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Abstract: Classification is an important task of machine learning for solving a wide range of problems
in conforming patterns. In the literature, machine learning algorithms dealing with non-conforming
patterns are rarely proposed. In this regard, a cellular automata-based classifier (CAC) was proposed
to deal with non-conforming binary patterns. Unfortunately, its ability to cope with high-dimensional
and complicated problems is limited due to its applying a traditional genetic algorithm in rule
ordering in CAC. Moreover, it has no mechanism to cope with ambiguous and inconsistent decision
tables. Therefore, a novel proposed algorithm, called a cellular automata-based classifier with a
variance decision table (CAV), was proposed to address these limitations. Firstly, we apply a novel
butterfly optimization, enhanced with a mutualism scheme (m-MBOA), to manage the rule ordering
in high dimensional and complicated problems. Secondly, we provide the percent coefficient of
variance in creating a variance decision table, and generate a variance coefficient to estimate the
best rule matrices. Thirdly, we apply a periodic boundary condition in a cellular automata (CA)
boundary scheme in lieu of a null boundary condition to improve the performance of the initialized
process. Empirical experiments were carried out on well-known public datasets from the OpenML
repository. The experimental results show that the proposed CAV model significantly outperformed
the compared CAC model and popular classification methods.

Keywords: cellular automata; pattern recognition; variance decision table; variance coefficient;
periodic boundary condition

1. Introduction

Data mining and pattern recognition are critical components of many fields and repre-
sent essential classification processes. Popular algorithms include the Support Vector Ma-
chine (SVM) [1,2], Dense Neural Network (DNN) [3,4], Deep Learning [5–7],
K-nearest neighbor (k-NN) [8–10], and Naive Bayes [11–13]. In particular, Deep Learning
is a widely used to solve a variety of problems, such as Alzheimers Disease classifica-
tion [14–17]. In contemporary times, the challenges associated with classification have
become increasingly complex and diverse. This is particularly true when dealing with
non-conforming binary formats, which are low-level binary data. Therefore, it remains
challenging to use recognition or classification techniques and implement a classifier that
can directly handle the aforementioned data type.

However, classifier-based cellular automata (CA) successfully handle the complex
problem of binary pattern classification tasks using a simple CA rule. For example, image
compression [18], image classification [20], image encryption [21,22], and texture recogni-
tion [23,24], especially for pattern classification [25], have been proposed as highly reliable
classifier methods based on elementary cellular automata (CAC). These methods play a
role in non-conforming and conforming patterns for binary data.

The primary objective of this research is to employ the “network-reduction” tech-
nique to improve the ability of the cellular automata-based classifier to handle increasingly
complex and challenging issues [26]. Despite its utilization of basic cellular automata
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rule matrices and the concept of two-class classification akin to SVM, the classification
performance of CAC remains encumbered by two key issues. Firstly, the data with am-
biguity impact the rule ordering process to generate the rule matrices from the decision
of the genetic algorithm (GA) by a random boundary cutting point without a statistical
background for classification using only random values does not produce effective results
in the classification model. Secondly, when working with high-dimensional data, the rule
ordering procedure that utilizes GA may become trapped in a local optimal solution [27]
because GA is limited when dealing with high-dimensional problems [28]. One alternative
to GA is butterfly optimization, which has been shown to improve usage in a number of
applications, including feature selection [29,30] and enhancing the BOA utilizing a mu-
tualism scheme [31]. Butterfly optimization performs better than classical optimization.
In this paper, we proposed an efficient classification called cellular automata-based with a
variance decision table (CAV) using the percentage coefficient of variation (%CV).

This study makes three critical contributions to the literature. First, we created an
initial rule matrix based on finding the edge using the periodic boundary condition instead
of zero constants (null boundary condition) to reduce data redundancy and demonstrate
the proper form of the data for a more precise classification. Secondly, besides the ability to
classify data patterns instead of random intersections by using a meta-heuristic algorithm,
coefficients of variation were used to determine the relationships between classes, giving
the data pattern more clarity and reducing the solution area from two-variable solutions
to only a single variable that was less reliant on the search algorithm’s ability. Finally, an
efficient butterfly optimization algorithm (m-MBOA) was implemented instead of a genetic
algorithm. We evaluated CAV using well-known classification algorithms in RapidMiner
studio [32] and used 15 datasets for classification tasks from an OpenML repository [33].

This study is divided into six parts: the introduction in Section 1, related work on
the proposed cellular automata classifier, and a novel butterfly optimization algorithm
(m-MBOA) (Section 2). Section 3 expands on our proposed CAV method. Section 4
contains a comparison of experimental results. Section 5 presents an empirical study of the
experimental results. Section 6 concludes the paper.

2. Related Work
2.1. Cellular Automata for Pattern Recognition

Cellular automata (CA) are lattice-based systems that evolve according to a local
transition function [34]. The simplest form of 1-dimensional cellular automata that focuses
on the left neighbor, right neighbor, and present-state cell is called an elementary cellular
automata (ECA) [35].

Cellular automata are widely used as a basis in pattern recognition and classification
research, such as texture recognition based on local binary patterns [23], melanoma skin
disease detection [36], and real-time drifting data streams [37], mainly based on ECA, such
as reservoir computing systems [38] and texture analysis [24].

On the other hand, in 2016, an efficient classifier based on ECA was proposed and is
called the cellular automata base classifier (CAC) [25]. Figure 1 shows the process of CAC
rule ordering output as rule matrices R+ and R− ∈ {0, 1}, which are the best solutions
for the classifier with the decision function f (Qt+1

R+ , Qt+1
R− ) ∈ {−1, 1}. They were designed

based on the decision support ECA (DS-ECA). f (Qt+1
R+ , Qt+1

R− ) is a sign function that depends
on (Qt+1

R+ , Qt+1
R− ), as expressed in Equation (1).

f
(
Qt+1

R+ , Qt+1
R−
)
= sgn

( n−1

∑
i=0

(Qt+1
i,R+ −Qt+1

i,R−)

)
(1)

where Qt+1
R+ and Qt+1

R− are the next states generated by the rule matrices R+ and R−. Qt+1
i,R+

and Qt+1
i,R− are the ith cells of n bits from Qt+1

R+ and Qt+1
R− .
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The next two states Qt+1
R+ and Qt+1

R− are generated as follows in Equations (2) and (3)

Qt+1
R+ = (R+, Qt) (2)

Qt+1
R− = (R−, Qt) (3)

As shown in Figure 1, the process of ordering the rule matrices using the initial rule
matrices [QP] and [QN ] in the first step consists of continuous data. Rule matrices with
values of 0 and 1 resulting from the rule ordering process transform the data from a fuzzy
set into a discrete set.

Figure 1. CAC rule ordering.

2.2. An Enhanced Butterfly Optimization Algorithm (m-MBOA)

The m-MBOA is an improved BOA with the mutualism phase of the SOS algorithm to
determine the characteristics of the relationship between the two organisms.

The effectiveness of m-MBOA depends on variable configurations to control the
probability that the simulated butterfly will either fly directly to the food source or fly
randomly [39,40]. Its structure is mostly based on the butterfly prey approach, which
employs scent recognition to detect the location of sustenance or mating sets. The discovery
and handling concept is based on three critical conditions: fragrance ( f ), sensory exposure
(c), stimulus intensity (I), and power (a). Based on these hypotheses, the fragrance in the
BOA is described as a component of the boost’s physical strength, as follows:

f = cIa (4)

where f represents the magnitude of scent recognition, i.e., the intensity of smell identification
by other butterflies; c represents the sensory receptor; I represents the stimulating force,
and a represents the exponent power, depending on the modality. The m-MBOA has four
phases: (1) startup, (2) iteration, (3) mutualism, and (4) recursive search in the initial m-MBOA
operation. The algorithm is terminated at the last stage after obtaining the best response.

In the first step, the algorithm determines the problem-solving region and function
purpose, as well as the parameters used in the m-MBOA set. The butterfly’s position in the
search zone was generated at random, and its fragrance and suitability values were computed
and stored. Further parts of this technique involve initial and recursive phase computations.
An algorithm is used to accomplish the second stage of the method, which is the looping phase
and several iterations. All butterflies in the solution region are transferred to a new position
and evaluated for suitability in each iteration. The first algorithm determines the suitability of
all butterflies in various spots in the solution region. These butterflies then use Equation (4) to
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produce smells based on their position. This method has two critical steps: the local and global
search algorithms. Butterflies go to the most appropriate butterfly g∗ response in the global
search process, as stated by Equation (5).

bt+1
i = bt

i + (r2 × g∗ − bt
i )× fi (5)

where g∗ is the best solution for all butterflies in the current iteration, bt
i is the ith butterfly

number in iteration t, fi is the fragrance of the ith butterfly, and a random number [0, 1] is
represented by r. The next best butterfly position is as follows (6).

bt+1
i = bt

i + (r2 × bt
j − bt

k)× fi (6)

where bt
j and bt

k are the jth and kth butterfly positions in the solution space. If bt
j and bt

k
result in the same local space, and random numbers between [0, 1] are represented by the
parameter r, then Equation (6) is the result of the random butterfly behavior. An additional
phase is then used to calculate the symbolic relation of the two distinct m-MBOAs, which
calculates the mutual phase in the last decision using Equations (7) and (8).

binew = bi + rand[0, 1]× (bbest −MutualVector × BF1) (7)

bjnew = bj + rand[0, 1]× (bbest −MutualVector × BF2) (8)

where binew and bjnew is a new butterfly value, the MutualVector from (9) is used randomly.
bbest is the final solution answer; BF1 and BF2 are the random numbers of benefit factors
1 and 2, respectively.

MutualVector = (bi × bj)/2 (9)

where MutualVector is a mean of butterfly vector bi and bj.
The threshold for stopping an answer can be defined in many ways. For example, it

can be determined by the operation of the CPU, the number of calculation cycles, or the
error value that occurs. If there is no error, the calculation can be stopped. This algorithm
exports the most appropriate solution. The three steps described above comprise the
complete algorithm of the butterfly optimization algorithms, as shown in Algorithm 1.
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Algorithm 1: m-MBOA.
input : n, I, a, p, c.
output :Best b f

1 Initialization;
2 Objective function f (b), b = (b1, b2, . . . , bdim)
3 f itness = the classification accuracy (29)
4 dim = number of dimensions
5 Generate initialised population of n butterflies xi(i = 1, 2, . . . , n)
6 f (bi) represents the stimulus intensity Ii of butterfly bi
7 c is the sensor modality value, a is the power exponent value, and p is the random

switch probability.
8 LOOP Process:
9 while t ≤ 20 ∨ f itness 6= 0 do

10 foreach number of b f do
11 Calculate the fragrance for b f using Equation (4).
12 Calculate the fitness for each b f .
13 end
14 Find the best b f foreach number of b f do
15 Random numbers between {0, 1} for r.
16 if r < p then
17 Calculate Equation (5).
18 Select the butterfly randomly with the condition i 6= j.
19 Calculate Equation (9) for the mutual relationship vector

(MutualVector).
20 Mutual relationship updates base according to (7) and (8).
21 Generate the new fitness value of the butterfly.
22 else
23 Calculate Equation (6) to move randomly.
24 end
25 end
26 Update the value of a.
27 end
28 return best b f

3. Proposed Method

We propose a novel classifier-based elementary cellular automaton that uses the
variance of the initial rule matrices. In this section, several preliminaries are presented, and
some essential equations are simplified. Additionally, we present the motivation for the
model based on the limitations of the traditional classifier. In Table 1, we first introduce
some notations that are frequently used in this study.

First, let us provide an example of the equations for finding the rule matrices according
to Equations (10) and (11) before analyzing the problem.

[R+]ij =

{
1, [Up]ij ≥ ωp

0, otherwise
(10)

[R−]ij =

{
1, [Un]ij ≥ ωn

0, otherwise
(11)

where R+ and R− are the rule matrices of the positive and negative classes, respectively;
ωp and ωn are the cutting-point decisions used to eliminate some values from the initial
rule matrices Up and Un in the ith column and jth row, respectively, where i, j = 1, 2, 3 . . . , n
in order to generate rule matrices with the best classification accuracy.



Appl. Sci. 2023, 13, 4346 6 of 23

Table 1. Notation.

Notation Description

i, j Number of datasets (binary data) features, number of possible ECA config-
uration (23 = 8)

k Number of samples from Up and Un= 2
Up ∈ Ri×j Initial rule matrix of the data in positive class
Un ∈ Ri×j Initial rule matrix of the data in negative class
V ∈ Ri×j Variance Decision Table matrix
V
′

Variance Decision Table vector
Wp ∈ Ri×j Rule matrix of the positive class
Wn ∈ Ri×j Rule matrix of the negative class
x̄ Mean of each [Up]ij and [Un]ij
S Standard deviation of each [Up]ij and [Un]ij
%CV Percentage coefficient of variance
Dt Training data
ωv The variation coefficient

Definition 1 (conflict value). A conflict value is the difference between the same position element
of the initial rule matrices [Up]ij and [Un]ij, arising from the creation processes of the rule matrices
[R+]ij and [R−]ij. The conflict value can be represented by Equation (12).

Con f lict value =

{
|[Up]ij − [Un]ij|, [Up]ij and [Un]ij ≥ 1
0, [Up]ij or [Un]ij = 0

(12)

where Con f lict value ∈ I+

Lemma 1. The higher the conflict value the lower the classification accuracy.

Proof of Lemma 1. Equations (10) and (11) show that all elements of [Up]ij and [Un]ij
would convert to 1 if their value is greater than 0.

Assume that Up � Un when lim
x→∞

[Up]ij = ∞ and lim
x→∞

[Un]ij = 1 then

Con f lict value = |[Up]ij − [Un]ij|
= ∞− 1
= ∞

(13)

From the above Equation (13), the conflict value [Up]ij is much greater than [Un]ij.
The conflict value is equivalent to the maximum value. However, from (10) and (11), it
can be observed that small values are equalized with large values. Unfair behavior leads
to an unreasonable increase in the amount of data. This increase in the number affects
the prediction of the test data because both [Up]ij and [Un]ij are converted to 1 in the rule
ordering process.

Definition 2 (percentage of variation coefficient). The coefficient of variation (CV) is defined as
the ratio of the standard deviation (S) in Equation (14) and the sample mean (x̄) in Equation (15).

x̄ =

n
∑

k=1
xk

N
(14)

where x̄ represents the sample mean of the elements at the same position in the initial rule
matrices [Up] and [Un]. xk is the observed value, where k = (1, 2, . . . , n), and N represents
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the total number of observations. In this particular case, the number of observations is
always N = 2.

S =

√√√√ n

∑
k=1

(
(xk − x̄)2

N − 1

)
(15)

where S is the standard deviation of the elements in the initial rule matrices Up and Un at
corresponding positions and the percentage CV (%CV) can be represented as (16)

%CV =
S
x̄
× 100 (16)

Lemma 2. The percentage coefficient of variance can measure the classification ability of the initial
rule matrices for each position.

To make all positions of the initial matrix comparable, we used the percentage coef-
ficient of variation to measure the abilities of each initial rule matrix position, instead of
using direct conflict values that do not allow for comparisons.

Proof of Lemma 2. First, we simplify (16) to calculate the %CV of matrices Up and Un
as follows:

Represent x̄(Up, Un) for each element, i is the row and j is the column of matrices Up
and Un as following (17)

x̄(Up, Un) =
[Up]ij + [Un]ij

2
(17)

Substituting N = 2, x =
[
Up
]

ij and [Un]ij into (15)

S(Up, Un) =

√
(
[
Up
]

ij − x̄)2 + ([Un]ij − x̄)2

2− 1

=
√
(
[
Up
]

ij − x̄)2 + ([Un]ij − x̄)2 (18)

Substitute x̄(Up, Un) from (17) in (18), we obtain:

S =

√(
[Up]ij −

(
[Up]ij + [Un]ij

2

))2

+

(
[Un]ij −

(
[Up]ij + [Un]ij

2

))2

=

√(
2[Up]ij − [Up]ij − [Un]ij

2

)2

+

(
2[Un]ij − [Up]ij − [Un]ij

2

)2

=

√(
[Up]ij − [Un]ij

2

)2

+

(
[Un]ij − [Up]ij

2

)2

=

√
(
[
Up
]

ij − [Un]ij)
2
+ ([Un]ij −

[
Up
]

ij)
2

4
(19)

Assuming that
(
[
Up
]

ij − [Un]ij)
2

4
=

([Un]ij −
[
Up
]

ij)
2

4
(20)

where
(
[
Up
]′

ij − [Un]
′
ij)

2

4
,
([Un]ij −

[
Up
]

ij)
2

4
∈ R+.
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Substitute Equation (20) in to Equation (19)

S =

√
(
[
Up
]

ij − [Un]ij)
2

4
+

(
[
Up
]

ij − [Un]ij)
2

4

=

√
2
(
[
Up
]

ij − [Un]ij)
2

4

=

∣∣∣[Up
]

ij − [Un]ij

∣∣∣
√

2
(21)

Substituting x̄ and S from (17) and (21) into (16)

%CVij =

∣∣∣[Up
]

ij − [Un]ij

∣∣∣
√

2[
Up
]

ij + [Un]ij

2

× 100

=


√

2

∣∣∣[Up
]

ij − [Un]ij

∣∣∣[
Up
]

ij + [Un]ij
× 100,

[
Up
]

ij + [Un]ij > 0

0, otherwise

(22)

Assuming that [Up]ij > [Un]ij then

Con f lict value = |[Up]ij − [Un]ij| (23)

Substitute (23) into (22), then

%CVij =


√

2
(Con f lict value)[

Up
]

ij + [Un]ij
× 100,

[
Up
]

ij + [Un]ij > 0

0, otherwise
(24)

From Equation (24), we can observe that as the conflict value increases, the percentage of
variance also increases. This implies that the two values are directly proportional to each other,
indicating that the percentage variance can be used to measure classification ability.

Lemma 3. Eliminating the element with the lower value could improve classification accuracy.

Proof of Lemma 3. Assuming that [Up]ij � [Un]ij and ωp, ωn = 0 from (10) and (11), then

Con f lict value = [Up]ij − [Un]ij

Con f lict value ≈ [Up]ij (25)

where [Un]ij > 0.
From Equation (25), if we set [Un]ij to 0, only the data for [Un]ij will be lost, where

lim
x→∞

[Un]ij = 1. From (24), we can reduce the con f lict value and %CV by setting [Up]ij to 0.

This means that the classifier can better classify patterns because a lower %CV indicates
greater classification ability.

Definition 3 (Variance decision table). The variance decision table (V) is the %CV representation
in the matrix form.
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Definition 4 (Loss of data). The loss of data is part of the data converted to zero to improve overall
classification accuracy.

Lemma 4. Appropriate estimation of the percentage coefficient of variance can produce a suitable
rule matrix.

Proof of Lemma 4. From Lemma 3 min([Up]ij, [Un]ij) is eliminated to increase the ability
to classify patterns when [Up]ij � [Un]ij or [Un]ij � [Up]ij.

However, when [Up]ij ≈ [Un]ij, if we convert min([Up]ij, [Un]ij) to 0, loss of data
≈ [Up]ij and [Un]ij, which could result in overfitting of the classifier model. Appropri-
ate approximations were used to prevent the above problems and to obtain results that
provided the best classification capability.

Definition 5 (Variation coefficient). The variation coefficient (ωv) was obtained using V. This
was estimated using the m-MBOA algorithm, which can be used to generate the best rule matrices
in the synthesis process.

Theorem 1. The coefficient of variation and variance decision table can create effective rule matrices
for the classification.

3.1. Proposed Method

This paper proposes an efficient cellular automata-based classifier with a variance
decision table (CAV). We present this algorithm in Algorithm 2. As a result, when using
only the estimated random border to determine the class using the GA in rule ordering,
the traditional technique has a classification accuracy problem and cannot handle high-
dimensional problems. This work overcomes this limitation by adopting a unique butterfly
optimization technique (m-MBOA) instead of the genetic approach depicted in Figure 2.

Figure 2. An overview of the proposed CAV methods.

3.1.1. Initial Values of Rule Matrices

If the input data is not binary, the rule ordering procedure begins by converting it
to binary code using a Gray code [41–43] encoder. Cyclical or periodic [44,45] bound-
ary conditions are used to maximize the rule-output equality of the available systems,
whereas null boundary conditions can be relied upon to increase the overall complexity of
a system [46,47]. Figure 3 shows Up and Un are the initial rule matrices created by counting
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the PAB and NAB attractor basins, respectively. The initial rule matrix Up is represented in
matrix form with the ith (i = 1, 2, . . . , n) row and the jth (j = 1, 2, . . . , n) column. The rows
reflect the number of binary features in the data, and the columns represent the number of
patterns from PAB in which the nearest neighbors (Ut

i−1, Ut
i , Ut

i+1) for the ith cell decoded
to decimal must equal j. Similarly, NAB is used to formulate an element of matrix Un.

Algorithm 2: CAV labeled.
Input : Dataset Dt.
Output : Rule matrices Wp and Wn.

1 Initialization:
2 if Dt 6= Binary data then
3 Convert Dt to binary data using Gray code
4 end
5 The initial rule matrices Up and Un are created with periodic boundary conditions;
6 Create a variance decision table:
7 for i ≤ m do
8 for j ≤ n do
9 Calculate each %CVij of the initial matrices Up and Un from Equation (24);

10 end
11 end
12 Create V matrix from (26)

13 m-MBOA process:
14 Prepare array V′

15 Process Algorithm 1. to find an ωv from V′

16 Synthesis of rule matrices:
17 Create the rule matrices Wp and Wn from Equations (27) and (28) return Wp

and Wn

Figure 3. The initial rule matrices process consists of three steps: (a) converting the input data into
binary data using a gray code encoder; (b) creating initial rule matrices with periodic boundary
conditions; and (c) generating initial rule matrices for both positive and negative data.

3.1.2. Create Variance Decision Table

The variance decision table (V) corrects the percentage of the variance coefficient value
and is represented in matrix form.
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Subsequently, (22) is used to generate the variance decision table when
[
Up
]

ij + [Un]ij > 0.

V =


%CV11 %CV12 · · · %CV18
%CV21 %CV22 · · · %CV28

...
...

. . .
...

%CVn1 %CVn2 · · · %CVn8

 (26)

where n refers to the number of features in the dataset represented by the binary patterns.
An example of creating a variance decision table is shown in Figure 4.

Figure 4. The Create Variance Decision Table process. (a) Initial rule matrix of positive data; (b) initial
rule matrix of negative data; and (c) generating variance decision table.

3.1.3. m-MBOA Process

The CAV starts by transforming V into vector V′ under the following conditions, as
shown in Figure 5:

Figure 5. The m-MBOA process. (a) Variance decision table; (b) Create vector V’ by de-
duplicate and sort data; (c) process m-MBOA algorithm to create the variation coefficient; and
(d) variation coefficient.
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Matrix V is transformed into an array that is sorted but not complete, and the result is
stored in array V′. The result from m-MBOA includes a variable, the variation coefficient
(ωv), which serves as a threshold that helps the classifier converge to the best solution for
creating rule matrices using Equations (27) and (28).

3.1.4. Rule Matrices Synthesis

Under the following conditions, this is the final stage in generating the rule matrices.

[Wp]ij =

{
1, [Up]ij ≥ [Un]ij or Vij ≤ ωv

0, otherwise
(27)

[Wn]ij =

{
1, [Un]ij ≥ [Up]ij or Vij ≤ ωv

0, otherwise
(28)

where ωv is the threshold required to converge the model to the best answer.
Although the CAV uses the same process as the traditional classifier for synthesizing

the rule matrices, each element is compared between the positive and negative values of
the initial rule matrices and ωv. The CAV improves the performance of generating the final
rule matrices by using the statistical relationship between Up and Un. We can obtain a
better quality rule matrix than with the traditional method, as shown in the example in
Figure 6.

Figure 6. Synthesis rule matrices.

4. Experimentals

In this part, we present a method for assessing the effectiveness of the suggested
classifier. The datasets, classifier comparison, and commentary are all given.

4.1. Experimental Setup

The classification accuracy of the classifiers was tested with both training and sample data,
using 10-fold cross-validation as per CAV. A confusion matrix was utilized to determine the
accuracy of classification. For multiclass classification, CAV implements a DDAG scheme [48].
To evaluate the performance of the model, standard classifiers were utilized, and non-binary
datasets were first converted into Gray code during the preprocessing phase.

We compared the accuracy, precision, recall, F1, specificity, and G-mean between CAV,
CAC, and several well-known classifiers, including SVM, kNN, Naïve Bayes, and two
dense neural networks methods, DNN-1 and DNN-2. The DNN-1 and DNN-2 methods
were distinguished by different activation functions, hidden layer numbers, and hidden
layer sizes.

Finally, the butterfly optimization parameters were set up in the last preprocessing
step, using the configuration shown in Table 2, to achieve optimal performance for the
proposed method.
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Table 2. Classification method parameters.

Classifier Parameters Value

CAV Population 100
Probability switch (p) 0.5

Power exponent 0.4
Sensory modality 0.03

Max iteration 20

CAC Sample 100
Crossover probability 48
Mutation probability 40

Max iteration 20

SVM SVM type C-SVM
Kernel type Rbf

Class weight 1.0

kNN K (neighbor) 5
Weighted vote Yes

DNN-1 Activation Rectifier
Hidden layer number 2

Hidden layer size 50

DNN-2 Activation Maxout
Hidden layer number 3

Hidden layer size 100

Naïve Bayes Laplace correction Yes

4.2. Datasets

Datasets from the OpenML repository were used, consisting of different types of
instances, features, and numbers of dataset classes, as shown in Table 3. The results
demonstrate that the datasets form clusters, as shown by Analcatdata boxing2 (Figure 7a),
Breast_w dataset (Figure 7b), Prnn synth (Figure 7d), and Mammographic mass dataset
(Figure 7h), which clustered with the mean datasets. However, non-conforming data,
such as Hayes roth (Figure 7c), Tae (Figure 7e), Wisconsin (Figure 7f), and SPECTheart
(Figure 7g), were identified. The scatter plot results reveal ambiguous data, as most of the
data from different classes are mixed, and the classification accuracy is lower when dealing
with this type of data.

Table 3. Datasets.

Dataset Class Instances Features

Soybean (small) 4 47 35
SPECT heart 2 80 23
Analcatdata boxing2 2 132 10
Tae 3 151 6
Hayes-Roth 3 160 5
Wisconsin 2 194 33
Sonar 2 208 61
Prnn synth 2 256 3
Thyroid Disease 2 306 3
Ecoli 8 336 8
Congressional Voting 2 435 16
Monk Problem 2 2 601 7
Breast w 2 699 10
Pima Indians Diabetes 2 768 8
Mammographic Mass 2 961 6
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(a) Analcatdata boxing2 (b) Breast_w

(c) Hayes Roth (d) Prnn synth

(e) Tae (f) Wisconsin

(g) SPECT heart (h) Mammographic mass

Figure 7. Illustration of dataset distribution using the PCA technique.
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4.3. Classifier Performance Evaluation Method

This step involves a testing process to validate the algorithm’s classification capability
and compare the performance of each model. We have chosen the following parameters:
accuracy, precision, recall, F1, specificity, and G-mean. Accuracy (29) measures the model’s
performance as the ratio of correctly computed data to all the data. Precision (30) is the
proportion of positive data accurately measured. Recall (31) is a parameter that indicates
the efficiency of positive data classification. F1 (32) is the harmonic mean of accuracy and
recall, which provides an idea of the accuracy and efficiency of positive data classification.
Next, the Specificity (33) parameter calculates the true proportion of validity measures for
negative data, where the performance of both positive and negative data can be derived
and determined using G-mean (34).

Accuracy =
a + b

a + b + c + d
× 100 (29)

Precision =
a

a + c
(30)

Recall =
a

a + d
(31)

F1 =
2(Precision× Recall)
(Precision + Recall)

(32)

Speci f icity =
b

b + d
(33)

G−mean =
√

Recall × Speci f icity (34)

where a is a true positive (TPi), b is a true negative (TNi), c is false positive (FPi), and d is
false negative (FNi), all define parameters based on confusion matrix structure.

5. Results and Discussion

Experiments were conducted on 15 OpenML datasets with varying instances and
feature numbers to evaluate performance in terms of accuracy, precision, recall, F1, speci-
ficity, and G-mean, which are shown in Tables 4–9, with the best performance highlighted.
A comparison of the classification results between CAV and the other classifiers is also
summarized in Figures 8–13.

Table 4. The accuracy of the proposed CAV compared with CAC, SVM, k-NN, DNN-1, DNN-2, and
naïve Bayes (the bold number indicates the maximum value).

Dataset
Classification Accuracy (K = 10)

Average Improvement
CAV CAC SVM kNN DNN-1 DNN-2 Naïve Bayes

Analcatdata boxing2 72.360 69.200 71.970 64.390 56.820 63.640 67.420
Breast w 97.420 96.850 96.850 97.000 96.570 96.570 95.990
Congressional voting 96.980 95.270 92.240 93.970 95.260 95.260 94.830
Ecoli 88.240 67.510 43.740 85.120 81.850 79.510 79.170
Hayes-Roth 78.950 77.250 43.750 66.250 58.750 66.870 70.000
Mammographic mass 82.640 82.430 80.480 79.520 82.170 81.330 80.600
Monk’s problems 2 67.500 63.400 82.530 66.560 63.890 74.210 64.390
Pima indian diabetes 72.700 69.263 72.010 71.740 74.220 74.350 75.520
Prnn synth 83.279 78.704 84.400 81.600 83.200 82.800 84.400
Sonar 74.550 74.143 87.020 80.290 80.290 81.250 67.790
Soybean small 100.000 100.000 100.000 97.870 100.000 100.000 100.000
SPECTheart 75.000 62.500 68.750 63.750 71.250 71.250 68.750
Tae 59.040 57.536 47.020 47.680 46.360 41.720 51.660
Thyroid disease 93.960 94.892 80.930 95.350 93.490 93.490 96.740
Wisconsin 97.510 97.217 97.070 97.360 96.930 96.930 96.190

Average 82.675 79.078 76.584 79.230 78.737 79.945 79.563

Improvement 3.60 6.09 3.45 3.94 2.73 3.11 4.58
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Table 5. The precision of the proposed CAV compared with CAC, SVM, k-NN, DNN-1, DNN-2 and
naïve Bayes (the bold number indicates the maximum value).

Dataset
Classification Accuracy (K = 10)

Average Improvement
CAV CAC SVM kNN DNN-1 DNN-2 Naïve Bayes

Analcatdata boxing2 0.720 0.750 0.873 0.747 0.521 0.648 0.761
Breast w 0.993 0.994 0.972 0.974 0.965 0.965 0.952
Congressional voting 0.983 0.977 0.887 0.927 0.944 0.960 0.960
Ecoli 0.880 0.723 0.088 0.558 0.595 0.739 0.547
Hayes-Roth 0.835 0.830 0.366 0.637 0.631 0.693 0.751
Mammographic mass 0.815 0.803 0.873 0.814 0.772 0.757 0.811
Monk’s problems 2 0.889 0.727 0.779 1.000 0.527 0.676 0.980
Pima indian diabetes 0.809 0.846 0.466 0.519 0.474 0.489 0.605
Prnn synth 0.854 0.789 0.832 0.920 0.776 0.760 0.848
Sonar 0.744 0.786 0.814 0.722 0.773 0.835 0.804
Soybean small 1.000 1.000 1.000 0.975 1.000 1.000 1.000
SPECTheart 0.815 0.583 0.450 0.450 0.700 0.700 0.450
Tae 0.629 0.622 0.468 0.475 0.461 0.410 0.518
Thyroid disease 0.927 0.940 0.580 0.910 0.863 0.911 0.965
Wisconsin 0.991 0.991 0.973 0.978 0.964 0.964 0.955

Average 0.859 0.824 0.695 0.774 0.731 0.767 0.794

Improvement 0.035 0.164 0.085 0.128 0.092 0.065 0.114

Table 6. The recall of the proposed CAV compared with CAC, SVM, k-NN, DNN-1, DNN-2 and naïve
Bayes (the bold number indicates the maximum value).

Dataset
Classification Accuracy (K = 10)

Average Improvement
CAV CAC SVM kNN DNN-1 DNN-2 Naïve Bayes

Analcatdata boxing2 0.631 0.500 0.689 0.646 0.617 0.667 0.675
Breast w 0.967 0.958 0.980 0.980 0.982 0.982 0.986
Congressional voting 0.960 0.935 0.965 0.958 0.967 0.952 0.944
Ecoli 0.835 0.700 0.200 0.551 0.571 0.755 0.563
Hayes-Roth 0.798 0.783 0.601 0.735 0.615 0.679 0.742
Mammographic mass 0.834 0.851 0.760 0.775 0.847 0.843 0.794
Monk’s problems 2 0.400 0.400 0.849 0.663 0.874 0.908 0.653
Pima indian diabetes 0.760 0.646 0.635 0.612 0.690 0.686 0.664
Prnn synth 0.791 0.808 0.853 0.762 0.874 0.880 0.841
Sonar 0.819 0.728 0.898 0.833 0.798 0.779 0.619
Soybean small 1.000 1.000 1.000 0.986 1.000 1.000 1.000
SPECTheart 0.700 0.500 0.857 0.628 0.718 0.718 0.857
Tae 0.589 0.576 0.469 0.479 0.511 0.282 0.513
Thyroid disease 0.927 0.925 0.806 0.960 0.962 0.911 0.942
Wisconsin 0.971 0.966 0.982 0.982 0.989 0.989 0.986

Average 0.799 0.752 0.769 0.770 0.801 0.802 0.785

Improvement 0.047 0.029 0.029 −0.002 −0.003 0.014 0.023

Table 7. The F1 of the proposed CAV compared with CAC, SVM, k-NN, DNN-1, DNN-2 and naïve
Bayes (the bold number indicates the maximum value).

Dataset
Classification Accuracy (K = 10)

Average Improvement
CAV CAC SVM kNN DNN-1 DNN-2 Naïve Bayes

Analcatdata boxing2 0.662 0.600 0.770 0.693 0.565 0.657 0.715
Breast w 0.980 0.975 0.976 0.977 0.974 0.974 0.969
Congressional voting 0.971 0.971 0.924 0.943 0.955 0.956 0.953
Ecoli 0.850 0.921 0.122 0.553 0.574 0.738 0.544
Hayes-Roth 0.786 0.788 0.310 0.663 0.622 0.685 0.742
Mammographic mass 0.823 0.825 0.813 0.794 0.808 0.797 0.803
Monk’s problems 2 0.552 0.516 0.812 0.797 0.657 0.775 0.783
Pima indian diabetes 0.784 0.732 0.538 0.562 0.562 0.571 0.633
Prnn synth 0.817 0.789 0.842 0.833 0.822 0.816 0.845
Sonar 0.773 0.748 0.854 0.774 0.785 0.806 0.700
Soybean small 1.000 1.000 1.000 0.980 1.000 1.000 1.000
SPECTheart 0.730 0.529 0.590 0.651 0.709 0.709 0.590
Tae 0.569 0.551 0.464 0.474 0.445 0.327 0.501
Thyroid disease 0.914 0.927 0.600 0.932 0.971 0.911 0.953
Wisconsin 0.980 0.978 0.977 0.980 0.976 0.976 0.970

Average 0.813 0.790 0.706 0.774 0.762 0.780 0.780

Improvement 0.023 0.107 0.039 0.051 0.033 0.033 0.057
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Table 8. The specificity of the proposed CAV compared with CAC, SVM, k-NN, DNN-1, DNN-2 and
naïve Bayes (the bold number indicates the maximum value).

Dataset
Classification Accuracy (K = 10)

Average Improvement
CAV CAC SVM kNN DNN-1 DNN-2 Naïve Bayes

Analcatdata boxing2 0.804 0.857 0.786 0.640 0.528 0.603 0.673
Breast w 0.988 0.988 0.947 0.951 0.936 0.936 0.914
Congressional voting 0.981 0.973 0.881 0.920 0.937 0.953 0.953
Ecoli 0.850 0.921 0.000 0.978 0.973 0.948 0.969
Hayes-Roth 0.887 0.873 0.718 0.819 0.777 0.823 0.837
Mammographic mass 0.820 0.799 0.861 0.816 0.801 0.791 0.818
Monk’s problems 2 0.675 0.857 0.807 1.000 0.485 0.583 0.000
Pima indian diabetes 0.727 0.780 0.750 0.762 0.759 0.763 0.798
Prnn synth 0.872 0.767 0.836 0.899 0.799 0.789 0.847
Sonar 0.663 0.753 0.850 0.782 0.807 0.846 0.768
Soybean small 1.000 1.000 1.000 0.993 1.000 1.000 1.000
SPECTheart 0.800 0.750 0.627 0.649 0.707 0.707 0.627
Tae 0.795 0.789 0.737 0.739 0.735 0.724 0.768
Thyroid disease 0.960 0.960 0.809 0.975 0.935 0.951 0.971
Wisconsin 0.983 0.983 0.951 0.959 0.936 0.936 0.921

Average 0.854 0.870 0.771 0.859 0.808 0.824 0.791

Improvement −0.016 0.083 −0.005 0.046 0.030 0.063 0.040

Table 9. The G-mean of the proposed CAV compared with CAC, SVM, k-NN, DNN-1, DNN-2, and
naïve Bayes (the bold number indicates the maximum value).

Dataset
Classification Accuracy (K = 10)

Average Improvement
CAV CAC SVM kNN DNN-1 DNN-2 Naïve Bayes

Analcatdata boxing2 0.712 0.655 0.736 0.643 0.571 0.634 0.674
Breast w 0.977 0.973 0.963 0.965 0.959 0.959 0.950
Congressional voting 0.970 0.954 0.922 0.939 0.952 0.953 0.949
Ecoli 0.843 0.803 0.000 0.734 0.745 0.846 0.738
Hayes-Roth 0.841 0.827 0.657 0.776 0.691 0.748 0.788
Mammographic mass 0.827 0.825 0.809 0.795 0.824 0.816 0.806
Monk’s problems 2 0.520 0.585 0.827 0.814 0.651 0.728 0.000
Pima indian diabetes 0.743 0.710 0.690 0.683 0.724 0.723 0.728
Prnn synth 0.831 0.787 0.844 0.827 0.835 0.833 0.844
Sonar 0.737 0.740 0.874 0.807 0.802 0.812 0.690
Soybean small 1.000 1.000 1.000 0.990 1.000 1.000 1.000
SPECTheart 0.748 0.612 0.733 0.638 0.713 0.713 0.733
Tae 0.684 0.674 0.587 0.595 0.612 0.452 0.628
Thyroid disease 0.943 0.942 0.808 0.967 0.948 0.931 0.956
Wisconsin 0.977 0.974 0.966 0.970 0.962 0.962 0.953

Average 0.824 0.804 0.761 0.810 0.799 0.807 0.762

Improvement 0.020 0.063 0.014 0.024 0.016 0.061 0.040

Figure 8. CAV with other classifiers; accuracy comparison for the test datasets.
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Figure 9. CAV with other classifiers; precision comparison for the test datasets.

Figure 10. CAV with other classifiers; recall comparison for the test datasets.

Figure 11. CAV with other classifiers; F1 comparison for the test datasets.

In terms of classification accuracy, Table 4 shows that the proposed methods have
the highest classification accuracy for the following datasets: congressional voting, monk
problem 2, SPECT heart, mammographic mass, Hayes–Roth, Tae, Breast w, Analcatdata
boxing2, soybean (small), and Pima Indians diabetes. For the Sonar dataset, SVM achieved
the highest accuracy, while the naive Bayes algorithm was the most accurate for the thyroid
disease dataset. CAV was the second-best classification result for the thyroid disease
dataset, and k-NN was the best for the Ecoli dataset. SVM and naive Bayes yielded the
best classification results for the Prnn synth dataset. For the Wisconsin dataset, the k-NN
classifier produced the best results. The results demonstrate that CAV is the best classifier
for most of the test datasets, but there are a few datasets in which it is inferior to other
classification algorithms.
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Figure 12. CAV with other classifiers; specificity comparison for the test datasets.

Figure 13. CAV with other classifiers; G-mean comparison for the test datasets.

The average accuracy and improvement shows that the proposed algorithm can
handle classification problems more efficiently than other classifiers. However, different
classification models perform well only for specific datasets. Figure 14a presents an analysis
of the mean classification ability, indicating that the proposed model is the most effective
classifier compared to the others.

Conversely, the proposed method also reported high classification accuracy, which
was significantly different. The classification accuracy for datasets with non-conforming
patterns was much lower than that for conforming datasets due to ambiguous datasets.
Nevertheless, if we consider only the correctness of the classification between CAC and
CAV when comparing the classification accuracy results with the conforming pattern
datasets, both obtained a high classification performance. However, CAV still obtains
good results for non-conforming pattern datasets that contain more noise. In contrast, for
datasets with non-conforming patterns, the classification accuracy was much lower because
the dataset patterns were unclear.

In terms of classification precision (Table 5), F1 score (Table 7), and G-mean (Table 9), it
can be observed that the proposed method outperforms other classifiers. Upon ranking the
performance of the classifiers presented in Figure 14b,d,f, it is evident that the proposed
model accurately predicted positive data, as evidenced by its high precision value. Further-
more, the proposed classifier demonstrated superior performance in handling positive data,
as indicated by its high F1 score. Notably, the proposed model’s classification efficiency for
both positive and negative data, as measured by the G-mean parameter, surpassed that
of all other classifiers tested in the experiment. Regrettably, the proposed classifier model
demonstrated suboptimal performance with respect to recall, as indicated by the values
presented in Table 6, and specificity, as evidenced by the data in Table 8. Specifically, the
mean of the recall sequence plotted in Figure 14c suggests that the proposed model, which
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incorporates correlations derived from both positive and negative data, achieved inferior
results compared to DNN-1, DNN-2, and Naive Bayes. Nevertheless, the proposed model
exhibited superior performance in terms of specificity, as demonstrated by its ranking
relative to comparable models in Figure 14e.

(a) Accuracy (b) Precision

(c) Recall (d) F1

(e) Specificity (f) G-mean

Figure 14. Illustration of the average Friedman rank for CAV, CAC, SVM, kNN, DNN-1, DNN-2,
and Naïve Bayes. The green bar graph represents the value of the average Friedman rank in the
proposed model, while the blue bar graph represents the corresponding value of the classifier used
for comparison with the proposed model.

6. Conclusions

The CAV is a high-performance classifier capable of handling both conforming and non-
conforming binary patterns to address and solve the limitation of finding decision boundaries
to divide difficult data, and GA in the rule ordering process cannot handle complicated high-
dimensional problems. When tested on 15 OpenML datasets with varying examples, features,
and class numbers, CAV outperformed promising state-of-the-art classification approaches
such as SVM, k-NN, DNN-1, DNN-2, naive Bayes, and CAC.

To increase accuracy, the following difficulties should be addressed in future studies.
First, an efficient method for transforming data into binary data, other than Gray code,
must be determined. Second, multiclass classification in binary classifiers (CAC and CAV)
utilizing the DDAG approach was restricted. To increase classification performance, an
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effective strategy may be used. Finally, in terms of classifier-based elementary cellular
automata, we assume that the dataset contains equal instances for each class and does
not focus on the imbalance problem. Improving the classifier performance on imbalanced
data without an exciting data imbalance management method while changing the classifier
process directly is an interesting area of study.
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