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Abstract: Aspect Sentiment Triplet Extraction (ASTE) is a complex and challenging task in Natural
Language Processing (NLP). It aims to extract the triplet of aspect term, opinion term, and their
associated sentiment polarity, which is a more fine-grained study in Aspect Based Sentiment Analysis.
Furthermore, there have been a large number of approaches being proposed to handle this relevant
task. However, existing methods for ASTE suffer from powerless interactions between different
sources of textual features, and they usually exert an equal impact on each type of feature, which is
quite unreasonable while building contextual representation. Therefore, in this paper, we propose
a novel Multi-Branch GCN (MBGCN)-based ASTE model to solve this problem. Specifically, our
model first generates the enhanced semantic features via the structure-biased BERT, which takes
the position of tokens into the transformation of self-attention. Then, a biaffine attention module is
utilized to further obtain the specific semantic feature maps. In addition, to enhance the dependency
among words in the sentence, four types of linguistic relations are defined, namely part-of-speech
combination, syntactic dependency type, tree-based distance, and relative position distance of
each word pair, which are further embedded as adjacent matrices. Then, the widely used Graph
Convolutional Network (GCN) module is utilized to complete the work of integrating the semantic
feature and linguistic feature, which is operated on four types of dependency relations repeatedly.
Additionally, an effective refining strategy is employed to detect whether word pairs match or not,
which is conducted after the operation of each branch GCN. At last, a shallow interaction layer is
designed to achieve the final textual representation by fusing the four branch features with different
weights. To validate the effectiveness of MBGCNs, extensive experiments have been conducted
on four public and available datasets. Furthermore, the results demonstrate the effectiveness and
robustness of MBGCNs, which obviously outperform state-of-the-art approaches.

Keywords: ASTE; biaffine attention; structure-biased BERT; GCN; linguistic feature

1. Introduction

Recently, a tremendous advance has been achieved in the development of social media
platforms, which largely encourage people to express their emotional states online [1,2].
Furthermore, it has become popular to publish users’ comments or opinions about services
and products on specific electronic platforms in a timely manner. These perspectives
expressed directly by consumers are extremely important for merchants to improve their
service while in a dealing. Thus, how to extract the exact aspect terms, opinion terms, and
their corresponding sentiment from a specific sentence is a significant Natural Language
Processing (NLP) subtask [3–5]. The recent developing task, Aspect-Based Sentiment
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Analysis (ABSA), aims to mine the explicit or implicit sentiment information about the
opinion terms with regard to the specific aspect terms, which implements sentiment analysis
about consumers’ reviews effectively. Generally, the ABSA task contains seven fundamental
subtasks (Figure 1), which are Aspect Term Extraction (ATE) [6], Aspect Term Extraction
and Sentiment Classification (AESC) [7], Opinion Term Extraction (OTE) [6], Aspect-Based
Sentiment Classification (ABSC) [8], Aspect-Oriented Opinion Term Extraction (AOE) [9],
Pair Extraction (PE) [10], and Aspect Sentiment Triplets Extraction (ASTE) [11]. In particular,
as the fine-grained subtask in ABSA, the ASTE task takes aspect terms, opinion terms, and
sentiment polarities into consideration simultaneously, which is challenging but significant.
For example, as shown in Figure 1, the review “The food is good, but the service is terrible”.
contains two triplets, (food, good, positive) and (service, terrible, negative). Unlike the
other subtasks, such triplets extracted by the ASTE task can better reflect multiple emotional
factors (aspect, opinion, sentiment) from the user reviews and are more proper for practical
application scenarios.

Figure 1. Example of the task categories in (ABSA) Aspect-Based Sentiment Analysis.

In previous studies, the pipeline manner is widely applied in the approaches to
ASTE. Peng et al. [12] first introduced the ASTE task and extracted the triplet {aspect,
opinion, sentiment} via utilizing a pipeline method, which contains a two-stage framework.
The first stage provided predictions about aspect, opinion, and sentiment, respectively.
Furthermore, the second stage was designed to pair up the predictions achieved from
the first stage and output triplets. However, the interactions among them were totally
ignored, and the potential error was propagated between these two stages [13,14]. To
take the dependencies among the multiple subtasks into consideration, the multi-turn
machine reading comprehension (MRC) manner [15,16] was utilized to jointly train multiple
subtasks together, and it has achieved significant results. In addition, the fashion of end-to-
end [17,18] also attracts many researchers’ attentions, which is constructed based on the
new tagging scheme.

Although the paradigm of the framework is important to enhance the performance
of the ASTE task, the effective utilization of various linguistic relations between words
is also decisive to the task’s success [19]. Specifically, the syntactic dependency tree is
widely used to present the structure of a sentence, which tends to depict the syntactic
relations among words. Zhao et al. [20] adopted the dependency tree as the support to
capture relations between aspect and opinion terms. Furthermore, the work [21] directly
employed an interactive attention mechanism to integrate syntactic and semantic relations
between words. In addition, the contribution of part-of-speech categories to ASTE is also
noticed, which straightly impacts the semantic representation of sentences. Except for the
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dependency tree, relative position also largely influences the expression of the sentence. Xu
et al. [22] applied a position-aware tagging scheme to mark the relative position between
words in a sentence. Furthermore, the semantic features in this work are represented
by Long Short-term Memory (LSTM) with the pre-trained Glove, which cannot handle
contextual ambiguity comprehensively. Moreover, the tree-based distance and relative
position distance of each word pair in the sentence also contribute a lot to the improvement
in the ASTE task [23], and the utilization of Bidirectional Encoder Representation from
Transformers (BERT) can largely enhance the feature representation from the semantic
perspective. However, although significant progress has been achieved by previous studies,
there are still remaining limitations: the effective optimization of semantic features is not
enough, and the powerful utilization of multi-type textual features is unsolved yet.

To address these two problems, motivated by the impressive performance achieved by
BERT, we propose a novel BERT- and Graph Convolutional Network-based (GCN-based)
model Multi-branch Graph Convolutional Network (MBGCN) for the ASTE task. In detail,
in our model, to evacuate the potential capability of BERT and obtain a more exquisite
contextual representation, a structure-biased BERT [24] is firstly utilized as the semantic
feature encoder. Subsequently, depending on the generated representations, aspect-oriented
and opinion-oriented feature maps are extracted by two multi-layer perceptions (MLP).
Then, before incorporating other relations of words, a biaffine attention module is applied to
unify the aspect-oriented and opinion-oriented semantic features effectively. Unlike fusing
textual features via a single GCN, an MBGCN employs four branch GCNs to integrate
semantic representation with syntactic dependency type, part-of-speech combination, tree-
based distance, and relative position distance among each word pair, respectively. Through
the complementary of these four branches, a more precise textual representation is achieved.
Finally, a shallow interaction strategy is designed to complete the work of information
fusion before the triplet decoding layer. To validate the effectiveness of the MBGCN, a
series of experiments are conducted on four widely used and available datasets. The
experimental results prove that MBGCNs can efficiently deal with the complex relations
among sentences and outperform the state-of-the-art (SOTA) ASTE approaches.

The main contributions of this work can be summarized as follows:

• We propose a framework MBGCN to extract the aspect, opinion, and sentiment triplet
from review sentences in an end-to-end fashion, which can avoid error propagation
among different subtasks;

• We utilize a structure-biased BERT to improve the ability to extract abundant contex-
tual information, which provides rich textual features for subsequent task-oriented
operations;

• Our proposed MBGCN adopts four branch GCNs to integrate the semantic feature
with four types of linguistic relations, including syntactic dependency type, part-
of-speech combination, tree-based distance, and relative position distance of each
word pair. Furthermore, a shallow interaction layer is introduced to output the final
textual representation;

• The extensive experiments conducted on multiple ASTE datasets prove that the
proposed MBGCN outperforms the mentioned SOTA baselines.

The remainder of this article is organized as follows. In Section 2, we present a brief
overview of the development of ABSA, previous research about ASTE, and the application
of GCNs. The proposed framework MBGCN is introduced in detail in Section 3. In Section 4,
we provide detailed experimental studies and performance analyses. Finally, Section 5
provides a conclusion of this study and an outlook for future work.

2. Related Works

In the past decade, fine-grained sentiment analysis and opinion extraction have been
attractive research in the NLP community, and have firmly attracted many researchers’
attentions. In this section, we will first briefly review the development of the ABSA task.
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Secondly, a succinct summary of existing approaches for ASTE will be introduced. Lastly,
the application of GCNs in ASTE will be shortly summarized.

2.1. Aspect-Based Sentiment Analysis

ABSA is a fine-grained task that aims to recognize the explicit or implicit sentiment
information in a given sentence [25–27]. Normally, a sentence usually includes several
aspect terms and opinion terms simultaneously, which means multiple sentiment expres-
sions are contained in it. Specifically, with the development of e-commerce, this situation
usually happens in the reviews of products and services, which are published on online
platforms [28,29]. Through mining the opinions from these reviews, the merchants can
learn the real and direct requests from consumers about their services. Thus, many efforts
have been contributed to this task since it was proposed. Additionally, we can categorize
the existing ABSA approaches into three types: the lexicon-based method [30], machine
learning method [31], and deep learning method [32]. In traditional methods, the perfor-
mance of the ABSA task largely depends on feature engineering, such as bag-of-words [33]
and part-of-speech [23]. Although impressive performance has been achieved by traditional
methods, the cost of handcrafted features is unbearable for human experts. Currently, the
rapid development of deep learning promotes the improvement in contextual representa-
tion, which also encourages the progress of ABSA tasks straightforwardly [34,35]. In deep
learning methods, they usually fine-tune the pre-trained language model (PLM) with the
specific training data to generate task-oriented feature maps. As a representative of PLM,
BERT makes a remarkable impression on vast NLP researchers with its outstanding ability
to model contextual information. Thus, it is also utilized as a backbone in our proposed
model for the ASTE task.

2.2. ASTE Methods

As a subtask of sentiment analysis, ASTE has been studied by many NLP researchers
after being proposed [36,37], and aims to extract aspect terms, opinion terms, and the corre-
sponding sentiment polarity in a sentence, simultaneously. From the above investigation,
it has been known that the pipeline manner method proposed by [12] had an error prop-
agation problem between different subtasks. However, the methods with an end-to-end
manner can avoid this problem with their unique architecture. Chen et al. [11] decomposed
the ASTE task into three subtasks: target tagging, opinion tagging, and sentiment tagging.
Furthermore, a new target-aware tagging scheme was used to identify the correspondences
between opinion targets and the whole sentence. In addition, span-level features also
contribute a lot to the ASTE task. Chen et al. [38] proposed a joint training framework
to process all potential entities as independent spans, and the related representations of
the spans were utilized to classify their corresponding sentiment polarities. Moreover, to
reduce the cost of sequence tagging, a tagging-free solution was proposed by Mukherjee
et al. [39]. In the method, an encoder–decoder architecture with a pointer network-based
decoding framework was introduced, which effectively captured the interactions between
the aspects and opinions by considering the whole detected spans in predicting sentiment
polarity. To prove the simple span-based method is also effective for ASTE, Xu et al. [40]
proposed a three-layers framework, which consisted of a BERT-based encoding layer, a
span representation layer, and an aspect–sentiment–opinion prediction layer. This work
verified that the performance of the model for ASTE was impacted by explicit local con-
text information largely. Through the above summary, it is obviously learned that the
approaches with the end-to-end manner contribute a lot to the ASTE task, and it is essential
to pay more attention to the research of effectively utilizing the relations among words in a
sentence. Thus, in this work, we propose a novel model to integrate five kinds of words’
relations together to enhance the performance of ASTE.
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2.3. Application of GCN in ASTE

In (ABSA) Aspect-Based Sentiment Analysis tasks, the syntax dependency tree plays
an important role in catching the key feature from the review sentence [41–43]. Further-
more, it is well known that the regular method GCN is popular in handling dependency
graphs in previous works. Regarding ASTE, GCNs are also used widely to fuse different
sources of information. As mentioned above, Shi et al. [21] employed a GCN to enhance the
interaction between syntactic and semantic features. To fully exploit the potential informa-
tion implied in syntactic and semantic features, the work [18] also integrated semantic and
syntactic representations through a GCN module, which preserved the sequential informa-
tion and enhanced the linguistic representation, simultaneously. Moreover, to overcome
the problem of many aspect terms to one opinion term or one aspect term to many opinion
terms, Li et al. [44] combined a GCN with a base encoder to build the span representations,
which included both aspect terms and opinion terms. In [45], a GCN was also employed to
model the graph based on the concatenated representations of aspects terms and opinion
terms. Thus, it is quite clear that GCNs are extremely important in enhancing the feature
representations in the ASTE task. Motivated by their impressive ability, we also process the
work of feature fusion under the guidance of the GCN in this paper.

Conclusively, as aforementioned, ASTE is a difficult and challenging subtask in ABSA,
which attracts a lot of researchers’ attentions. In this paper, inspired by the existing
works which apply BERT and GCNs to NLP tasks, we propose a novel model MBGCN
to process semantic feature, syntactic dependency type, part-of-speech combination, tree-
based distance, and relative position distance, simultaneously.

3. Framework of MBGCN

In this section, the detailed framework of the MBGCN is described. Firstly, the
definition of the ASTE task is introduced briefly. Then, the mechanism of feature generation
through the backbone structure-biased BERT is depicted, and this step is utilized to generate
semantic features. After that, multi-branch GCNs are employed to integrate semantic
features with the other four types of linguistic feature representations. Lastly, the shallow
interaction, output layer, and training are introduced shortly. Additionally, the overall
architecture of the MBGCN is described in detail in Figure 2.

3.1. Task Formulation

Given a sentence with a sequence of words X = {w1, w2, . . . , wn} as input, where n is
the number of words, the goal of the ASTE task is to extract and output a set of triplets
{(a, o, s)k}m

k=1, where a, o, and s are the aspect term, opinion term, and the corresponding
sentiment polarity, respectively, and m is the number of triplets. Concretely, the aspect a
can be decomposed into two or more elements, i.e., (ab, ae), where b and e mean the start
and end positions. The opinion o can be decomposed as (ob, oe) similarly. Furthermore, s is
selected from the set (position, netural, negative) to represent the sentiment polarity of the
corresponding opinion term on the aspect term. For the sentence shown in Figure 1, the
triplets are collected as (food, good, positive) and (service, terrible, negative).

Specifically, to make the target of our ASTE task more explicit, ten types of relations
between words in a review are defined, which are collected in Table 1. Similarly, the
mentioned relations also can be seen as the labels, and these labels are introduced to present
the relations in the word pairs, which are also the eventual predictions of our MBGCN.
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Figure 2. The overall framework of the proposed Multi-branched Graph Convolutional Network
(MBGCN). [E1, E2, E3, . . . , En] is the input vector E of self-attention (Equations (1) and (2)).

Table 1. The definitions of our defined relations.

Items Relation Definition

1 B-A beginning of aspect term.
2 I-A inside of aspect term.
3 A aspect term.
4 B-O beginning of opinion term.
5 I-O inside of opinion term.
6 O opinion term.
7 POS sentiment polarity is positive.
8 NEU sentiment polarity is neutral.
9 NEG sentiment polarity is negative.

10 N belong to no aforementioned relations.

3.2. Embedding via Structure-Biased BERT

As aforementioned, BERT has an impressive performance in modeling contextual
representation in various NLP tasks [46–49]. Therefore, in our proposed Multi-branches
Graph Convolutional Netwrok (MBGCN),we also utilize it to generate the semantic features
by the version of the bert-uncased-base. To be precise, before feeding the review X into the
MBGCN, the input is always formulated in three formats: segment embedding Xs, position
embedding Xp, and tokens embedding Xt. Then, these three aspects of embedding are
summarized as the input to the selective feature generator, which is shown in Equation (1),

E = Xs + Xp + Xt, (1)

where E = [E1, E2, E3, . . . , En] is the input of self-attention (Equation (2)). In detail, BERT
is a PLM with the structure of a stacked transformer, which has 12 transformer layers
in total. Furthermore, in each transformer layer, the feature representations are trans-
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formed by multi-head self-attention with a residual structure (Figure 3a). Furthermore, this
transformation can be formulated as follows:

h0 = LN(E), (2)

ĥl = LN(hl−1 + MHSA(hl−1)), (3)

hl = LN(ĥl + FFN(ĥl)), (4)

where l ∈ [1, 12] is the l-th layer transformer, and h0 means the input embedding of BERT,
which is built from E with a liner function. The outputs of 12-layer transformers are
denoted as [h1, h2, . . . , h12]. FFN includes two linear functions with a ReLU activation
function between. MHSA is the core of the transformer, which has a stacked structure with
12 heads of self-attention. Thus, we can formulate the architecture of attention as follows:

ĥl
Mj = so f tmax(el

j)(h
l−1WV), (5)

el
j =

hl−1WQ(hl−1WK)
>

√
d

), (6)

ĥl
M =

N

∑
j=1

ĥl
Mj, (7)

where parameters WQ, WK, and WV are the learnable weights for query Q, key K, and
value V, and d is the head dimensionality. ĥl

Mj is the single attention, and ĥl
M denotes the

sum of N heads attention (MHSA).

Figure 3. The mechanism of structure bias utilized in BERT. Furthermore, Q, K, and V denote
the query vector, key vector, and value vector, respectively, which are standardized inputs for the
transformer module. R indicates the relation distance embedding (Equation (8)).

Inspired by the structure-biased BERT utilized in [24,50], we also introduce it into
our MBGCN for generating more informative feature maps. In the optimized approach,
self-attention is re-constructed by inserting the relative distance or the dependency between
words. Furthermore, the effectiveness of this modification has been obviously proven by
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the NLP task [51]. Thus, we describe this change in our model as Equation (8), which can
be implemented in Equation (6) directly. Additionally, the procedure is depicted below:

el
j =

hl−1WQ(hl−1WK +Rl−1)>√
d

=
hl−1WQ(hl−1WK)

>
√

d
)︸ ︷︷ ︸

Raw

+
hl−1WQ(Rl−1)>√

d︸ ︷︷ ︸
Bias

,
(8)

where Rl−1 ∈ Rk×k indicates the relative distance embedding between the word pairs of
the k-th sentence in (l − 1)-th transformer layer. Note that each dependency embedding
is independent from one layer to another layer, but it can be transformed across different
heads as an entirety. Additionally, the sketch of the difference between raw self-attention (a)
and biased self-attention (b) is shown in Figure 3.

With the backbone encoder of structure-biased BERT, the semantic features hl is obtained,
which provides more accurate contextual information to the module of biaffine attention.

3.3. Biaffine Attention

Biaffine attention has been proven to have the ability to capture the relationship among
the different words or word pairs [23,52]. Thus, in this paper, we also apply it to predict
the relation probability of word pairs in a sentence. To present the process of biaffine
attention, the hidden states hς and hτ of wς and wτ in X are extracted from hl . With the
aforementioned MLPa and MLPo, the aspect-specific feature ha

ς (Equation (9)) and opinion-
specific feature ho

τ (Equation (10)) are obtained, which are adopted into the processing of
biaffine attention directly.

ha
ς = MLPa(hς), (9)

ho
τ = MLPo(hτ). (10)

and the transformation of biaffine attention can be formulated as

gς,τ = ha>
ς Uoho

τ + Ua(ha
ς ⊕ ho

τ) + b, (11)

Rς,τ,ξ =
exp(gς,τ,ξ)

∑Ξ
ξ=1 exp(gς,τ,ξ)

, (12)

where Uo, Ua, and b are the trainable weights and biases, and ⊕ denotes the operation
of concatenation. The relations between wς and wτ are modeled as Rς,τ ∈ R1×Ξ. Ξ is the
number of relation types. Furthermore, we use Rba to represent the relations obtained in
this manner in the following sections.

With the aspect-oriented and opinion-oriented processing of biaffine attention, the
probability of relation Rba between the word pairs in a sentence can be modeled effectively.
Furthermore, this relation will be integrated with the other four types of linguistic features
via GCNs adequately.

3.4. Multi-Branch GCN

Except for encoding text as semantic feature maps, it also can be represented in
the linguistic feature types. Furthermore, the most widely utilized type is the syntax
dependency graph, where the feature is formed in a graph G = (V, E). V is the vertex
(i.e., node or word), and E is the edge (i.e., dependency or syntactic relation) between two
nodes. Generally, we usually denote this kind of relation through a matrix, namely adjacent
matrix A. Aτ,ς = 1 if the relation between wς and wτ exists, and Aτ,ς = 0 otherwise. In
addition, in this paper, we also introduce three other types of linguistic features for each
word pair to enhance the contextual representation of the sentence, which are the part-of-
speech combination, tree-based distance, and relative position distance (Figure 4). Before
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feeding them into the GCN, they are all encoded in the fashion of adjacency matrices. Then,
these four types of linguistic features are integrated with semantic features, respectively.
For instance, we apply the GCN to integrate the Rba with Rsdt encoded from syntactic
dependency type tensor Esdt, and the process is depicted as follows:

Rsdt
τ,ς = σ(Esdt), (13)

H f 1
τ,ς = f ((Rba

τ,ς ⊕ Rsdt
τ,ς)HBert

τ,ς ), (14)

where HBert is obtained from the original contextual representation hl through a dense layer
and a ReLU activation layer; σ is the function so f tmax. Furthermore, f (·) is an average
pooling function applied on the node hidden representations of all channels. To make the
extracted relations more accurate, a refining strategy is employed to enhance the relations
among words, which can be described as

RF
τ,ς = hl

τ,ς ⊕ Esdt
τ,ς, (15)

F̂G(τ,ς)
ba+sdt = RF

τ,ς ⊕ RF
ς,ς ⊕ RF

τ,τ ⊕ H f 1
ς ⊕ H f 1

τ , (16)

FG(τ,ς)
ba+sdt = σ(LN(F̂G(τ,ς)

ba+sdt)), (17)

we use ⊕ to concatenate contextual representation hl
τ,ς and syntactic dependency type

tensor Esdt
τ,ς. Furthermore, in Equation (16), RF

τ,τ and RF
ς,ς are the main diagonal and vice

diagonal, which are used to refine the representation F̂G(τ,ς)
ba+sdt. Finally, with the operations of

a linear layer and a softmax layer, the distribution of probabilities on ten defined relations
between τ and ς is obtained, which is denoted as FG(τ,ς)

ba+sdt.

Figure 4. The example of four mentioned types of dependency relations among words in reviews.

Similarly, we integrate Rba
τ,ς with Epsc

τ,ς , Etbd
τ,ς , and Erpd

τ,ς via different branches of the

GCN to obtain the refined feature representations FG(τ,ς)
ba+psc, FG(τ,ς)

ba+tbd and FG(τ,ς)
ba+rpd, respectively.

Through the operations described in this part, we enhance the contextual feature Rba
τ,ς with

four types linguistic features, respectively.

3.5. Shallow Interaction and Output Layer

To further enhance the performance of our MBGCN, we apply a shallow interaction
layer to fuse the four types of integrated feature representations, which can be depicted as
follows:

TF
τ,ς = [α, β, γ, µ] · [FG(τ,ς)

ba+sdt, FG(τ,ς)
ba+psc, FG(τ,ς)

ba+tbd, FG(τ,ς)
ba+rpd]

>, (18)

where α, β, γ and µ are manually selective hyper-parameters to control the weights of
different feature representations. Furthermore, > is the transposition operation for the
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related matrix. With this layer, the MBGCN achieves the final textual representation fused
from four branches of the GCN, which take five types of textual features into consideration
simultaneously.

3.6. Training

Generally, the deep learning models are always optimized by minimizing a loss
function, and cross entropy is usually applied to complete this work. Without simply
applying cross entropy in the proposed MBGCN, due to various contextual information
involved, it is necessary to take these into the final fine tuning. For instance, the separated
loss Lba to measure the influence of Rba is modeled as

Lba = −
n

∑
ς

n

∑
τ

∑
ξ∈Ξ

I(yς,τ = ξ)log(gς,τ|ξ), (19)

where I(·) is the indicator function, yς,τ is the ground truth relation of word pair (wς, wτ).
Furthermore, Ξ denotes the whole relations set. With a similar operation, the other four
separated linguistic features’ losses Lpsc, Lsdt, Ltbd, and Lrpd are all obtained likewise.
Thus, with the prediction, the final loss function L in the paper is designed as

L = LTF + ρLba + κ(Lpsc + Lsdt + Ltbd + Lrpd), (20)

LTF = I(Y = Ξ)log(TF|Ξ) (21)

where ρ and κ are the manual hyper-parameters to control the influence of each part on the
final loss function. Through this manner, our MBGCN can adjust its fine-tuning from six
aspects simultaneously.

4. Experiments and Discussion

In this section, the results of the conducted experiments are depicted in Tables and
Figures, and the corresponding analyses are also provided in detail. We first introduce
the widely used ASTE datasets and the related settings of experiments. The detailed
experimental results are clearly shown in the analysis secondly.

4.1. Datasets

In this paper, extensive experiments are conducted on four benchmarks, namely
Laptop14, Restaurant14, Restaurant15, and Restaurant16, which are public and available
for ASTE tasks. Furthermore, these four datasets are all collected from the SemEval ABSA
challenges [53–55]. It’s worth noting that these four datasets are revised by Wu et al. [56]
and Xu et al. [22] for ASTE tasks, respectively, which are denoted as V1 and V2 in this paper.
Moreover, the statistics for these two versions of datasets are shown in Table 2.

Table 2. Statistics of two groups of experiment datasets.

Datasets
Laptop14 Restaurant14 Restaurant15 Restaurant16

#S #T #S #T #S #T #S #T

V1

train 899 1452 1259 2356 603 1038 863 1421
dev 225 383 315 580 151 239 216 348
test 332 547 493 1008 325 493 328 525

V2

train 906 1460 1266 2338 605 1013 857 1394
dev 219 346 310 577 148 249 210 339
test 328 543 492 994 322 485 326 514

Note: #S denotes the number of sentences; #T means the number of triplets contained in the datasets.
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4.2. Experimental Setup

To conduct the extensive experiments successfully, we use the BERT [57] with structure
bias as our review encoder, and it consists of 12 transformer layers, where 12 heads self-
attention are included in each layer. Furthermore, the size of the hidden state in self-
attention is 768. In addition, the total number of the model’s parameters is approximately
110 M. The optimizer AdamW is employed to optimize the training process, where the
learning rate is set as 2× 10−5. The dropout is set to 0.5. Moreover, we train our model with
100 epochs with a batch size of 8. The hyper-parameters α, β, γ, and µ of fusion work in
Equation (18) are set as 0.625, 0.125, 0.125 and 0.125, respectively, and the parameters ρ and
κ to control the weights of each loss in Equation (16) are set as 0.1 and 0.01, respectively. In
addition, the experiments are conducted on a system on NVIDIA GeForce RTX 3080Ti with
12GB of graphics memory. To validate our MBGCN effectively, the widely and popularly
used evaluations of Precision (P), Recall (R), and macro-F1 (F1) are employed to present the
performance of the proposed approach on four benchmarks.

4.3. Baselines

Specifically, to demonstrate the validity of the proposed MBGCN, we make comparisons
with several existing SOTA methods designed for ASTE tasks, which are shown as follows:

• GTS-BERT [56] proposes an end-to-end tagging scheme, Grid Tagging Scheme (GTS)
with cooperation with BERT, to address the extraction task;

• GTS-CNN [56] is the Grid Tagging Scheme (GTS) that cooperates with CNN;
• GTS-BiLSTM [56] is the Grid Tagging Scheme (GTS) that cooperates with BiLSTM;
• S3E2 [18] exploits the syntactic and semantic relationships between word pairs in a sentence

by a graph-sequence dual representation and modeling paradigm for the ASTE task;
• Peng-two-stage+IOG [56] is the combination of Peng-two-stage [12] and IOG [58];
• Peng-two-stage [12] is a two-stage pipeline model. It extracts both aspect–sentiment

pairs and opinion terms in the first stage, and pairs the extraction results into triplets
in the second stage;

• OTE-MTL [59] treats the ABSA task as an opinion triplet extraction work, and jointly
extracts aspect terms, opinion terms, and parses their sentiment via a multi-task
learning framework;

• JET-BERT [22] builds a joint model to extract the triplets using a position-aware tagging
approach, which is capable of jointly extracting aspect terms, opinion terms, and their
sentiment together;

• BMRC [16] transforms the ASTE task into a Multi-Turn Machine Reading Com-
prehension (MTMRC) task, and three types of queries are devised to handle the
related inputs;

• EMC-GCN [23] transforms the sentence into a multi-channel graph by treating words and
edges as nodes and edges, respectively, while ten types of relations for ASTE are defined;

• MuG-Bert [24] proposes an approach, Multi-task learning with Grid decoding (MuG),
to integrate the multi-task learning framework with grid triplets decoding from GTS;

• UniASTEBERT [11] proposes an end-to-end method that decomposes ASTE into three
subtasks, namely target tagging, opinion tagging, and sentiment tagging. Furthermore,
a target-aware tagging scheme is introduced to identify the correspondences between
opinion targets and opinion expressions;

• Dual-MRC [15] solves the ASTE task via constructing two machine reading compre-
hension problems, and trains two BERT-MRC models jointly with parameters sharing.

4.4. Main Results

In this subsection, we report the main results of ASTE tasks in Table 3 for version V1
and Table 4 for version V2, respectively. According to the results reported in these two
Tables, two observations can be concluded and stated as follows.

First, the performances of the PLM-based approaches on ASTE are much better than
the normal word2vector-based models. Furthermore, this is quite clear in the comparisons
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among GTS-BERT, GTS-CNN, and GTS-BiLSTM. Observing from Table 3, it is obvious
that our proposed MBGCN acquires the optimal performance when compared with the
previously mentioned SOTA baselines. To be precise, for experimental results in four
benchmarks, our MBGCN achieves 72.33%, 57.46%, 59.57%, and 70.43% on the main
indicator F1, respectively; while compared with the best baseline EMC-GCN†, the proposed
MBGCN obtains 1.13% (72.33–71.20), 0.92% (57.46–56.54), 1.53% (59.57–58.04), and 1.40%
(70.42–69.03) improvements on F1 in the four datasets, respectively, and it achieves the new
SOTA. This observation from the comparison indicates the effectiveness of our proposed
model with the multi-branch framework.

Second, even within the comparison with other BERT-based approaches, the MBGCN
also enhances the ASTE performance through its excellent contextual understanding. No-
tably, in Table 4, the experimental results conducted on V2 are collected clearly. For the vital
evaluation F1, the performances of the MBGCN are improved to 71.37%, 58.89%, 63.07%,
and 67.34% in four corpora, respectively, which outperform the mentioned baselines obvi-
ously and are only a little worse than EMC-GCN† on F1 in Restaurant14. Specifically, there is
a dramatic increase in F1 in Restaurant15, which is nearly 3.46% (63.07–59.61). Furthermore,
in Laptop14 and Restaurant16, the MBGCN also achieves 0.58% (58.89–58.31) and 0.31%
(67.34–66.74) increases on the F1 indicator. This can be viewed as direct evidence to support
the usefulness of the combination of structure-biased BERT and multi-branch GCNs.

Conclusively, as the results show, structure-biased BERT-based multi-branch GCNs
can further boost the performance of ASTE tasks, which is beneficial in excavating the
semantic and syntactic information in reviews comprehensively.

Table 3. The performance of Multi-branches Graph Convolutional Network (MBGCN) on V1.

Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

Peng-two-stage+IOG© [56] 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67
GTS-CNN© [56] 70.79 61.71 65.94 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM© [56] 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
GTS-BERT© [56] 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58

S3E2© [18] 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87
Dual-MRC© [15] - - 70.32 - - 55.58 - - 57.21 - - 67.40
EMC-GCN † [23] 70.92 71.49 71.20 58.96 54.31 56.54 54.99 61.46 58.04 65.74 72.66 69.03

MBGCN 72.89 71.79 72.33 57.30 57.62 57.46 60.76 58.42 59.57 71.68 69.22 70.43

Note: The “†” denotes that we reproduce the models using released code with original parameters on the dataset.
The “©” denotes the results are referred from the original paper. The “-” denotes not mentioned in original paper.
And the bold format denotes the optimal performance.

Table 4. The performance of MBGCN on V2. The “§” means the results are retrieved from [8]. The “¶”
denotes the results are retrieved from [23].

Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

Peng-two-stage § [12] 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTL ¶ [59] 62.00 55.97 58.71 49.53 39.22 43.42 56.37 40.94 47.13 62.88 52.10 56.96
JET-BERT § [22] 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

BMRC ¶ [16] 75.61 61.77 67.99 70.55 48.98 57.82 68.51 53.40 60.02 71.20 61.08 65.75
EMC-GCN † [23] 70.35 73.14 71.72 61.48 55.45 58.31 56.33 63.30 59.61 62.46 72.32 67.03
MuG-BERT© [24] 68.40 67.64 68.00 58.30 52.21 55.06 60.65 54.12 57.10 66.26 67.39 66.74
UniASTE©

BERT [11] 72.14 66.30 69.09 62.24 51.77 56.51 64.83 54.31 59.06 69.06 65.53 67.22

MBGCN 67.92 75.18 71.37 59.96 57.86 58.89 62.25 63.92 63.07 63.76 71.35 67.34

Note: The “†” denotes that we reproduce the models using released code with original parameters on the dataset. The
“©” denotes the results are referred from the original paper. And the bold format denotes the optimal performance.
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4.5. Ablation Study

To further validate the effectiveness of each component in the MBGCN, we conduct
ablation experiments and answer the following questions:

• Is the contribution of each linguistic feature equal?
• Does the structure-biased BERT promote the performance of the MBGCN on the

ASTE task?

4.5.1. Effect of Each Linguistic Feature

We first validate whether each type of linguistic feature is equal to improve the
performance of the MBGCN in modeling the textual representation. Accordingly, a single
branch GCN is constructed to integrate semantic features achieved by structure-biased
BERT with a single linguistic feature. Moreover, the experimental results are shown in
Figures 5 and 6.

Figure 5. The Results of Ablation Study on V1. Res14 means Restaurant14, Lap14 means Laptop14,
Res15 denotes Restaurant15, and Res16 denotes Restaurant16.

Above all, we compare the effectiveness of the four types of linguistic features on
version V1 of the four benchmarks, respectively. From Figure 5, we can observe that the
approach utilizing FG

ba+psc achieves the optimal performance in the experimental results, in
which the representation is implemented by semantic feature and part-of-speech combi-
nation Rpsc only. This suggests that linguistic feature Rpsc can largely enhance the textual
representation of semantic features generated by structure-biased BERT. Conversely, the
effectiveness of FG

ba+tbd is slightly worse than the observation of the performance of the
ablation experiments, but it still contributes to improving the model’s capability to extract
triplets. In addition, FG

ba+sdt and FG
ba+rpd both have a significant impact on improving the

performance of the proposed model. Additionally, extensive experiments are conducted
on version V2 of four datasets, and the results are presented in Figure 6. Observing from
the figure, the same conclusion can be obtained from the experimental results based on
FG

ba+psc and FG
ba+tbd. Therefore, we believe that the triplets extraction task benefits from the

cooperation of all four GCN branches directly.

Figure 6. The Results of Ablation Study on V2. Res14 means Restaurant14, Lap14 means Laptop14,
Res15 denotes Restaurant15, and Res16 denotes Restaurant16.
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4.5.2. Effect of Adapter BERT

To validate the influence of structure-biased BERT on textual semantic representation,
extensive experiments are conducted on the aforementioned datasets. Table 5 shows the
results on version V1 and V2 of the four datasets. We can see that structure-biased BERT
strengthens the performance of the proposed model in extracting triplets on three datasets
(i.e., Restaurant14, Restaurant15, and Restaurant16). In particular, for V1, the model without
structure bias only achieves 71.66%, 58.55%, and 68.52% of F1 on Restaurant14, Restaurant15
and Restaurant16, respectively, which are obviously worse than structure-biased BERT
based MBGCN. Furthermore, when it comes to version V2, the method based on structure-
biased BERT also achieves higher F1 scores on three datasets, which are Restaurant14,
Laptop14 and Restaurant15, respectively. Furthermore, the corresponding improvements
are 1.53% (71.37–69.84), 0.29% (58.89–58.70), and 3.23% (63.07–59.84). Conclusively, the
above description indicates that the employment of structure-biased BERT can extract more
abundant textual semantic features in the current ASTE task.

Table 5. The contribution of adapter to MBGCN for ASTE task on V1 and V2.

Versions Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

V1
MBGCN 72.89 71.79 72.33 57.30 57.62 57.46 60.76 58.42 59.57 71.68 69.22 70.43

w/o Structure bias 70.38 72.99 71.66 60.86 54.50 57.50 56.76 60.45 58.55 64.53 73.04 68.52

V2
MBGCN 67.92 75.18 71.37 59.96 57.86 58.89 62.25 63.92 63.07 63.76 71.35 67.34

w/o Structure bias 69.49 70.19 69.84 59.77 57.67 58.70 58.88 60.83 59.84 65.36 71.74 68.40

Note: The “w/o” denotes the abbreviation for without.

4.6. Case Study

To further analyze the role of each linguistic feature in our task, two samples are
selected and visualized by attention weights on each word, and they are expressed through
Figure 7. As shown in the figure, each row means the visualization of the representation
obtained by the single branch GCN, and each column denotes the visualization of each
word presented by the four branch GCN. From Figure 7, we can conclude two observations
related to the core idea of the proposed model. First, it is obvious that the attention of
each branch of the GCN is attracted by the different words in the sentence. For example,
in Figure 7b, the key word in branch FG

ba+sdt is “is”, while “is” is the last word in sorted
attention sequence from FG

ba+psc, and FG
ba+psc gives a heavy attention weight to “this”. The

same conclusion can be summarized from FG
ba+tbd and FG

ba+rpd. Second, we find that if

one branch misses the specific word, such as “is” in FG
ba+psc and FG

ba+rpd in Figure 7b,
another branch of the GCN would provide a higher attention weight on this word, such
as FG

ba+sdt and FG
ba+tbd. Furthermore, this phenomenon directly corresponds to the core of

feature integration. In addition, Figure 7a also provides the same information to us about
the attention distributions via a four branch GCN. For this case, our proposed MBGCN
completes its work of fusing various branch features to enhance the textual representation
and finally improve the performance of the ASTE task.
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Figure 7. Attention distribution on each word in samples for case study.

4.7. Attempts via Prompt Learning

Prompt learning is the process of creating a prompt format to guide the training of
the model on the downstream tasks [60]. Furthermore, from the investigation of previous
research, we learn that creating intuitive templates based on human introspection is the
most widely used method that has been adopted in many studies [61–63]. In addition to
the mentioned strategies, we also tried to exploit the usefulness of prompt learning in our
designed experiments. Following the core idea of prompt learning, the comprehensive
prompt template in this task is designed as “the targets are aspect, opinion, sentiment”.
Thus, the input to the model is remodeled as {REVIEW, the targets are aspect, opinion,
sentiment.}, which directly tells the PLM the exact target of the current task.

Furthermore, the relative experiments are conducted both on version V1 and V2,
and the results are collected in Table 6. From the observations, first, we find that the
improvement in the model’s performance on V1 is confined to Laptop14 and Restaurant15,
and different declines happen to the experimental results in Restaurant14 and Restaurant16.
In other words, the effectiveness of prompt learning is limited for current version V1
under the framework of our proposed MBGCN. Second, while observing the experimental
results on V2 shown in Table 6, we can learn that the approach with prompts outperforms
the baseline MBGCN on three benchmarks clearly. However, it fails in the experiments
conducted in Laptop14, which suggests that the optimized model by current prompts is
not sensitive to the reviews in Laptop14. Finally, we can conclude that prompt learning
with the aforementioned template can improve the model’s capability in modeling textual
representation in some aspects, but it is not the most proper manner for the current designed
framework, which means a lot of effort is essential to improve the performance of prompt
learning in the ASTE task.

Table 6. The contribution of prompt learning to MBGCN for ASTE task on V1 and V2.

Versions Models
Restaurant14 Laptop14 Restaurant15 Restaurant16

P R F1 P R F1 P R F1 P R F1

V1
MBGCN 72.89 71.79 72.33 57.30 57.62 57.46 60.76 58.42 59.57 71.68 69.22 70.43

w/ Prompts 73.27 70.18 71.69 56.35 59.45 57.86 58.32 64.71 61.35 64.11 68.64 66.30

V2
MBGCN 67.92 75.18 71.37 59.96 57.86 58.89 62.25 63.92 63.07 63.76 71.35 67.34

w/ Prompts 73.63 71.31 72.46 58.93 56.75 57.82 64.68 62.68 63.67 65.96 72.90 69.26

Note: The “w/” denotes the abbreviation of with.

5. Conclusions

In this work, we propose an end-to-end model MBGCN for the ASTE task, which
processes Aspect Term Extraction, Opinion Term Extraction, and sentiment polarity pre-
diction in a sentence, simultaneously. For modeling the textual semantic feature more
accurately, an optimized attention module is inserted into BERT, namely structure-biased
BERT, which is employed to enhance the representation of the specific sentence. In addition,
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to emphasize the key features in the generated representation, biaffine attention is utilized
to absorb the crucial components from both aspect-oriented and opinion-oriented feature
maps. Furthermore, a novel fusion architecture with a multi-branch GCN is proposed to
integrate the semantic feature with the linguistic feature. In this part, through each branch
GCN, attentive semantic representation is integrated with syntactic dependency types,
part-of-speech combination, relative positive distance, and tree-based distance, respectively.
Eventually, four branch features are synthesized as an entirety via a designed shallow inter-
action layer. To validate the effectiveness of our proposed model, we conduct extensive
experiments on the benchmark datasets, and the results show that the MBGCN achieves
SOTA performances.

Although outstanding performances were achieved by our proposed MBGCN, several
limitations still exist, which are the working aims of our future study. First, the working
mechanism of prompt learning should be optimized to be more proper for our current task.
Second, a more robust integration strategy is essential in our future study for feature fusion.
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