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Abstract: The dynamic-scheduling problem of transmission tasks (DSTT) is an important problem in
the daily work of radio and television transmission stations. The transmission effect obtained by the
greedy algorithm for task allocation is poor. In the case of more tasks and equipment and smaller
time division, the precise algorithm cannot complete the calculation within an effective timeframe. In
order to solve this problem, this paper proposes a discrete particle swarm optimization algorithm
(DPSO), builds a DSTT mathematical model suitable for the DPSO, solves the problem that particle
swarm operations are not easy to describe in discrete problems, and redefines the particle motion
strategy and adds random disturbance operation in its probabilistic selection model to ensure the
effectiveness of the algorithm. In the comparison experiment, the DPSO achieved much higher
success rates than the greedy algorithm (GR) and the improved genetic algorithm (IGA). Finally, in
the simulation experiment, the result data show that the accuracy of the DPSO outperforms that
of the GR and IGA by up to 3.012295% and 0.11115%, respectively, and the efficiency of the DPSO
outperforms that of the IGA by up to 69.246%.

Keywords: task dynamic scheduling; discrete particle swarm optimization algorithm; probability
selection model; random disturbance; schedule; evaluation of transmission effect

1. Introduction

Radio- and television-transmitting stations usually deploy multiple equipment to
complete multiple transmission tasks every day. Different equipment can be selected for
each transmission task, but the effect of the execution on different equipment is different.
On-duty personnel usually draw the transmission plan based on experience and control
the equipment to complete the task according to the plan [1,2]. However, this does not
guarantee the optimal transmission effect of the prepared plan. In addition, when a tempo-
rary task is added and the transmission plan needs to be adjusted, the transmission plan
cannot be adjusted according to the transmission effect in time to obtain a new transmission
plan with the best effect. To solve the above problems and improve the field of radio and
television coverage, it is urgent to complete the dynamic scheduling of transmission tasks
(DSTT) through intelligent algorithms and improve the transmission effect.

In previous research, we completed the static allocation of transmission tasks, that is,
at the same time point, we assigned multiple tasks to multiple equipment with the goal
of achieving an optimal comprehensive transmission effect [3]. The static-task-allocation
problem can be summarized as a combinatorial optimization problem (COP), which is an
NP-Hard problem. When there are fewer tasks and equipment, the enumeration algorithm
is used to accurately calculate the global-optimal solution; when the number of tasks
and equipment increases, the computing time of the enumeration algorithm increases
exponentially. By introducing intelligent algorithms to solve this, the optimal solution
can be calculated within an acceptable timeframe. Based on this, to calculate the task
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allocation of multiple time periods, the problem can be broken down into independent
allocations of multiple time periods. However, in practice, once the transmission task starts,
the equipment cannot be interrupted and replaced before it ends. The calculation method
of independent allocations gives priority to the previous tasks’ optimal selection. The
optimal allocation of the subsequent mission reduces the possibility of optimization, and
the overall view is that the global-optimal solution cannot be obtained. Based on a global
comprehensive evaluation, the scheduling problem of multi-period tasks for multiple
equipment is thus solved thanks to the DSTT.

1.1. Related Works

This is a research paper written by Chinese radio and television researchers on the
preparation of a transmission plan. In the process of preparing the plan, the greedy
algorithm (GR) is used to find the priority allocation of the tasks that can obtain the optimal
allocation of all tasks. According to this principle, until all tasks are scheduled, the number
of algorithm iterations is related to the task period, and the backtracking algorithm is used
to deal with conflicts in the scheduling. Although the algorithm has been recognized by
the industry and has made considerable progress compared to manual compilation based
on experience, there is still a lot of room for improvement in the transmission effect [4].

In recent years, related research has made some progress in solving dynamic-task-
scheduling problems.

Zhou et al. summarize the application of an immune-optimization algorithm in
unmanned aerial vehicles (UAVs)’ scheduling problem. In the optimization process, the
immune algorithm introduces an affinity-evaluation operator, an individual-concentration-
evaluation operator and an incentive-evaluation operator before searching for the global-
optimal solution using the mechanisms of population-diversity maintenance and parallel-
distributed search [5]. Nazarov et al. use queuing theory to deal with the access-task-
scheduling problems of database node services [6]. Liu et al. combine the theories of
individual concentration and individual incentive degree in the immune algorithm with
the fitness function in the genetic algorithm (GA) to both guide the algorithm’s search
process and achieve multi-objective task scheduling optimization [7]. Liu et al. use the
evolutionary algorithm (EA) as a search engine for large-scale global optimization (LSGO)
technology to find the global-optimal solution in complex high-dimensional spaces [8].
Jia et al. propose distributed cooperative co-evolution algorithms (DCC) to solve the
optimization-evaluation problem, evaluate the contribution of each subgroup to the global
fitness, and allocate the computing resources of the subpopulation according to their
degree of contribution [9]. Sun et al. propose a threshold-based grouping strategy and
grouping variables by pre-setting the relevant threshold of subgroups [10]. Li et al. solve
the overlapping LSGO problem by setting a threshold to specify the size of subgroups. The
decision variables are grouped by clustering to avoid the problem of uneven groupings [11].
In solving the multi-objective problems (MOP), the multi-objective evolutionary algorithm
(MOEA) is adopted and the algorithm is improved, providing many ideas when studying
the dynamic-task-scheduling problem [12–19]. Kuppusamy et al. introduce a reinforced
strategy-dynamic-opposition learning based on social-spider-optimization algorithms to
enhance individual superiority and schedule workflow in fog computing [20]. Tang et al.
propose a job-scheduling algorithm based on the workload prediction of computing nodes,
analyze the causes of workload imbalance and the feasibility of reallocating computing
resources, and design an application and a workload-aware scheduling algorithm (AWAS)
by combining the previously designed workload prediction models, and propose a parallel-
job scheduling method based on computing-node-workload predictions [21]. Jia et al.
study single-objective flexible job shop scheduling problems (JSP) by combining genetic
algorithms and whale-swarm algorithms; reorganizing whale individuals and genetic
codes to improve the local-search ability; and making comparisons with standard examples.
Based on this, they conclude that the optimal solution can be obtained [22].
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In the above research using EAs, GAs and other intelligent algorithms to solve the
task-dynamic-scheduling problem, we found that the DSTT is most similar to the JSP. The
algorithm for solving JSP problems has reference significance for the DSTT.

The classical job-shop-scheduling problem (JSP) is one of the most well-known schedul-
ing problems. It consists of m machines and n jobs. A job contains several operations to
be processed in a fixed order. In the JSP, each operation can be processed by one specific
machine [23,24]. The flexible job shop scheduling problem (FJSP) is an extension of the
JSP, which allows an operation to be processed by one of two or more machines. In other
words, an operation is processed by one of the alternative machines in the FJSP [25]. Since
a machine is predetermined for a specific operation, the JSP can be solved by specifying
the priority of given operations such that a high-priority operation precedes others with
a lower priority in the queue for given machines. Thus, the FJSP can be regarded as a
sequencing problem, suitable for intelligent algorithms [26,27]. The genetic algorithm based
on candidate sequence (COGA) is adopted to solve the FJSP [28].

Developed by Eberhart and Kennedy in 1995, particle-swarm optimization (PSO) is a
population-based stochastic optimization technique inspired by the swarming behavior
characteristic of bird flocks or fish schools [29]. PSO has recently been applied to COPs,
such as shop scheduling [30,31], the traveling-salesman problem [32], quality-of-service
multicast routing [33], and vehicle routing [34,35].

PSO is usually used to solve continuous problems, and discretization is required when
solving COPs. Zheng et al. use PSO to solve the assembly JSP, design a discrete particle
swarm optimization algorithm (DPSO) to realize the discretization of the position-update
process through operations such as insertion and exchange. The Metropolis criterion in
the simulated annealing algorithm (SA) is used to set the acceptance probability of the
location update [36]. Chen et al. used GAs and DPSOs to manage the complexity of the
problem, compute feasible and quasi-optimal trajectories for mobile sensors, and determine
the demand for movement among nodes [37]. Fan et al. used DPSOs combined with the
genetic operators of GAs to compute feasible and quasi-optimal schedules for directional
sensors and to determine the sensing orientations among the directional sensors [38]. The
above studies use other intelligent algorithms such as the SA and GA to hybrid with PSO,
replacing particle updates with intelligent-algorithm operations. We need to make targeted
improvements to the DPSO for specific problems.

1.2. Contributions

The following problems need to be solved when applying a DPSO to the DSTT:

1. It is necessary to establish a mathematical model suitable for the DPSO of the DSTT;
2. It is necessary to solve the DPSO’s mathematical-description problems of particle

position, direction, and velocity.
3. It is necessary to design specific particle-update methods.

Based on the above problems, this paper conducts research on the DSTT, and improves
the DPSO. The contributions of this paper are mainly reflected in the following aspects:

1. We build a mathematical model of the DSTT, including a task model, an evaluation
model, an evaluation function, and an output of the Schedule—the mathematical
model of the transmission plan—and propose a one-dimensional code to describe the
Schedule, making it suitable for the calculation of the DPSO;

2. We propose a DPSO to define the particle position, particle-update direction and
target definition, and solve the mathematical description of the DPSO for specific
problems;

3. Based on the basic idea of the DPSO, and taking into account inertia retention, particle
best, and global best, we use the probability-selection model to realize the particle
update, and we propose random perturbation to improve the diversity of the particle
population.
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In Section 2, we build a mathematical model of the DSTT suitable for intelligent-
algorithm processing. In Section 3, we outline the specific operation and implementation
method of the DPSO used in this paper and test the DPSO’s optimal parameter combination.
In Section 4, the experimental results are presented, and the results are analyzed and
discussed. In Section 5, we make a conclusion and point out future avenues of work.

2. Preliminaries

The task-scheduling plan of a radio- and television-transmission station for daily
execution of the transmission task is called the Schedule. According to the Chinese radio
and television industry standard [39,40], the operation diagram is defined as follows:

Definition 1. Schedule: a table that specifies the broadcasting tasks undertaken by the transmitter
in a day according to the sequence of program broadcasting time.

The mathematical model of the Schedule is a two-dimensional table; the horizontal
axis represents the time, and the vertical axis represents the equipment code. The DSTT
model can be described as the problem of filling the transmission task into the Schedule
and maximizing the comprehensive-evaluation function. The DSTT model framework is
shown in Figure 1.
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The transmission-task sequence and the transmission-effect evaluation value matrix
are the input data, and the maximum value of the evaluation function is taken as the fitness.
Using intelligent-algorithm calculations, a Schedule meeting the requirements is obtained.

2.1. Task Queue

The task queue is the set of tasks to be executed every day. The parameters of the task
model include the code of the working frequency band, the code of the task’s start time,
and the delay time of the task, which can be expressed in triples:

Task = < FreqBand, StartTime, DelayTime > (1)

The task queue can be described as:

TaskQueue =
{

Task1, Task2, . . . , Taskj, . . . Taskp
}

(2)

where, p is the number of tasks, Taskj is the j-th of tasks, Taskj.FreqBand is the frequency-
band code of the working frequency of the task, Taskj.StartTime is the code of the start time
of the task, and Taskj.DelayTime is the delay time of the task.

2.2. Value Matrix

In order to evaluate the transmission effect of the equipment in each operating fre-
quency band, the value matrix is set, which is obtained by polling the transmission fre-
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quency band during the trial operation of the station’s transmission equipment. The value
matrix can be described as follows:

ValueMatrix =



Va11 Va12 · · ·
Va21 Va22 · · ·
· · · · · · · · ·

Va1i · · · Va1m
Va2i · · · Va2m
· · · · · · · · ·

Vai1 Vai2 · · ·
· · · · · · · · ·

Van1 Van2 · · ·

Vaij · · · Vaim
· · · · · · · · ·

Vanj · · · Vanm

 (3)

where n is the number of equipment, m is the number of frequency-band divisions, and
Vaij is the evaluation value of the transmitting effect of the i-th equipment working in the
j-th frequency band.

Based on the supervised-learning theory, the value of the matrix is weighted and
adjusted in combination with the results collected from each daily transmission to ensure
that the matrix is dynamically updated to meet the practical needs of the system.

2.3. Task-Scheduling Result

In the model design, it is assumed that the transmission tasks completed by all the
equipment are fully loaded, that is, the design can cover all the equipment according to
the length of the task’s start and end. In order to adapt to the definition of population in
intelligent algorithms and the requirements of intelligent-algorithm-related operations, a
one-dimensional sequence is used to represent the optimization-result data. Define the
scheduling-result data as binary:

TaskResult = < Task, TransNo > (4)

where, TaskResult.Task is the task of TaskQueue, TaskResult.TransNo is the equipment code
that carries the task, and the output-result sequence of the algorithm can be expressed as:

ScheduleResult =
{

TaskResult1.TransNo, . . . , TaskResultk.TransNo, . . . TaskResultp.TransNo
}

(5)

where, p is the number of tasks, TaskResultk represents the scheduling result of the k-th
task, and TaskResultk.TransNo is the code of the equipment that carries the k-th task of the
TaskQueue.

2.4. Schedule

Define the Schedule as a two-dimensional table:

Schedule =



FreqBand11 FreqBand12 · · ·
FreqBand21 FreqBand22 · · ·
· · · · · · · · ·

FreqBand1i · · · FreqBand1m
FreqBand2i · · · FreqBand2m
· · · · · · · · ·

FreqBandi1 FreqBandi2 · · ·
· · · · · · · · ·

FreqBandn1 FreqBandn2 · · ·

FreqBandij · · · FreqBandim
· · · · · · · · ·

FreqBandnj · · · FreqBandnm


(6)

where, n is the number of equipment,m is the number of Schedule time divisions, and
FreqBandij is the transmission-frequency-band code of the i-th equipment in the j-th opera-
tion time. The value-taking formula is:

FreqBandij = TaskResultk.Task.FreqBandk ∈ [1, p], i = TaskResultk.TransNo,
j ∈ [TaskResultk.Task.StartTime, TaskResultk.Task.StartTime
+TaskResultk.Task.DelayTime)

(7)

where k represents the task-scheduling-result code from 1 to p, and TaskResultk.Task.FreqBand
is the frequency-band code of the Schedule task represented by the result. The value of the
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abscissa i of the Schedule is the equipment code assigned to the result, and the value of the
ordinate j of the Schedule is the start time of the Schedule task represented by the result and
is marked until the end of the task.

2.5. Fitness Function

Set the fitness function of the Schedule as the maximum value of the transmission-effect
evaluation, described as follows:

Max : Value(ScheduleResult) =
∑

p
k=1 VaTaskResultk .TransNoTaskResultk .Task.FreqBand × TaskResultk.Task.DelayTime

m× n
(8)

The subscripts of VaTaskResultk .TransNoTaskResultk .Task.FreqBand are TaskResultk.TransNo,
and TaskResultk.Task.FreqBand. TaskResultk.TransNo represents the equipment code rep-
resented by the k-th value of the result sequence, TaskResultkTask.FreqBand represents the
frequency-band number of the Schedule task represented by the k-th value of the result
sequence, and the Value(ScheduleResult) represents the comprehensive evaluation value
of the Schedule.

According to the above model framework and the data model description, the data-
structure parameters are outlined in Table 1.

Table 1. Parameter table of DSTT mathematical model.

Parameter Explain

m number of Schedule definition periods
n number of equipment defined in Schedule
p number of Schedule tasks
Taskk task of the k-th Schedule, including < TaFr, Start, Span >
TaskResultk data description of the k-th result, including < Task, TransNo >
Vaij evaluation value of the transmitting effect of the i-th equipment in the j-th frequency band
FreqBandij Schedule node data, frequency code of the i-th equipment working in the j-th time period
ScheduleResult The output result of Schedule is composed of p piece of TransNo code values

2.6. Example

Combined with the description of the mathematical model, an example of a DSTT is
shown in Figure 2.
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Figure 2. Example of DSTT. Figure 2. Example of DSTT.

According to the value matrix, under the condition of obtaining the maximum value
for the fitness function of the Schedule, the task-dynamic-scheduling result is obtained
through the intelligent algorithm. The result data are the equipment-code sequence. The
two-dimensional table of the Schedule is shown in Figure 2. The abscissa is the sequence
code of the period, the ordinate is the sequence code of the equipment, and the data are the
frequency band transmitted by the equipment during the period. For example, the number
of position 0 in the result value is 1, indicating that task0 is assigned to equipement1. The
frequency-band code of task0 is 3, the start time is 0, and the delay time is 3. With time
from 0 to 2 in equipment1 in the Schedule, the frequency-band code is 3.
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3. Methodologies
3.1. PSO

PSO is a group-search-optimization algorithm. The motion of each particle is deter-
mined by the value of the fitness function, and the “direction” and “target” of its motion
are determined by the “velocity” of each particle. Then, the particles iterate in the solution
space according to the direction of the best particle.

In PSO, x represents the position of the particles, v represents the velocity of the
particles, and Pbest represents the best position of the particles. The PSO initializes a group
of random particles and finds the best solution through iteration. In each iteration, the
particle updates its position by tracking two best values. One best value is the best solution
that the particle can find. This solution is called particle best. The other best value is the best
solution found by the whole population at present, which is called the global best. Suppose
that a population composed of K particles is searched in the D-dimensional solution space,
where the position of the i-th particle is expressed as a D-dimensional vector:

Xi = (xi1, xi2, . . . , xiD), i = 1, 2, . . . , K (9)

The motion velocity of the i-th particle is also a vector of the D-dimension:

Vi = (vi1, vi2, . . . , viD), i = 1, 2, . . . , K (10)

The best position searched by the i-th particle, namely, the particle best, is expressed
as:

Pbesti = (pi1, pi2, . . . , piD), i = 1, 2, . . . , K (11)

The best position searched by the whole population, namely, the global best, is ex-
pressed as:

Gbest = (g1, g2, . . . , gD) (12)

The updated formula of velocity and position is as follows:

vt+1
id = ω ∗ vt

id + c1r1
(

pt
id − xt

id
)
+ c2r2

(
gt

d − xt
id
)
, d = 1, 2, . . . , D (13)

xt+1
id = xt

id + vt
id, d = 1, 2, . . . , D (14)

where c1 and c2 are the acceleration constant, r1 and r2 are a uniform random number, and
ω is the inertia constant.

According to the above description, PSO is applicable to the continuous-function
calculation, and the update of velocity and position adopts a continuous-vector calculation.
Based on the discrete data characteristics of the DSTT, combined with the previous research,
we carry out a targeted operation of the DPSO.

3.2. Algorithm Description

1. Definition of particle position: in combination with the DSTT and the example, see
Formula (15) for the definition of particle position.

Xi =
(

xi1, xi2, . . . , xij, . . . , xin
)
, i = 1, 2, . . . , K, xij = Taskj.TransNo n = TaskNumber (15)

where K represents the population size, TaskNumber represents the number of tasks, and
Taskj.TransNo represents the equipment code assigned to the j-th task. In Figure 2, the par-
ticle position is the allocation result of 8 tasks, and each number represents the equipment
code assigned to the task. The queue is {1,3,0,2,3,3,1,2}, and each number is the equipment
code assigned to each task.
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The definitions of particle best and global best are the same as the definition of particle
position, which is recorded as:

Pbesti =
(

pi1, pi2, . . . , pij, . . . , pin

)
, i = 1, 2, . . . , K pij = Taskj.TransNo (16)

Gbest =
(

g1, g2, . . . , gj, . . . , gn

)
, gi = Taskj.TransNo (17)

2. Definition of particle-motion direction: in combination with the characteristics of
data discretization in DSTT, there is no direct association management between each
task. Binary processing is adopted when defining particle-motion direction, that is,
each particle-motion direction is each task that can change the equipment, and is
recorded as:

VDi =
(
vdi1, vdi2, . . . , vdij, . . . , vdin

)
, i = 1, 2, . . . , K vdij = 0, 1 (18)

Only one of the vdij’s sequence values represented by each VDi is 1, and the other
is 0. Position 1 represents the task of replacing the node when the particle in Schedule
updates the position, that is, the motion direction of the particle in Schedule. For example,
VDi = (0, 0, 0, 1, 0, 0, 0, 0) indicates that the i-th particle in the population needs to replace
the equipment working on Task2.

3. Definition of particle-motion target: the velocity displacement is defined as the serial
number of the equipment to be replaced by the node representing the motion direction
of particles in Schedule. The particle-motion target suitable for the operation of DSTT
is defined as VTi, which is recorded as:

VTi =
(
vti1, vti2, . . . , vtij, . . . , vtin

)
, i = 1, 2, . . . , K, vtij = −1, TransNo (19)

Only one value of each VTi represented by sequence vtij is recorded as TransNo,
and the others are recorded as −1. The value taken by TransNo indicates that the node
is replaced by the representative emission equipment when the particle in the Schedule
updates its position, that is, the replacement target encoded by the particle’s position
in the particle’s motion direction is defined as the particle-motion target in the Schedule.
For example, VTi = (−1,−1,−1, 3,−1,−1,−1,−1) indicates that the i-th particle in the
population wants to replace the equipment2 working on task3 with equipment3. An
example of particle motion is shown in Figure 3.
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Figure 3. Example of particle motion.

Combining the problem characteristics of DSTT, particle motion has only one motion
direction and target in order to ensure that the particle update of the DPSO have the char-
acteristics of inertia preservation, particle best, and global best direction vector calculations
included in the basic PSO. The DPSO uses a probabilistic-selection model to handle particle
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updates, and determines the proportion of parameters by which particles choose one of the
three directions to perform motion operations. If the result of the probabilistic-selection
model is inertia retention or the particle-motion target is consistent with the current posi-
tion, random-perturbation processing is introduced to increase the population particle’s
diversity and avoid entering the local-optimal trap.

4. Definition of particle-position update: according to the characteristics of DSTT, the
operation of particle-velocity update is to calculate the motion direction of particles
and the motion target of particles. The evaluation value of each particle task is
calculated according to the particle position, and XVi is recorded as:

XVi =
(

xvi1, xvi2, . . . , xvij, . . . , xvin
)
, i = 1, 2, . . . , K xvij = VaxijTaskj .Freqband (20)

where xij is the equipment code currently assigned to the j-th task represented by the i-th
particle in the particle-position definition, VaxijTaskj .FreqBand represents the evaluation value
in ValueMatrix when the j-th task is executed by the xij equipment, and Taskj.Freqband
represents the frequency-band code of the task. Similarly, the evaluation-value sequence of
particle best and global best is recorded as PbestVi, GbestV:

PbestVi =
(

pvi1, pvi2, . . . , pvij, . . . , pvin

)
, i = 1, 2, . . . , K pvij = Vapijtaskj .FreqBand (21)

GbestV =
(

gv1, gv2, . . . , gvi, . . . , gvn
)
, gvi = VagiTaskj .FreqBand (22)

where pij is the equipment code assigned to the j-th task indicated in the definition of the
particle-best position of the i-th particle. The VapijTaskj .FreqBand indicates the evaluation value
in ValueMatrix when the j-th task is executed on the pij-th equipment, the Taskj.FreqBand
indicates the frequency-band code of the task. The definition of global best is consistent
with that of particle best.

Calculate the evaluation-value gap between the particle-position and the particle-best
values based on the difference between the above two evaluation value data series, and
calculate the evaluation-value gap between the current particle and the global-best value
based on the difference between the two data series. Select the maximum difference in
evaluation values as the motion-direction option of particles.

Whether the particle moves towards the particle best direction or the global best
direction depends on the output of the probability-selection model. The equipment code
of particle best and global best directions is used as the motion target of particles. For
example, the output of the probability-selection model is the global-best direction. Com-
pare and calculate XVi and GbestV. When j = L, VagiTaskj .FreqBand − VaxijTaskj .FreqBand is
at maximum value, then L is the motion direction of particles. The motion direction is
VDi = (0, 0, . . . , 1, . . . , 0) where only the L-th value is 1, and the other value is 0. The
motion target is VTi = (−1,−1, . . . , TaskL.TransNo, . . . ,−1) where only the L-th value is
TaskL.TransNo of Gbest, and the other value is −1. Combined with DSTT, TaskL.TransNo
is the equipment code assigned to the L-th task with the largest difference between the
particle position and the global best.

In DSTT, the goal of fitness function is the maximum evaluation value. The D-value be-
tween the evaluation values calculated before and after particle iteration can be understood
as the motion distance of the particle.

3.3. Parameter

The DPSO is controlled by three parameters: inertia-retention factor (IRF), particle-
best factor (PBF), and global-best factor (GBF). The three parameters correspond to ω,
c1r1, and c2r2 in Formula (13). Set the sum of the three parameters to 1. Each iteration
has a proportion of ω to perform inertia retention, a proportion of c1r1 to perform local-
best motion, and a proportion of c2r2 to perform global-best motion. In the parameter
experiment, we set the change-step size of the parameter to 0.1. The experiment sets
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the number of equipment and the number of time periods to be equal. The enumeration
algorithm is used to verify the interval between the number of time periods and the number
of equipment [4, 7]. The enumeration algorithm cannot be tested due to the computing
time periods including more than 8 pieces of equipment. Each task number randomly
generates 100 task sequences for testing. The experimental data are shown in Table 2:

Table 2. Comparison of the number of successful tests of DPSO parameters.

Parameter Number of Equipment and Time Periods
Total

IRF PBF GBF 4 5 6 7

0.8 0.1 0.1 100 100 100 99 399
0.7 0.1 0.2 100 100 100 100 400
0.6 0.2 0.2 100 100 100 99 399
0.6 0.1 0.3 100 100 100 100 400
0.6 0.2 0.2 100 100 100 99 399
0.6 0.3 0.1 100 100 99 97 396
0.5 0.1 0.4 100 100 100 100 400
0.5 0.2 0.3 100 100 100 100 400
0.5 0.3 0.2 100 100 98 98 396
0.5 0.4 0.1 100 100 97 93 390
0.4 0.1 0.5 100 100 100 100 400
0.4 0.2 0.4 100 100 100 99 399
0.4 0.3 0.3 100 100 100 99 399
0.4 0.4 0.2 100 99 96 90 385
0.4 0.5 0.1 100 99 96 96 391
0.3 0.1 0.6 100 100 100 99 399
0.3 0.2 0.5 100 100 100 97 397
0.3 0.3 0.4 100 99 99 97 395
0.3 0.4 0.3 100 100 97 96 393
0.3 0.5 0.2 100 99 98 94 391
0.3 0.6 0.1 100 99 97 93 389
0.2 0.1 0.7 100 100 100 100 400
0.2 0.2 0.6 100 100 100 100 400
0.2 0.3 0.5 100 99 99 95 393
0.2 0.4 0.4 100 98 98 97 393
0.2 0.5 0.3 100 99 94 92 385
0.2 0.6 0.2 100 95 97 89 381
0.2 0.7 0.1 99 98 89 87 373
0.1 0.1 0.8 100 100 100 99 399
0.1 0.2 0.7 100 100 100 99 399
0.1 0.3 0.6 100 100 98 99 397
0.1 0.4 0.5 100 96 98 94 388
0.1 0.5 0.4 100 96 99 90 385
0.1 0.6 0.3 100 97 95 93 385
0.1 0.7 0.2 99 98 90 89 376
0.1 0.8 0.1 99 96 89 87 371

According to the number of equipment and time periods in the 4–7 interval, the
enumeration algorithm is used to obtain the optimal values for the comparison tests. The
iteration number of the parameter test table is obtained as follows. In order to better
compare the change in the iteration number of different parameter groups, the iteration
number is evaluated and calculated. The number of each equipment is calculated by
dividing the iteration number by the average value of the iteration number obtained by all
parameter groups. The cumulative-average proportion is shown in Table 3.
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Table 3. Comparison table of iterations of DPSO.

Parameter Number of Equipment and Time Periods Average
WeightedIRF PBF GBF 4 5 6 7

0.8 0.1 0.1 224 871 2655 21,824 3.9881
0.7 0.1 0.2 112 599 2217 10,548 2.3223
0.6 0.2 0.2 172 557 1650 8722 2.3816
0.6 0.1 0.3 121 591 1836 5129 1.9570
0.6 0.2 0.2 113 439 3923 9776 2.4696
0.6 0.3 0.1 178 452 3309 16,446 3.1171
0.5 0.1 0.4 149 512 1569 8560 2.1828
0.5 0.2 0.3 132 367 1469 5336 1.7257
0.5 0.3 0.2 118 432 2423 11,878 2.3078
0.5 0.4 0.1 112 307 6163 25,490 3.7425
0.4 0.1 0.5 122 522 1749 3791 1.7931
0.4 0.2 0.4 122 415 1270 7374 1.8020
0.4 0.3 0.3 124 334 975 8476 1.7363
0.4 0.4 0.2 119 780 8287 35,345 5.2982
0.4 0.5 0.1 109 1033 7520 21,687 4.5165
0.3 0.1 0.6 149 443 1619 7191 2.0399
0.3 0.2 0.5 110 453 1363 10,859 2.0050
0.3 0.3 0.4 127 843 3195 12,709 2.9862
0.3 0.4 0.3 104 351 6735 17,436 3.3739
0.3 0.5 0.2 754 628 4604 19,818 6.9327
0.3 0.6 0.1 103 1049 7460 22,095 4.5122
0.2 0.1 0.7 139 567 1450 4326 1.9032
0.2 0.2 0.6 109 415 1283 3175 1.4791
0.2 0.3 0.5 120 725 3347 14,749 2.9821
0.2 0.4 0.4 119 1037 4929 15,402 3.6608
0.2 0.5 0.3 109 554 9827 28,083 4.8906
0.2 0.6 0.2 107 4385 6990 37,551 8.7769
0.2 0.7 0.1 498 1632 16,425 46,448 10.6003
0.1 0.1 0.8 133 455 1978 5732 1.9499
0.1 0.2 0.7 115 378 1600 5762 1.6963
0.1 0.3 0.6 126 352 4289 4313 2.1971
0.1 0.4 0.5 146 2829 5560 13,826 5.6724
0.1 0.5 0.4 118 1822 2081 29,446 4.7190
0.1 0.6 0.3 116 3604 9047 19,192 7.3423
0.1 0.7 0.2 614 2266 15,314 39,792 11.2526
0.1 0.8 0.1 612 2278 18,466 36,460 11.7022

It can be seen from Table 3 that the number of iterations in the parameter groups’
calculations to obtain all global-best solutions in Table 2 is also small, indicating that the
algorithm’s success rate and efficiency are unified within the same parameter group.

It is impossible to enumerate the parts of the algorithm’s comparison experiments and
to compare whether the evaluation values obtained under different parameters obtained
the maximum value for all parameters. The number of iterations of the algorithm is the
number of iterations of the greedy algorithm. The formula is as follows:

IterationNumber =
n

∑
i=1

i2 (23)

The number of experimental tasks includes the data from the previous 4–7 intervals.
According to the computing power of the current experimental environment, the number
of equipment and the number of time periods during the experiment is 12. The data can be
found in Table 4.
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Table 4. Comparison of times required to obtain the best value.

Parameter Number of Equipment and Time Periods
Total

IRF PBF GBF 4 5 6 7 8 9 10 11 12

0.8 0.1 0.1
√ √ √

3
0.7 0.1 0.2

√ √ √ √
4

0.6 0.2 0.2
√ √ √

3
0.6 0.1 0.3

√ √ √ √
4

0.6 0.2 0.2
√ √ √

3
0.6 0.3 0.1

√ √
2

0.5 0.1 0.4
√ √ √ √ √ √

6
0.5 0.2 0.3

√ √ √ √
4

0.5 0.3 0.2
√ √

2
0.5 0.4 0.1

√ √
2

0.4 0.1 0.5
√ √ √ √ √ √

6
0.4 0.2 0.4

√ √ √
3

0.4 0.3 0.3
√ √ √

3
0.4 0.4 0.2

√
1

0.4 0.5 0.1
√

1
0.3 0.1 0.6

√ √ √ √ √
5

0.3 0.2 0.5
√ √ √

3
0.3 0.3 0.4

√
1

0.3 0.4 0.3
√ √

2
0.3 0.5 0.2

√
1

0.3 0.6 0.1
√

1
0.2 0.1 0.7

√ √ √ √ √
5

0.2 0.2 0.6
√ √ √ √

4
0.2 0.3 0.5

√
1

0.2 0.4 0.4
√

1
0.2 0.5 0.3

√
1

0.2 0.6 0.2
√

1
0.2 0.7 0.1 0
0.1 0.1 0.8

√ √ √
3

0.1 0.2 0.7
√ √ √

3
0.1 0.3 0.6

√ √
2

0.1 0.4 0.5
√

1
0.1 0.5 0.4

√
1

0.1 0.6 0.3
√

1
0.1 0.7 0.2 0
0.1 0.8 0.1 0

Analysis of parameters’ test results:

1. According to Table 2, when the number of equipment and time periods is [4, 7], the
influence of the parameters on the algorithm results is small. When the PBF is small
and the GBF is large, the algorithm’s success rate is high. Taking the IRF of 0.1 as an
example, as the PBF increases, the GBF decreases, and the success rate of the algorithm
decreases gradually.

2. According to Table 3, when the number of equipment and time periods is small [4, 7],
the algorithm performance is evaluated by the weighted average of the number of
iterations of the algorithm required to reach the global-best solution. The algorithm
parameters have a great impact on the number of iterations of the algorithm. Among
the parameter groups with a success rate of 100%, the parameter groups (0.2,0.2,0.6)
have the lowest number of iterations.

3. According to Table 4, the interval between the number of equipment and the number
of time periods [4, 12] is considered globally. In the test of fixed iterations, the
DPSO only achieves the maximum value of multiple parameters when the number of
equipment and the number of time periods are 8. In [9, 12], some different parameter
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groups achieved maximum values, including (0.3,0.1,0.6), (0.5,0.1,0.4), (0.2,0.1,0.7),
and (0.4,0.1,0.5).

4. The groups (0.3,0.1,0.6) are better in the iterative-weighting calculation in the previous
two comparison tables, but the success rate is slightly lower. The groups (0.2,0.2,0.6)’
weighted-average number of iterations is minimal. In order to ensure the comprehen-
siveness of the subsequent multi-algorithm experiments, use 5 groups of parameters
to carry out experiments in the subsequent comparison experiments of DPSO. The list
is in Table 5.

Table 5. Comprehensive comparison table of parameter tests of DPSO.

Parameter [4, 7] [4, 12]

IRF PBF GBF Success Rate Weighted Iteration Maximum Number of Times

DPSO1 0.5 0.1 0.4 100% 2.1828 6
DPSO2 0.4 0.1 0.5 100% 1.7931 6
DPSO3 0.3 0.1 0.6 99.75% 2.0399 5
DPSO4 0.2 0.1 0.7 100% 1.9032 5
DPSO5 0.2 0.2 0.6 100% 1.4791 4

4. Experiments
4.1. Comparison Algorithm and Method

The iteration number of each algorithm in this part is limited by Formula (23). The
comparison algorithms can be found in Table 6.

Table 6. DSTT comparison algorithm list.

Algorithm Explain

ENU
Enumeration algorithm: The global-optimal solution can be obtained by traversing the running chart of all tasks and

calculating the evaluation value. With the increase in the number of equipment and time periods, the iteration
number increases rapidly and the algorithm’s execution time is long.

GR
Greedy algorithm: Find out the tasks that can obtain the best allocation among all tasks. According to this principle,
until all tasks are allocated, the algorithm’s execution time is stable, the number of algorithm iterations is related to

the task period, and the conflicts encountered in the allocation are backtracked [4].

IGA

Improved genetic algorithm: Select the elitist-retention strategy, the discontinuous cycle replacement group
crossover strategy for crossover, and the overall equipment task switching strategy for mutation. The three

parameters are set as the algorithm’s optimal parameter array, with a selection factor = 0.8, a crossover factor = 0.1,
and a mutation factor = 0.1. Refer to previous research results for the selection of parameters [3].

DPSO Discrete particle swarm optimization algorithm: The parameters are calculated according to the five sets of
parameters in Table 5, and the corresponding statistical calculations are performed.

According to the characteristics of the DSTT, the algorithm-comparison test uses the
enumeration algorithm as the reference algorithm in the range of [4, 7] between the number
of equipment and the number of time periods. The enumeration algorithm takes a long
time to produce its calculations, but it can clearly obtain the global-optimal solution. With
the optimal solution as a comparison reference, the performance index of the algorithm is
evaluated by recording the number of iterations required by the other algorithms to reach
the optimal solution.

In the interval where the number of equipment and periods exceeds seven, there is
no optimal solution for reference. The comparison method adopts two calculations. Each
comparison is completed with each parameter group first. The comparison results show
that the calculation results of more than two groups of parameters are completely consistent,
and the result is determined to be the global best solution. Then, the second calculation is
completed to obtain the number of iterations of the algorithm for each parameter to obtain
the global-best solution so as to evaluate the algorithm’s performance.
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In order not to lose fairness, all algorithms in the test experiment in this section use the
same initialization task queue for their calculations. Each task number randomly generates
100 task sequences for the best-scheduling calculations; compares the success rate of each
algorithm in calculating the global-best solution under the above conditions; calculates the
iteration times of the algorithm in the global-best solution; and calculates the proportional
cumulative evaluation value, which represents the average of the calculated comprehensive
evaluation value of the best allocation. Because the global best solution comparison is
adopted for the whole interval, the interval is no longer distinguished, and the data are
uniformly compared for the whole interval.

4.2. Algorithm Comparison Experiment

This section compares the effectiveness, accuracy, and efficiency of several algorithms
in the experiments.

The number of successes in obtaining the global best solution from the experimental
calculations are shown in Table 7.

Table 7. Multi-algorithm success number comparison table.

Eq. ENU GR IGA
DPSO

[min, max] Avg. Stdea.

4 100 25 100 [100, 100] 100 0.000000
5 100 8 100 [100, 100] 100 0.000000
6 100 5 100 [99, 100] 99.8 0.447214
7 100 2 99 [98, 100] 99.6 0.894427
8 N/A 1 89 [99, 100] 99.8 0.447214
9 N/A 0 70 [92, 99] 97.2 2.949576

10 N/A 0 62 [93, 100] 97.8 2.774887
11 N/A 0 35 [93, 98] 96.8 2.167948
12 N/A 0 39 [83, 97] 93.2 5.932959
13 N/A 0 20 [90, 100] 94.8 3.701351
14 N/A 0 4 [77, 97] 88.6 8.049845
15 N/A 0 10 [67, 94] 87.4 11.436783

Total 400 41 728 [1124, 1182] 1155 26.870058

When the number of equipment is greater than 7, the ENU is no calculated due
to too long time. The DPSO uses the five sets of parameters in Table 5 to calculate the
success numbers and performs statistical calculations on the maximum, minimum, average,
and mean square deviation of the five sets of result data. It can be seen that the DPSO’s
algorithm data are stable, but data stability decrease as the number of equipment increases.
Comparing algorithms, the DPSO is superior to the IGA, and the calculation results of the
two intelligent algorithms are far superior to that of the GR.

The average comparison of the evaluation values calculated by the algorithms is
shown in Table 8.

Table 8. Comparison table of evaluation values of multi-algorithms.

Eq. GR IGA
DPSO

[min, max] Avg. Stdea.

4 0.815214 0.838134 [0.838134, 0.838134] 0.838134 0.000000
5 0.874183 0.895642 [0.895642, 0.895642] 0.895642 0.000000
6 0.856763 0.883459 [0.883458, 0.883459] 0.8834588 0.000000
7 0.899497 0.916141 [0.916114, 0.916156] 0.9161528 0.000007
8 0.892468 0.913266 [0.91355, 0.913556] 0.9135548 0.000003
9 0.858319 0.881545 [0.882189, 0.882289] 0.8822652 0.000043

10 0.874637 0.898784 [0.89988, 0.899956] 0.8999352 0.000031
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Table 8. Cont.

Eq. GR IGA
DPSO

[min, max] Avg. Stdea.

11 0.873344 0.896935 [0.898354, 0.898388] 0.898379 0.000014
12 0.878253 0.902085 [0.903259, 0.90338] 0.9033514 0.000052
13 0.878391 0.914041 [0.916594, 0.916635] 0.9166176 0.000018
14 0.904408 0.931707 [0.934612, 0.934725] 0.9346716 0.000048
15 0.891888 0.917394 [0.920402, 0.920621] 0.920569 0.000094

Avg. 0.874780 0.899094 [0.900205, 0.900242] 0.9002276 0.000018

According to the data in Table 8, the evaluation-value data calculated by the DPSO
algorithm are stable, indicating that the algorithm has high stability. Compared to the IGA,
when the number of equipment is small, the accuracy of the two intelligent algorithms is
equivalent. As the number of equipment increases, the accuracy advantage of the DPSO
significantly increases. The calculation results of the GR algorithm differ greatly from those
of the two intelligent algorithms.

The comparison results of the number of iterations to obtain the best solution are
shown in Table 9.

Table 9. Multi-algorithm iteration number comparison table.

Eq. IGA
DPSO

[min, max] Avg. Stdea.

4 643 [105, 132] 116.4 10.0
5 2692 [340, 552] 446.8 88.4
6 7452 [1674, 2088] 1812.4 179.8
7 15,095 [4355, 9186] 5893.8 1963.8
8 74,431 [7719, 11,447] 9395.8 1465.2
9 266,112 [36,169, 69,736] 48,312.8 13,134.6
10 421,878 [42,925, 88,540] 63,079 16,922.1
11 899,103 [108,956, 208,574] 132,676.2 42,597.5
12 1,210,932 [209,287, 407,190] 309,613.4 90,217.6
13 2,211,539 [362,240, 765,968] 498,789 166,816.1
14 3,241,904 [493,569, 1,381,226] 841,163.8 328,465.6
15 4,141,849 [735,817, 2,595,418] 1,297,816.8 746,327.9

This research uses the number of iterations to evaluate the efficiency of the algorithm,
because intelligent algorithms need to calculate the results of the fitness function for each
iteration, and generally the algorithm’s operation time is much lower than the calculation
time of the fitness function. Table 9 shows the statistical analysis of the iterations of the
two intelligent algorithms. It can be seen that the iterations of the DPSO are far superior
to the efficiency of the IGA. Because the DPSO is a cluster search and the number of
iterations of the algorithm includes randomness, there is a large gap in the data statistics of
DPSO algorithms.

4.3. Summary of Experimental Analysis

Within the range of the number of equipment and time periods that can be verified by
the enumeration algorithm, and based on an analysis of success, the DPSO and the IGA
are effective, and the approximate rates can calculate the global-optimal solution, while
the GR is less effective. Within the range of the number of equipment and time periods
that cannot be verified by the enumeration algorithm, the DPSO can calculate and obtain a
global-optimal solution in most cases based on the disaster-recovery-backup idea and the
analysis of the algorithm itself. As the number of equipment increases, the effectiveness of
IGA algorithms significantly decreases.
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Based on the analysis of the evaluation values, the evaluation values calculated by
the DPSO and the IGA are close, while the GR’s calculation results differ greatly from
those calculated by the two intelligent algorithms. In all equipment-count tests, the DPSO
achieved higher evaluation values than the IGA. This indicates that the accuracy of the
DPSO is consistently higher than that of the IGA.

By analyzing the efficiency of the two intelligent algorithms through the number of
iterations, the execution efficiency of the IGA differs greatly from that of the DPSO.

The advantages and disadvantages of various algorithms and comparison algorithms
proposed in this paper are shown in Table 10.

Table 10. Comparison of advantages and disadvantages of multiple algorithms.

Eq. Availability Accuracy Efficiency Evaluation

ENU high N/A N/A bad
GR low low N/A bad
IGA middle high low better

DPSO high high high best

In comparative analyses, the DPSO algorithm is comprehensively evaluated to be the
best.

4.4. Simulation Experiment

This section compares the advantages and disadvantages of several algorithms by
simulating the actual situation of the transmitting station.

The experimental program writing tool used is Visual Studio 2012, and the language
used is C++ with MFC architecture. The hardware environment used is a Microsoft Surface
X1 portable computer, the CPU used is Intel Core i7 3.60 GHz, the memory used is 16 GB,
and the operating system used is Win10.

In the actual working environment of the transmission station, the number of equip-
ment is usually fixed, and the number of time periods varies according to the program
settings. In this part of the simulation experiment, the parameters with the best performance
of the algorithm are selected for the simulation experiment. The enumeration algorithm
was abandoned due to the long execution time after the number of tasks increased, and the
GR had no parameters. The IGA parameters are (0.8,0.1,0.1) for the simulation experiments,
and the DPSO selected parameters (0.3,0.1,0.6) for the simulation experiments. The fixed
value of the number of equipment is 10, and the number of time periods is 24 h per day,
with one time period every half an hour, that is, a [4, 48] interval. The two intelligent
algorithms are tested with the same number of iterations. Because there is no optimal-value
comparison, the success-rate data cannot be compared. The simulation experiment only
compares the algorithm’s accuracy with the average value of the comprehensive evaluation
value obtained 100 times. The data obtained are in Table 11.

Table 11. Accuracy comparison data table of three algorithms simulation experiments.

Periods 4 5 6 7 8 9 10 11 12

GR 0.893972 0.901704 0.913778 0.881862 0.879343 0.889435 0.906143 0.884089 0.896052
IGA 0.917416 0.92164 0.934022 0.90367 0.904581 0.907794 0.932187 0.911542 0.920281

DPSO 0.918031 0.922333 0.935052 0.904655 0.905095 0.909001 0.933586 0.912695 0.921244

Periods 13 14 15 16 17 18 19 20 21

GR 0.893406 0.881768 0.89654 0.907105 0.89874 0.860929 0.864331 0.894956 0.8873
IGA 0.921019 0.910778 0.916936 0.93331 0.920762 0.88272 0.890827 0.921293 0.914671

DPSO 0.922169 0.911839 0.91786 0.93453 0.921716 0.883748 0.891933 0.922291 0.915707
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Table 11. Cont.

Periods 22 23 24 25 26 27 28 29 30

GR 0.885542 0.885767 0.885219 0.87728 0.880179 0.87955 0.852032 0.883815 0.863596
IGA 0.910287 0.912008 0.910358 0.904637 0.912072 0.902095 0.884231 0.909096 0.888886

DPSO 0.911239 0.913564 0.911396 0.906042 0.912925 0.90334 0.885226 0.910536 0.889882

Periods 31 32 33 34 35 36 37 38 39

GR 0.890629 0.89359 0.857689 0.866087 0.873645 0.883004 0.867741 0.88413 0.867158
IGA 0.915545 0.91956 0.885552 0.889054 0.899454 0.910442 0.890941 0.914558 0.897373

DPSO 0.916702 0.920654 0.886297 0.89005 0.900186 0.911575 0.891782 0.915296 0.898685

Periods 40 41 42 43 44 45 46 47 48

GR 0.862168 0.867621 0.86952 0.848084 0.876947 0.863869 0.875981 0.905513 0.858482
IGA 0.884312 0.896044 0.895931 0.872597 0.907236 0.887478 0.899854 0.930317 0.889568

DPSO 0.884925 0.896671 0.897014 0.873367 0.908403 0.888566 0.900728 0.931161 0.890556

According to Table 11, the DPSO has obtained an evaluation value superior to that of
the IGA, which shows that the two intelligent algorithms operate stably, and that the DPSO
has obvious accuracy advantages when dealing with DSTTs. See Figure 4 for a comparison
diagram.
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In the simulation experiments, select 100 experimental data with the largest number
of time periods, that is, 48 time periods, and observe the evaluation value and algorithm
calculation time of each of the two algorithms. The data are presented in Figure 5.
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According to Figures 4–6, the following statistics can be obtained:

1. In the simulation experiment of multiple time periods, the evaluation values of
the transmission effect for all time periods are averaged. The DPSO improved the
evaluation value by 3.012295% compared to the GR, and the DPSO improved the
evaluation value by 0.1111146% compared to the IGA.

2. In the simulation experiment with a maximum period of 48, the results of the DPSO
were better than that of the IGA. In almost 60% of the 100 experiments, the IGA
achieved the same results as the DPSO while other results were lower than that of the
DPSO. The DPSO improved the evaluation value by 0.11115% compared to the IGA.

3. In the simulation experiment with a maximum period of 48, in 100 experiments the
average execution time of the DPSO was 3.195 s, and the average execution time of
the IGA was 10.388 s. The DPSO improved the execution efficiency by 69.246%.

According to the simulation experiment, it can be concluded that the intelligent
algorithm and mathematical model proposed can solve the DSTT problem of radio- and
television-transmission stations. The algorithm is stable in many simulation experiments,
and the DPSO has the highest accuracy and the shortest execution time.



Appl. Sci. 2023, 13, 4353 19 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 21 
 

According to Figures 4–6, the following statistics can be obtained: 
1. In the simulation experiment of multiple time periods, the evaluation values of the 

transmission effect for all time periods are averaged. The DPSO improved the evalu-
ation value by 3.012295% compared to the GR, and the DPSO improved the evalua-
tion value by 0.1111146% compared to the IGA. 

2. In the simulation experiment with a maximum period of 48, the results of the DPSO 
were better than that of the IGA. In almost 60% of the 100 experiments, the IGA 
achieved the same results as the DPSO while other results were lower than that of 
the DPSO. The DPSO improved the evaluation value by 0.11115% compared to the 
IGA. 

3. In the simulation experiment with a maximum period of 48, in 100 experiments the 
average execution time of the DPSO was 3.195 s, and the average execution time of 
the IGA was 10.388 s. The DPSO improved the execution efficiency by 69.246%. 

 
Figure 6. Two-algorithm calculate-time comparison chart of 100 tests. 

According to the simulation experiment, it can be concluded that the intelligent al-
gorithm and mathematical model proposed can solve the DSTT problem of radio- and 
television-transmission stations. The algorithm is stable in many simulation experiments, 
and the DPSO has the highest accuracy and the shortest execution time. 

5. Conclusions 
The paper conducts research on the DSTT and designs a DSTT mathematical model 

suitable for operation by an intelligent algorithm. We proposed a fitness function with the 
goal of achieving the highest-effectiveness evaluation value. Based on PSO and recent re-
search on the DPSO, the DPSO is specifically proposed for the DSTT. 

The DPSO redefines particle-motion direction and particle-motion target based on 
the two-dimensional Schedule. Based on the characteristics of discrete problems, it pro-
poses a probability-selection model to solve the specific operation of particle-position up-
dates in discontinuous problems. It sets three parameters, namely, the inertia-retention 
factor, the particle-best factor and the global-best factor, to control the particle-position 

0 10 20 30 40 50 60 70 80 90 100

Test Times (1-100)

0

5

10

15

20

25
IGA and DPSO calculate time chart

IGA
DPSO

Figure 6. Two-algorithm calculate-time comparison chart of 100 tests.

5. Conclusions

The paper conducts research on the DSTT and designs a DSTT mathematical model
suitable for operation by an intelligent algorithm. We proposed a fitness function with
the goal of achieving the highest-effectiveness evaluation value. Based on PSO and recent
research on the DPSO, the DPSO is specifically proposed for the DSTT.

The DPSO redefines particle-motion direction and particle-motion target based on the
two-dimensional Schedule. Based on the characteristics of discrete problems, it proposes
a probability-selection model to solve the specific operation of particle-position updates
in discontinuous problems. It sets three parameters, namely, the inertia-retention factor,
the particle-best factor and the global-best factor, to control the particle-position update to
meet the idea of the DPSO, and adopts a random-perturbation operation. It avoids particle
motion falling into the trap of local-optimal solutions. In parameter testing, the traversal
method is used to determine the parameter group with the best calculation effect.

Finally, this paper outlines comparison experiments. In comparison experiments
with GRs and IGAs, the effectiveness of the algorithm is verified using the success rate.
Computational accuracy is verified using the calculation of evaluation values, and efficiency
is compared using algorithm iterations. The results show that the DPSO has significant
advantages in these three aspects.

The research results of this paper have certain reference significance for task scheduling
and the COP in other industries.

The next research direction is to conduct multi-objective optimization research based
on the research results of this paper, while ensuring the transmission effect and increasing
the utilization rate of the equipment.
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