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Abstract: Precision medicine is now evolving to include internet-of-wearable-things (IoWT) applica-
tions. This trend requires the development of novel systems and digital signal processing algorithms
to process large amounts of data in real time. However, performing continuous measurements
and complex computational algorithms in IoWT systems demands more power consumption. A
novel solution to this problem consists in developing energy-aware techniques based on low-power
machine learning (ML) algorithms to efficiently manage energy consumption. This paper proposes a
multimodal dynamic power management strategy (DPMS) based on the ML-decision tree algorithm
to implement an autonomous IoWT system. The multimodal approach analyzes the supercapacitor
storage level and the incoming biosignal statistics to efficiently manage the energy of the wearable
device. A photoplethysmography (PPG) sensing prototype was developed to evaluate the proposed
ML-DPMS programmed in a Nordic nRF52840 processor. The experimental results demonstrate
an IoWT system’s low consumption of 25.74 J, and a photovoltaic solar power generation capacity
of 380 mW. The proposed ML-DPMS demonstrates a battery life extension of 3.87×, i.e., 99.72 J of
energy harvested, which represents the possibility to achieve at least 2.4×more data transmissions,
in comparison with the widely used uniform power management approach. In addition, when
the supercapacitor’s energy is compromised, the decision tree technique achieves a good energy
conservation balance consuming in the same period of time 39.6% less energy than the uniform
power approach.

Keywords: internet of wearable things; machine learning; power management; wireless sensor
networks

1. Introduction

Wearable and artificial intelligence (AI) technologies play an increasingly important
role in modern medical fields by enabling remote diagnostics and monitoring of health
conditions [1–6]. Recent studies on precision medicine measure biological signals (heart
rate, body temperature, blood oxygen saturation) for the smart detection and monitoring of
diseases and physical disorders [7–14]. However, the need for continuous measurements,
analysis, and transmission in novel wearable systems requires more computational power,
resulting in higher energy consumption. Internet-of-wearable-things (IoWT) devices are
commonly battery-powered; therefore, one key design problem is enhancing the energy
efficiency of IoWT systems [15,16]. In this sense, the wearable end device does not have

Appl. Sci. 2023, 13, 4351. https://doi.org/10.3390/app13074351 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074351
https://doi.org/10.3390/app13074351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8595-1355
https://orcid.org/0000-0002-0956-5994
https://orcid.org/0000-0002-5369-622X
https://orcid.org/0000-0002-6064-0371
https://orcid.org/0000-0003-4976-4928
https://orcid.org/0000-0001-9656-8415
https://orcid.org/0000-0003-4466-9374
https://orcid.org/0000-0002-0465-8948
https://doi.org/10.3390/app13074351
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074351?type=check_update&version=1


Appl. Sci. 2023, 13, 4351 2 of 14

to measure and transmit data continuously. Instead, it can go to sleep for long periods of
time and periodically wake up to sample the biological signs. Once a sensitive event is
detected, the sensor can then stay active to acquire more data and transmit it to the cloud.
This event-driven pattern is accurate and may not miss any event occurrences, as long as
the wake-up period is short enough. However, when the system operates in this mode, its
energy consumption increases and fluctuates randomly, making it hard to predict if enough
energy is preserved in the storage system for the device to wake up and sense cyclically.

In the past, diverse dynamic power management strategies (DPMS) and energy har-
vesting approaches have been proposed to enhance the energy efficiency of wearable health-
care devices [6,16–19]. In [20–22], DPMS reduced the energy consumption of healthcare
devices, identifying the duration and timing of sleep cycling. Moreover, [23] recommends
artificial neural networks (ANN) to estimate DPMS wake-up schedules to save energy.
Task offloading is another energy-efficiency perspective to reduce the power consumption
on wearable devices [24]. However, these strategies rely on cloud services for complex
computational operations, which depend on stable internet connectivity [25].

Decision tree (DT) algorithms are a subset of machine learning (ML) that can be
used for implementing low-cost hardware implementations [26]. This is because DT uses
logical comparators only, which are efficiently synthesized by compilation libraries. On
the other hand, neural networks (or classical embedded implementation [27]) and other
approaches perform arithmetic operations such as additions, multiplications, or even more
complex operations depending on the activation function. For example, [28] discusses the
computational complexity of hardware implementations of decision trees and their usage
in data classification. The hardware implementation of DT with 8 trees depth requires 257×
fewer MAC (multiply–accumulate) operations compared to an 8-layer CNN and 43× fewer
MAC operations compared to a 5-layer CNN. This reduction in MAC operations results in
a lower area and power consumption implementation [28].

In this paper, a multimodal power management strategy is proposed for intelligent
energy use in IoWT systems. A decision tree algorithm based on machine learning (ML)
is efficiently implemented as a strategy to maximize the number of transmissions, consid-
ering the limited and time-varying amount of available energy, and minimize the energy
consumption if the incoming data does not show the occurrence of a sensitive event. The
ML-DPMS is programmed in the Nordic nRF52840 microcontroller unit (MCU) maintaining
a low-power approach.

Figure 1 illustrates the conceptual idea of the proposed IoWT system. As can be seen,
a PPG (photoplethysmography)-based) IoWT system prototype is developed to experimen-
tally evaluate the multimodal power management operation with the ML-decision tree
algorithm. The system integrates an energy harvesting (EH) circuit and the MCU with a
Bluetooth low energy (BLE) module built into the same device. The main contributions of
this paper are the following:

• A multimodal ML-DPMS approach that increases by at least 2.4× the number of
transmissions in comparison to uniform power management approaches when the
incoming biosignal data has high variability, and the power of the supercapacitor is
sufficient and achieves a good energy saving of up 39.6%, avoiding system shutdown,
when the supercapacitor’s energy is low.

• A low consumption of 25.72 J for the IoWT system based on the ML-decision tree algo-
rithm programmed in the Nordic nRF52840 MCU. A 380.8 mW solar PV (photovoltaic)
power generation system (i.e., 99.7 J of energy harvested per day) which is 3.87 times
more than the energy required for operation.

• A highly integrated PPG-based wearable prototype to evaluate the ML-decision tree
power management strategy.
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Figure 1. Conceptual idea of the proposed wearable IoT sensor node, which implements ML-based
dynamic power management strategies.

The remainder of this study is organized as follows: Section 2 presents the developed
PPG-based IoWT sensor node prototype with the solar PV EH circuit. Section 3 describes
the multimodal intelligent energy DPMS. Experimental results on real-time embedded
hardware implemented on the wearable platform are presented in Section 5. Finally, the
conclusions are stated in Section 6.

2. Circuit Design of the PPG-Based Wearable System

A highly integrated IoWT system prototype was designed to evaluate the proposed power
management strategy. Figure 2 shows a system-level diagram of the proposed circuit prototype.
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Figure 2. Schematic diagram of the proposed PPG-based sensing system.
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2.1. Energy Harvesting Circuit

The EH circuit is connected to a small 80× 100 mm, 1 W solar PV cell, with a typical
energy transformation efficiency of 35% [29]. The mono-crystalline panel has an open circuit
voltage of 8.2 V, with a voltage and current at the maximum power point of 6.4 V and
170 mA, respectively. The EH circuit is based on the LT3652 (Analog Device, Wilmington,
MA, USA) monolithic step-down converter that operates with a minimum input voltage
of 4.95 V. It is compatible with low-power systems, i.e., once charging is terminated, it
enters standby mode with a low-power consumption of 85 µA. The LT3652 maximizes
the transfer of energy from the PV panel to an 8 F supercapacitor array, with an energy
capacity of 54.76 J for the IoWT system operation. The LT3652 uses a charge-current scheme,
which ends a charge cycle when the supercapacitor charge current falls to one-tenth of the
programmed 1.0 A maximum charge current. On the other hand, when the supercapacitor
voltage reaches 60% of the fully charged float voltage, the IC automatically increases the
maximum charge current to the full programmed value. Once charging is terminated, the
LT3652 automatically enters a low-current standby mode where supply bias currents are
reduced to 85 µA.

2.2. Microcontroller Unit with BLE Wireless Communication

The NINA-B302 (U-Blox, Thalwil, CH) module integrates a small, stand-alone Blue-
tooth low energy (BLE)-5 circuit with the nRF52840 MCU (Nordic Semiconductors, Trond-
heim, NO, Norway) [30]. It also encloses a planar inverted-F antenna, that is successfully
tuned with a passive network of inductor and capacitor components, producing a well-
matched transceiver system. The nRF52840 MCU encloses an Arm Cortex-M4, 1 MB flash,
and 256 kB RAM. It also contains a CryptoCell CC310 (Nordic Semiconductors, Trond-
heim, NO, Norway) cryptographic security unit and a high-speed SPI interface at 32 MHz.
This chip has a 1.7 to 5.5 V supply voltage range and current consumption of 0.6 µA in
sleep mode and 4.8 mA TX at 0 dBm. The ML-DPMS algorithm is implemented in the
MCU and dynamically runs after data acquisition, analyzing the healthcare signs and the
supercapacitor level, and adjusting the next IoWT’s sleep period.

BLE is a wireless communication technology designed for low power consumption
and a data rate of up to 2 Mbps. The BLE protocol data unit (PDU) is configured with
a packet structure that contains a header and a payload. The PDU is assembled with a
preamble, the access address, and the cyclic redundant code (CRC). Figure 3 illustrates the
used packet structure of 20 bytes size for BLE transmission that is able to transmit 10 bytes
of data per packet, with the possibility to transmit multiple packets in succession.
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Figure 3. BLE data packet configuration.

2.3. Healthcare Sensors

The MAX30205 (temperature) and the MAX30102 (PPG) sensors from Maxim Inte-
grated (San Jose, CA, USA) [31] are the high-accuracy healthcare components used in the
prototype. In particular, the PPG sensor has an embedded processor, which computes
advanced R-wave detection algorithms. Despite this processing, the consumption of this
sensor is 600 µA and 0.7 µA in sleep mode. The I2C interface is used to communicate data
from the sensors to the nRF52840 microcontroller host. Figure 4 illustrates the sensors and
electronic components assembled in the wearable printed circuit board (PCB) prototype.
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Figure 4. Schematic diagram of the proposed PPG-based prototype. (a) main board top view,
(b) sensors’ board top view and (c) sensors’ board bottom view.

2.3.1. Temperature Sensor

The MAX30205 is a clinical-grade temperature sensor with 16-bit resolution, ±0.1 ◦C
accuracy, 0 to +50 ◦C operation range, and 2.7 V to 3.3 V supply voltage range. The sensor
consumes 600 µA in typical operating supply current and 1.65 µA when the sensor is in
sleep mode (with the I2C bus inactive). This sensor accomplishes the ASTM E1112 standard
specification for an electronic digital thermometer.

2.3.2. Heart Rate and SpO2-PPG Sensor

The clinical-degree MAX30102 sensor contains a pulse oximetry and a heart rate (HR)
module. The sensor comprises internal LEDs, photo-detectors, optical elements, and low-
noise electronics with ambient light rejection. It has an integrated cover glass for optimal,
robust performance. This sensor is shut down through software (0.7 µA Typical), allowing
a low-power operation with high sample rates and high signal-to-noise-ratio (SNR).

3. Intelligent Power Management

This section describes the multimodal dynamic power management strategy. In
particular, machine learning (ML) policies are proposed for power management taking
into account the available energy stored in the supercapacitor for the IoWT system and the
sensors’ data statistics.

A processing chain methodology is presented for analyzing the biosignal statistics
and supercapacitor voltage level to efficiently manage the energy of IoWT devices. As
illustrated in Figure 5, the variables are intelligently processed by the ML-decision tree to
estimate the next sleep period before BLE transmission.

Data 
Acquisition

Digital
Filtering

ML
Decision Tree

BLE
Transmission

Adaptive
Sleep

Temp
HR

SpO2
Vscap

Intelligent Processing

Figure 5. Flowchart diagram of the DPM strategy.

3.1. Data Acquisition

The data acquisition steps and the DPMS strategy are the following:

• Each sampling cycle has N = 512 measurements of Temp, SpO2, and HR. The mea-
surement period takes 20.48 s at a sampling frequency of 25 Hz.

• The supercapacitor’s voltage level Vscap is also acquired every time the MCU wakes
up (TSleep).
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• The moving average algorithm (MA) is implemented in the nRF52840 MCU. That is:
δi =

1
N (xi,1 + xi−1,1 + ... + xi−N,1; xi,2 + xi−1,2 + ... + xi−N,2; xi,3 + xi−1,3 + ... + xi−N,3).

The N value is a power of 2, which means that the division is computed by a simple
shift operation.

• ML-decision tree processing
• Data transmission δi with the BLE protocol
• Sleep period of Tsleep = 15 min (default value) for IoWT sensing update.

Recent studies have aimed to determine the minimal sampling frequency for PPG
signals. One option is optimizing the signal sampling rate by decimating with a factor of
2, 5, 10, 20, 50, 100, 200, 500, then cubic spline and parabola interpolating back to 1 ms
resolution [32,33]. However, a 5 Hz sampling frequency is sufficient for the PPG signal’s
average monitoring. The interpolation method is used to improve the resolution from
lower sampling frequencies [32]. In this work, the frequency of 25 Hz is selected for the
PPG-based IoWT system. Finally, Elgendi et al. [34] suggest taking three measurements per
hour to assess disease conditions using photoplethysmography, with each measurement
taking 20 min. In this study, a period ranging from 5 to 15 min was considered to achieve a
balance between accuracy and energy savings.

3.2. ML-Decision Tree

Machine learning (ML) is an attractive method for the intelligent management of
energy utilization in IoWT systems. Different ML approaches can be used, such as genetic
algorithms and neural networks, among others. As Taghavi and Shoaran [28] pointed
out, ML-decision trees can be designed with low computational overhead, as they rely
on recursive data partitions of the dataset by comparing features with a threshold. This
proposal suggests using a low-power decision tree algorithm to efficiently manage energy
consumption. ML-decision trees perform simple evaluations (comparisons) on the available
features to form homogeneous subsets based on decision rules. Each level of the tree
represents a refinement of the subset that guides to a final decision, in this case, the
sleep period. The fit algorithm computes decision rules to split the dataset (features and
corresponding threshold) once the decision tree is trained. As a result, in the proposed
model, an ensemble of four trees (one for each feature) with a depth of k (i.e., 2k− 1 nodes),
the total number of operations required for inference is 4× k plus the decision.

In this proposal, the multimodal ML-based decision tree estimates the duration of the
sensor node’s sleep period T̂Sleep according to the data acquisition statistics (Temp, HR,
SpO2), and supercapacitor voltage level (Vscap).

ML policies are implemented on the power management approach providing better
insight and understanding of the discrete actions taken by the PPG-based IoWT system.
The policies follow the National Early Warning System (NEWS) [35], and the control flow
is addressed by the Decision tree algorithm to maximize the number of transmitted packets
considering the level of available energy.

A state vector ζi = (Ti, SpO2i, HRi, Vscap, Tsleep) is established describing the state of
the PPG-based IoWT system. In this regard, for every measurement of the variables, the
ML algorithm establishes the split actions following the NEWS statements and estimates
the best T̂sleep period. The decision tree algorithm selects the weights associated with each
ζi, and the thresholds βTh.

The algorithm comprises three main steps:

• The initial information entropy of the sample set H(ζ) is calculated as

H(ζ) = −
m

∑
i=1

pii log2 pii. (1)

where ζ is the sample set, pii represents the probability of samples, and m is the
number of classes, which matches the sleep system periods.
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• The split entropy of the sample set under a selected action is calculated assuming
that ζ is divided into two subsets {ζL, ζR} by a randomly selected action A. The split
entropy is shown as follows:

HA(ζ) =
|ζL|
|ζ| H(ζL) +

|ζR|
|ζ| H(ζR). (2)

• The information gain is computed by subtracting (2) from (1),

Gain(A) = H(ζ)− HA(ζ) (3)

Finally, the decision tree algorithm is trained to fit the state–action data through
supervised learning using Matlab’s statistics and machine learning toolbox. An amount of
4000 samples of HR, Temp, SpO2, and Vscap were used for training based on the NEWS
standard. Data were divided into training and test sets.

4. Experimental Results

The wearable prototype performs on-body monitoring testing, and an Android ap-
plication visualizes the data online. Google’s toolkit, Flutter, and Amazon web service
(AWS) were used for data storage and remote diagnosis through the website. The BLE
transceiver was configured for 0 dB power transmission, which is enough for a range cover
of 10 to 15 m.

Figure 6 depicts the experiment results of the IoWT prototype. Figure 6a, shows the
wearable electronic system prototype. Figure 6b illustrates a classification example result
with a splitting tree diagram for data analysis. The state variable HR is split through the
tree reaching the respective action AK according to the NEWS statement, i.e., {AK: circle
green, circle yellow, circle red; K = 1, 2, 3}. The weights were calculated offline through the
training process.
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Figure 6. Experimental results: (a) Wearable electronic prototype with decision tree power manage-
ment; and (b) Decision tree split result example.

4.1. Power Consumption and Energy Harvester Analysis

Figure 7 shows the supercapacitor’s voltage recovery after one transmission cycle. Af-
ter BLE pairing, the system enters an active sensing state performing the 512 measurements
in 20.48 s. It is observed that the BLE transmission causes a 100 mV voltage drop; however,
the supercapacitor recovery is almost instantaneous when the system achieves sleep mode.
The processing state corresponds to the ML-decision tree algorithm implemented on the
MCU, which estimates the next sleep period T̂sleep.

The supercapacitor charging test shows a quick charge recovery in a few seconds (≈2 s).
This suggests what could be considered the minimum sleep period to allow for the superca-
pacitor charging. However, other factors, such as temperature and solar radiation, must also
be considered. In this study, the power management analysis based on the ML-decision tree
considers a dynamic sleep period range of 5 to 15 min to guarantee the operation.
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Knowing the PPG sensing current consumption and their corresponding periods for
each state, the prototype power consumption (mAh) is the following

Q =
Γ
ρ
· (IPPGTPPG + IBLETBLE + ISleepTSleep + IProcTProc), (4)

where IPPG = 1.97 mA is the sensor average current consumption with a data acquisition
period of 20.4 s, IBLE uses an average of 0.45 mA to send data packets in TBLE = 7.5 s,
IProc = 0.42 mA is the consumption during ML-decision tree processing in TProc = 0.1 s, and
ISleep = 34.3 µA is the average current consumption of the MCU in sleep mode for the sleep
period TSleep. Moreover, TPPG is configured at 25 Hz for the total of 512 measurements at
20.48 s. Here, Γ represents the number of sensing and transmission sequences during a day.
If Tsleep is fixed (Γ = 93.096, ρ = 3600), the supercapacitor daily discharge is computed in
Q = 1.933 mAh. This means that the entire IoWT system requires a total energy of 25.74 J
per day to operate continuously, assuming a supercapacitor voltage of Vscap = 3.7 V.

The selected solar PV module has a value of PMPPT = 380.8 mW at typical STC
(i.e., 1000 W/m2 and a cell temperature of 25 ◦C). Considering only 35% efficiency be-
cause the solar PV is being used as a wearable and assuming only five hours of irradiance at
standard conditions (STC) [29], the energy generation is 99.72 J per day, which is 3.87 times
the required energy of the system. Therefore, under the described conditions, the IoWT
operation is guaranteed.

4.2. ML-Decision Tree Power Management Results

Decision trees are able to achieve high accuracy levels in ML-based classification-
embedded implementations. However, it is necessary to carry out a training process
carefully to avoid overfitting. In this sense, the training and validation process was gen-
erated by using a dataset of 1× 107 samples according to the NEWS standard. From the
dataset, 80% of data were used for the training process and 20% for the validation process.

For the experimental setup, three degrees of freedom are distinguished: (a) variations
on PPG-based biosignal measurements (the Worst Case Scenario—WCS is with high vari-
ations because the system must decide between saving energy or sampling accurately),
(b) supercapacitor’s voltage level (low or high), and (c) the m-number of classes in the
ML-DPMS, which corresponds to the sleep period in the MCU.

In this sense, two test case scenarios demonstrate the multimodal power management
results based on the ML-decision tree approach.
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• The first scenario considers biosignal measurements with medium to high SpO2,
Temp, and HR variations, with a critical behavior in samples 50 to 80 (See Figure 8a–c
showing an SpO2 level below 90%, Temperature of 40º and HR above 120). The
supercapacitor voltage level, in Figure 8d, is above 4.0 V with a steady behavior at
the beginning, and slow variations from sample 20. Five classes were employed in
the experiment according to the following sleep periods: m1 = 5 min, m2 = 7.5 min,
m3 = 10 min, m4 = 12.5 min and m5 = 15 min.

 
 
 
 
 
 
 
 
 

0 20 40 60 80 100

S
p
O

2

80

90

100

0 20 40 60 80 100

T
em

p

35

40

0 20 40 60 80 100

H
R

40

80

120

0 20 40 60 80 100

V
sc

ap

4.2

Samples
0 20 40 60 80 100

C
la

ss
(m

)

1

3

5

a) 

b) 

c) 

d) 

e) 

Figure 8. ML-decision tree results for test case scenario 1: (a–c) SpO2, Temperature and Heart rate
measurements; (d) Supercapacitor’s voltage; and (e) ML-decision tree classification results.

The ML-decision tree detects the quasi-stationary behavior of the supercapacitor and
analyzes the biosignal variations, introducing shorter sleep periods than the traditional
uniform power management. See Figure 8e with classification results from m1 to m3 in
all the graphs, which means sleep period levels from 5 to 10 min. The results of test
scenario 1 demonstrate the efficiency of the ML-decision tree power management. With
sufficient energy in the supercapacitor and medium to high variations of the incoming data,
the ML algorithm increases the sample period. Notice that during samples 50 to 80, the
classification results were even shorter for m1 = 5 min, and m2 = 7.5 min.

Figure 9 highlights the red square region of the classification results of Figure 8e,
i.e., the samples from 70 to 80. Here, a comparative analysis of the uniform power man-
agement strategy with our proposed ML-DPMS is presented. As one can notice, the
ML-decision tree power management achieves 12 transmissions, 2.4×more than the uni-
form strategy with a sleep period of 15 min. In terms of energy consumption, the ML-DPMS
approach requires 2.34 J and the uniform power management consumes 1.37 J. Therefore,
one can see that multimodal power management has better energy use, with more trans-
missions when sensitive events are detected in the biosignal measurements, but with a
relatively more energy consumption difference, i.e., 0.97 J, than the uniform strategy.
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Figure 9. Comparative analysis result of ML-Decision tree and uniform power management for test
scenario 1.

• The second test case scenario considers the same unstable behavior on the biosignal
measurements as shown in Figure 10a–c. Five classes are also employed with the same
range of test case 1.
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Figure 10. ML-decision tree results for test case scenario 2: (a–c) SpO2, Temperature and
Heart rate measurements; (d) Oscillatory supercapacitor’s voltage; and (e) ML-decision tree
classification results.

Although the unstable behavior of the biosignal measurements suggests shorter sam-
ple periods, the ML-decision tree analyzes the amount of energy stored in the supercapacitor
(see the oscillatory behavior of Vscap in Figure 10d and the red square of Figure 10e).

The algorithm chooses the best sleep duty cycle, avoiding the system shutting down.
The ML-decision tree algorithm also demonstrates a good balance between energy saving
and accuracy. As one can notice from Figure 11 shows that the ML-DPMS prevents the
system from shutting down by applying two large sleep periods in samples 79 and 80,
resulting in an energy consumption of 1.53 J. This represents a 39.6% reduction in energy
consumption compared to the uniform strategy’s 2.52 J.
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Figure 11. ML-decision tree and uniform power management comparative analysis for test scenario 2.

Considering the same samples marked on the square red of Figures 8 and 10, the results
on both test cases demonstrate the smart and adaptive behavior of the decision tree-DPMS.

5. Discussion

A comparative analysis with other similar studies is presented in Table 1 to highlight
the impact of the proposed ML-DPMS energy-saving technique for IoWT, which differs
from previous studies [6,10,14,16,36]. In particular, [6,14] implement PPG signal analysis
with intelligent processing, but without energy harvesting.

Table 1. Comparative analysis of the ML-DPMS approach.

[6] [10] [14] [36] [16] This
Work

Management
Technique

Threshold
Decision

Temporal
Convolutional

Network

CNN +
LSTM

LSTM +
MLP — ML-Decision Tree

+ Dynamic PMS

Sensor PPG PPG PPG ECG — PPG
Wireless
Protocol Bluetooth BLE — — — BLE

Storage
Element — Li-Ion

370 mAh — — — Supercapacitor
8 F

Power
Generation — — — — 900 µW@

272.7 µA
99.72 J

per day

Power
Consumption 2.52 J 13.7 mW@

4.5 mA

56.1 µJ
per processed

window
36.96 µW 18 µW@

5.48 µA
25.74 J

per day

Energy
Source — — — — Kinetic

microgenerators

Solar
PV
cell

In [10], a Q-PPG methodology based on a deep temporal convolutional network (TCN)
was used to predict the user’s heart rate (HR) using raw PPG and acceleration data in
a low-cost, wireless wrist-worn device. The implementation also included intelligent
processing, resulting in low power consumption. However, a one-to-one comparison
cannot be made because the methodology was limited to real-time HR predictions and did
not include the processing of a power management strategy. In fact, both strategies could
be complementary in order to improve the power consumption performance. Likewise,
Ref. [16] demonstrates lower power consumption than our study. However, this is due to
the absence of a radio device, which is the component with the highest energy demand.
The proposed multimodal power management aims to manage data interpretation and
transmission following the IoWT paradigm.

The work in [36] also presents an algorithm for dynamic power management; however,
it does not incorporate the multimodal approach for analyzing biosignal statistics and
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supercapacitor energy availability. In contrast, our ML-DPMS algorithm is implemented
in an embedded MCU device, enabling real-time decision-making and adaptation of the
transmission duty cycle. Our experimental results demonstrate accurate operation for
PPG biosignal measurements with high variability and supercapacitor voltage fluctuations
which represents an attractive approach that other studies have not yet incorporated.
Furthermore, the proposed prototype with multimodal power management achieves a
total consumption of 25.74 J per day for uninterrupted operation.

On the other hand, other works have been proposed to provide solutions in the IoT
field [37–42]. For example, Ref. [37] proposes a new hybrid power management strategy
for use in wireless sensor networks, Ref. [38] proposes an AI-based IoT system with power
management blocks. Moreover, a power management unit using solar energy harvesters for
wireless sensor nodes is presented in [39]. Likewise, a strategy to achieve energy efficiency
in wireless sensor networks can be found in [40]. Additionally, strategies for improving
wireless sensor network performance can be seen in [41,42].

6. Conclusions

A novel multimodal power management strategy based on machine learning was
proposed in this study. To evaluate its performance with real-time biosignal data, a wearable
sensor node prototype was designed and constructed. The decision tree algorithm was
implemented on the nRF52840 MCU and achieves a good balance between the saved energy
and the duty cycle transmission. In the proposed test case scenarios, the ML-decision tree
achieves at least 2.4×more transmissions as well as avoids the system’s power-off saving
up to 39.6% of energy than the uniform power management. The energy analysis reveals
a total consumption of 25.74 J per day to operate without interruption. Considering an
efficiency of 35% for the flexible PV solar cell and only five hours of irradiance at standard
conditions (STC) [29], the energy generation capacity was 99.72 J per day. This means
that the system can generate 3.87 times more energy than what is required to operate
without interruption.
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