
by adding either corn oil, soybean oil or sunflower oil into EVOOs at percentages ranging
from 10% to 50% at a 10% interval (v/v). The samples were then vortexed for 1 min until
forming a homogenous suspension. The pure and the adulterated EVOOs were directly
transferred to a microtiter plate without further pretreatment. The sample volume was
200 µL for each sample. All samples were prepared in triplicates.

2.2. Microtiter Plate Reader Assay

All samples were placed in a Nunc MicroWell transparent 96-well plates (Thermo
Fisher Scientific, Waltham, MA, USA) and analyzed at room temperature using an In-
finite M1000 PRO microtiter plate reader (Tecan Group Ltd., Männedorf, Switzerland).
In our previous study, it has been demonstrated that a microtiter plate reader can be a
high-throughput alternative to achieve comparable performance of the benchtop counter-
parts [10]. The microtiter plate reader was equipped with a Quad4 monochromator and a
xenon lamp. The wavelength was set to 366–1000 nm with a 2 nm resolution, and the num-
ber of flashes was 25. Each sample was prepared and tested in triplicates, resulting totally
nine parallel datasets obtained for each oil sample. The final spectral dataset comprised a
1440 × 350 matrix, where rows and columns represent samples and variables, respectively.

2.3. Theory and Implementation of ANOVA-PDR

The calculation procedure of the ANOVA in a multivariate scenario is demonstrated in
Figure 1. Briefly, before the ANOVA, the obtained spectral data matrix was mean-centered
for each measured variable to acquire the grand means matrix. Afterwards, the original
matrix was subtracted by the grand means matrix to obtain the grand residuals matrix [12].
The grand residuals matrix was then used to construct multiple sub-matrixes, i.e., the means
and residuals matrix of each factor. Specifically, the factors of this EVOO adulteration study
included origin, adulteration level, and adulteration type. The sub-matrices allowed
calculation of the percentage of total variance for each factor, the significance level of the
variance, and the variance associated with factor interactions.

The PDR is a straightforward multivariate metric for rapidly quantifying the degree
of separation from multivariate data objects for a pair of classes [17]. The PDR performs
multivariate resolution by generating a set of projections onto the difference vectors of
two class averages between pairs of means divided by 2 times the summed standard
deviations, given by

Rs(a, b) =

∣∣Pa − Pb
∣∣

2(Sa + Sb)
(1)

from which Rs(a, b) is the PDR of class a and b, Pa and Pb are obtained by projecting the
objects in the corresponding category onto the difference vector between the mean of
two classes, given by

Pi = (Xa − Xb)XT
i (2)

for which X is the two-way matrix for each target class of the UV-Vis dataset; thus, XT
i is

the transposed two-way matrix for each target class, where i stands for class a or b. The
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projection of an object i on the difference vector is calculated by Xa − Xb. From these
projections, the averages Pa and Pb, and their corresponding standard deviations Sa and
Sb are calculated, and, finally, the resolution between class a and class b is obtained by
Equation (1). A PDR greater than 1.5 indicates that the two classes are well-resolved. The
larger the PDR, the greater the resolution between the two classes. The PDRs of a dataset
that contains three or more classes can be sorted in the order of an upper or lower triangular
matrix with a size equal to the number of classes, where the PDR of classes a and b was
given in the columns a and rows b, respectively. The geometric mean of all PDRs was used
as the average PDR of all classes in the dataset.
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Figure 1. Schematic diagram for analysis of variance-projected difference resolution (ANOVA-
PDR). The matrix decomposition process was repeated for the other experimental factors and the
factor interactions.

By combing the ANOVA and PDR, a straightforward metric for class separation under
the influence of multiple factors can be achieved. For each individual factor, the same mean
submatrix constructed for ANOVA-PCA were also resolved through PDR according to
their respective internal classes. For the main influencing factors, ANOVA-PDR analyzes
each class in the corresponding effect matrix in pairs, and expresses it as a triangular matrix
to measure the class separation of the data object [19]. To better visualize the separations of
various factors between classes, these PDR matrices are plotted in grayscale in this work.
The PDRs from small to large corresponds to the color in the color bar from dark to light,
so the lighter background color indicates larger PDR that represents a better separation
between different classes, and vice versa. The average PDR of each effect matrix was also
given to evaluate the factor matrix resolution. The ANOVA-PDR calculation was performed
with an in-house script written in MATLAB R2021b (The MathWorks, Natick, MA, USA).

2.4. Validation by PLS-DA and PLSR

The PLS-DA and PLSR combined with the bootstrapped Latin partition (BLP) [22]
were used to validate quantitative classification and regression models. The dataset is
divided into 80% and 20% portions for training and validation using BLP. Nine replicates
of adulterated samples were averaged and then used to construct the PLS-DA model, while
the pure samples remained unchanged. In PLSR, all 9 repetitions of a same sample were
averaged and then used for modeling. In the establishment of classification and regression
models, the choice of the number of latent variables is particularly important. In this study,
the BLP procedure with 10 bootstraps and 5-fold Latin partitions was used to select the
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optimal number of latent variables. The PLS-DA and PLSR validations were calculated by
MATLAB in-house scripts (The MathWorks).

3. Results
3.1. Characteristics of UV-Vis Spectra

Figure 2A–C shows the UV-Vis spectra of the olive oil dataset. Specifically, Figure 2A
represents EVOO spectra according to origin; Figure 2B represents spectra according to
different levels of adulteration; Figure 2C represents spectra according to different adul-
teration types. All spectra at the same level to each factor were averaged for presentation
purposes. The olive oil samples have multiple absorption peaks in the visible light region.
The absorption observed in this spectral region may be dominated by the oil pigments [23].
Specifically, there were three obvious absorption peaks in the 420–480 nm region that
correspond to the absorption of blue light by olive oil, which may be mainly related to the
carotenoids and chlorophyll contained in olive oil [24]. The peak appearing around 670 nm
was also consistent with the absorption of chlorophyll [24]. Therefore, it is interesting to
discover whether the pigment compositions can affect the UV-Vis fingerprints by influences
of various factors.
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Figure 2. Mean UV-Vis spectral profile (A–C) and conventional PCA score plots (D–F) of adulterated
olive oil according to different factors. (A,D) EVOO Origin; (B,E) Adulteration Level; (C,F) Adulter-
ation Type. EVOO Origin included Spain, S1–S4; Italy, I1–I3; Greece, G1; Portugal, P1; and Australia,
A1. In (A–C), all spectra at the same level were averaged for presentation purposes.

A preliminary study was carried out first by directly observing the original spectra to
explore the influence of the three factors of EVOO origin, adulteration level, and adulter-
ated type on the spectra. The spectra were plotted according to these three factors, with
different colors designated in each class. Figure 2A shows the UV-Vis average spectrum
drawn according to different EVOO origins. There are great differences between different
EVOO originations and the biggest difference between A1 (Australia) and other origins.
Figure 2B shows an average spectrum according to different adulteration levels. The color
in the figure from lighter to darker indicates the increasing degree of adulteration. As the
degree of adulteration increases, the absorption peaks of the average spectrum obtained
gradually decrease accordingly. Figure 2C shows an average spectrum drawn according to
different adulteration types. The difference between pure EVOO and adulterated EVOO is
significant, while the differences between different types of adulteration are small. Since
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the preliminary observation implied the influences of all factors, it is difficult to obtain
individual influences directly. The subsequent chemometric methods will be used to further
analyze the three factors.

3.2. Direct PCA and PDR

Conventional PCA and PDR were applied to evaluate overall class separations without
considering any confounding factors. Figure 2D–F shows the first two largest scores of
the UV-Vis spectra using conventional PCA. The score plots are marked by EVOO origin,
adulteration level, and adulteration type, so that the impact of these three factors on
adulteration spectrum can be easily observed. Figure 3 shows the PDR mapping obtained
through conventional PDR processing. The overall degree of discrimination can also be
estimated by the average PDRs. Generally, in PDR mapping, each block corresponds to
PDRs from any pair of classes, while these classes can be defined as any factors or outputs.
The degrees of separations of the entire dataset can be observed in an intuitive way. As a
result, the internal separation of the three factors of EVOO origin, adulteration level, and
adulteration type are respectively displayed.
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As shown in Figure 2E, samples from different EVOO origins were observed to be
significantly separated, indicating that the EVOO origin dominated the total variance in the
model. Due to the influence of the EVOO origin, there is no significant aggregation between
any samples of the same adulteration level or adulteration type, indicating relatively little
influences on the UV-Vis spectra. It can be observed from Figure 3 that most PDRs of the
three factors are less than 1.5, indicating a poor separation. To sum up, the differences
between the producing origin of EVOO significantly affect the UV-Vis spectra. The dif-
ferences between the adulteration level and the adulteration type remained undetectable,
possibly due to the dominating affect by the origin. The conventional PCA and PDR cannot
distinguish each factor directly. Therefore, further data treatments by ANOVA to remove
the cofounding effects arising from multiple factors are necessary.

3.3. ANOVA-PDR

ANOVA-PDR is able to isolate the interferences between factors and to analyze the
differences between various classes of interest by each factor. ANOVA-PDR delivered
better separation of EVOO origin, as well as adulteration level and adulteration type.
The important variables, i.e., spectral peaks, can also be identified by the corresponding
loadings. Meanwhile, ANOVA-PDR directly quantifies the distinction between factors
within classes. Figure 4 shows the PDR mapping with detailed between-class separations.
Compared with the direct PDR in the initial UV-Vis spectrum, ANOVA-PDR resulted in a
considerably greater value, thus a clearer distinction between each factor class.
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Detailed relationships of classes and their corresponding influential components can
be further analyzed from ANOVA-PDR. Figure 4A corresponds to the ANOVA-derived
PDR mapping of the EVOO origin. In this plot, there are significant differences in the
samples from different EVOO origins. Specifically, samples A1 produced in Australia were
particularly further away from the counterparts produced in other locations, probably
due the fact that they were the only olive oils produced in a non-Mediterranean country.
Such difference may suggest the concentration of different pigments may be different with
respect to originations. Due to the fact that the UV-Vis shows general disadvantages in
characterization of compounds, the compositional variations of pigments is rather indica-
tive than exhaustive and complete. Further investigation is necessary. The PDRs between
samples increased as the level of adulteration rises, as shown in Figure 4B. Although part
of the PDRs between two adjacent adulteration levels was less than 1.5, the average PDR
between the concentrations is 1.78, a clear difference. The PDRs suggested that it is foresee-
able to establish an effective adulteration detection model, provided that a proper treatment
to exclude or reduce the influence from other factors such as EVOO origin is performed.
Furthermore, the PDRs values between the various adulteration types in Figure 4C are all
less than 1.5, as well as the average PDR of the adulteration types is also less than 1.5, indi-
cating that different adulteration types are difficult to classify. Since all the oils that we used
as adulterants were only from China, it may be possible that there are limited variances
between oils. Therefore, different types of adulterants carry unnoticeable variances in the
overall compositions compared to other factors.

In summary, PDR mappings and average PDR can intuitively and quantitatively
conclude that the differences between the classes from large to small are the origin of
EVOO, the level of adulteration, and the type of adulteration, reflecting the degree of
influence of factors on the adulterated samples. Compared to PCA, PDR is more effective
in distinguishing between classes within these three factors.

3.4. PLS-DA and PLSR Model Validation

The classification and regression models (PLS-DA and PLSR) were established to
further validate class separation under multiple factors. Since the origin of EVOO is
the most important source of difference in the UV-Vis spectra of adulterated samples,
it may significantly affect the accuracy of the adulteration detection model. Therefore,
eight models were established to compare the differences in the sample under various
situations. Specifically, the eight models consisted of four groups. The global models
included all 10 EVOO producers. The European model excluded the Australian sample,
while the Spanish and Italian models only included samples originated from Spain and
Italy, respectively. For the three local models, the applicability of the external test set was
applied to evaluate the performance of these local models, for which the external test set is
defined as the independent test sets that were from the selected countries of origins only.
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From the prediction results of the local models in Table 1, it can be observed that the
local models generally yielded good performance by using internal training and the test
set. The prediction accuracies of the local models by PLS-DA on training and test sets
were above 97%. The RMSEs of the PLSR local models on training and test sets were also
less than 2.03%. However, these models have a poor predictive effect on the external test
sets from other origins. The prediction accuracies of the three PLS-DA local models for
these different external test sets dropped to 59.58–87.92%. Meanwhile, the RMSEs of PLSR
models also raised significantly. Considering the results of ANOVA-PDR, among the EVOO
origin, the difference between A1 and others is the largest. Its RMSE reached 31.39% in the
PLSR model of the European model, and lack of quantitative prediction power. Moreover,
compared to the external test set of other origins, when A1 is used as the external test set,
the RSME of the PLSR model of the Spanish model and the Italian model both increased by
more than 50%, and the worst prediction effect is obtained. A more intuitive presentation of
the local PLSR model on the external test set from other origins can be observed in Figure 5.
In the process of establishing the EVOO adulteration detection model, the EVOO origin
is an important influencing factor, but it was typically neglected. For instance, Jiang et al.
established PLSR models of EVOO adulterated with corn oil, soybean oil, and sunflower
oil by UV-Vis, in which the RSMEs yielded as low as 0.001% [5]. However, these models
are based on only one EVOO, so that validation at a larger scale might still be needed.

Table 1. EVOO adulteration prediction by UV-Vis spectra according to geographical origins.

Type Model N a LV b Training c Test c
Test on Selected Origins c

Australia Greece Portugal Italy Spain

PLS-DA

Global 240 18 99.95 98.12 N/A N/A N/A N/A N/A
European 216 15 99.77 98.60 87.92 N/A N/A N/A N/A
Spanish 96 10 99.61 97.37 62.50 62.50 67.50 85.97 N/A
Italian 72 7 99.48 97.14 59.58 62.50 64.17 N/A 82.47

PLSR

Global 160 24 0.62 1.77 N/A N/A N/A N/A N/A
European 144 19 0.84 2.03 31.39 N/A N/A N/A N/A
Spanish 64 13 0.50 1.44 76.86 6.81 13.40 24.59 N/A
Italian 48 12 0.32 0.64 67.39 17.77 10.08 N/A 14.28

a: Number of samples in the dataset. b: Latent variables used to build the PLS-DA model. c: Results are shown as
percent prediction accuracy for PLS-DA (rows 1–4), and root mean squared error (RMSE) for PLSR (rows 5–8).
N/A, not available.
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The results of our attempt to establish EVOO adulteration detection models based on
different EVOO origins indicated that it may be difficult to establish a universal model for
EVOO adulteration detection using UV-Vis spectroscopy. Since multiple EVOO origins,
adulteration types, and the interaction between factors are the sources of differences
in the original data matrix, all influencing factors must be considered when trying to
establish a general model. Otherwise, it is likely that adulteration in the external test
set cannot be predicted. The previous studies did not include such variety of samples
and the involvement of different influencing factors. On the other hand, although the
PLS-DA and PLSR models established by using all data have achieved adequate prediction
results with prediction accuracy more than 99% and RSME less than 2%, there may still be
issues remaining in the generalization ability of the model. Specifically, with external test
sets composed of other EVOO origins or adulterants that are outside the training set, the
prediction remains problematic. Additionally, a model with too many latent variables may
be prone to overfit, as the model is becoming too complicated. Therefore, it is recommended
to build a chemometric model with controlled samples included in the training set for a
more accurate prediction.

4. Discussion

This study demonstrated that the ANOVA-PDR could be a valuable tool for UV-Vis
spectroscopy to identify the sources of variations in a complicated sample set from multi-
factorial-designed experiments. The ANOVA was combined with PDR for the first time and
provided an exact and comprehensive comparison of the differences between classes and
offered results with visual plots, which helps interpret the significance for the arrangement
and control of factors. The overall degrees of separation are evaluated by calculating the
geometric mean of the PDRs. The ANOVA-PDR was proved to be an effective supplement
to multivariate modeling such as PLS-DA.

With respect to the UV-Vis spectroscopy of olive oil adulteration, the study indicated
that the EVOO origin and adulteration level are effective sources of variation in the spectra,
which may cause potential difficulties in the suitability of the EVOO adulteration detection
model. The subsequent PLS-DA and PLSR models for EVOO adulteration detection were
also consistent with this conclusion. The results demonstrated that the EVOO adulteration
detection model established by the UV-Vis spectroscopy combined with PLS may achieve
unbiased results without the aid of a proper model transfer and validation routine. To
overcome this problem, further research can also focus on a more sensitive and selective
detection methods, as well as to devise a controlled approach to select training samples for
the chemometrics model. Additionally, since all the adulterants in this study were collected
from China only, the adulterant-type factor raised insignificant variances. When analyzing
possible impurities, it is better to examine both adulterant oils (corn, soy, sunflower) from
local producers, as well as producers from the countries of origin of olive oil. In addition,
other types of widely available oils, such as canola and peanut oils could be included in the
model. In this manner, a robust and reliable model can be achieved.
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