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Abstract: Preoperative determination of implant size for total knee arthroplasty surgery has numerous
clinical and logistical benefits. Currently, surgeons use X-ray-based templating to estimate implant
size, but this method has low accuracy. Our study aims to improve accuracy by developing a machine
learning approach that predicts the required implant size based on a 3D femoral bone mesh, the
key factor in determining the correct implant size. A linear regression framework imposing group
sparsity on the 3D bone mesh vertex coordinates was proposed based on a dataset of 446 MRI scans.
The group sparse regression method was further regularized based on the connectivity of the bone
mesh to enforce neighbouring vertices to have similar importance to the model. Our hypergraph
regularized group lasso had an accuracy of 70.1% in predicting femoral implant size while the
initial implant size prediction provided by the instrumentation manufacturer to the surgeon has an
accuracy of 23.1%. Furthermore, our method was capable of predicting the implant size up to one
size smaller or larger with an accuracy of 99.1%, thereby surpassing other state-of-the-art methods.
The hypergraph regularized group lasso was able to obtain a significantly higher accuracy compared
to the implant size prediction provided by the instrumentation manufacturer.

Keywords: total knee arthroplasty; templating; machine learning; group lasso

1. Introduction

Knee osteoarthritis is a degenerative disease affecting the knee cartilage layers. Due
to progressive knee cartilage wear, patients can experience pain, instability, loss of flex-
ibility, joint stiffness and swelling. For patients with severe knee osteoarthritis, a total
knee arthroplasty (TKA) surgery can help improve quality of life [1]. During a TKA pro-
cedure the femur and tibial bones are resected along the joint interface and replaced by
metal components. Two-dimensional templating is the most frequently used method to
preoperatively determine the required implant size. In 2D templating, anteroposterior
and lateral radiographs are overlaid with 2D template shapes of the implants to deter-
mine the best fitting size. Despite its broad adoption, 2D templating has relatively low
accuracy in determining the required size due to the nature of projection images [2–5].
Three-dimensional templating based on computed tomography (CT) or magnetic resonance
imaging (MRI) scans can overcome this limitation of 2D templating resulting in higher
templating accuracy [6–8]. Three-dimensional templating allows the surgeon to position
the implants on a 3D model of the joint to determine the optimal implant size and position.

There are several benefits to preoperatively planning the implant size. First of all, deter-
mining the correct implant sizes is of importance from a clinical point of view. Femoral over-
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sizing might lead to irritation of the soft-tissue structures surrounding the joint, increased
patellofemoral pressure or reduced range of motion and, hence, should be avoided [9].
On the other hand, femoral undersizing can lead to femoral fracture due to anterior implant
notching, flexion instability, or inferior patellar tracking due to a medialized implant place-
ment [10]. Secondly, the extremely large and small implant sizes need to be specifically
ordered as they are not consistently present in the hospital [11]. Furthermore, knowing the
implant size up to a size smaller or larger reduces the sterilization cost and operation room
setup time [12,13].

Over recent decades, machine learning has been successfully applied to many medical
applications, including implant size templating [14–16]. Several studies have investigated
implant size prediction based on demographic data [2,11,16–22]. The method by Trainor et al.
used only shoe size and gender to obtain the highest reported accuracy of 63% and an
accuracy of 99% for predicting up to one size larger or smaller [11]. Finally, Lambrechts et al.
created a support vector machine based model that predicts implant size based on manually
defined features deduced from 3D bone models, resulting in an absolute accuracy of 82.2%,
significantly higher compared to models relying on demographic data [23].

Traditional methods for determining implant size are based on human predefined
measurements. However, surgeons base the implant size on the size and morphology
of the bone. Therefore, we hypothesize that shape based implant size prediction can
yield higher accuracy compared to previously investigated methods. To the best of our
knowledge, our method is the first to regress the implant size directly based on the 3D
model of the bone. The computational method most similar to the one presented in this
study, is an optimal-scoring-based method by Clemmensen et al. that induces sparsity [24].
This algorithm was evaluated on a classification task distinguishing male and female face
silhouettes based on the point coordinates. The method by Clemmensen et al. obtains
interpretability by introducing sparsity through the use of l1 regularization on the model
coefficients corresponding to single coordinates of certain points. As a result, this method
can only find directions of shape variations that are parallel to the coordinate system
axes which is a major disadvantage. A second limitation is that proximity information
is not incorporated into the model as neighbouring points in space should have similar
contribution to the model.

Therefore, we propose a method that extends the method by Clemmensen et al.
in multiple ways. Firstly, our method is targeted toward triangular meshes allowing
better incorporation of spatial structure compared to point clouds. Secondly, group lasso
regularization was used to obtain directions of variation in bone shape which are predictive
of our target. As opposed to the method by Clemmensen et al., our method allows these
directions of variation to be in any direction, not only parallel to coordinate axes. Thirdly,
connectivity of the mesh structure is included in our model as extra prior information.

2. Materials and Methods
2.1. Data Preprocessing

For our model we used a dataset of 446 TKA preoperative plans retrospectively
collected. All cases were planned by a single surgeon based on an MRI scan of the patient’s
knee joint. MRI scans have as benefit the visualization of the knee bone, as well as cartilage
which can aid the surgeon during 3D templating. The MRI scan protocol is described in
Table 1. The scans were semi-automatically segmented (Mimics, Materialise, Belgium) by
experienced conversion engineers. The segmented mask contains both the bone and the
cartilage of femur. Next, these masks were converted to a triangulated surface mesh based
on the marching cubes algorithm [25]. For each patient the corresponding femoral implant
size planned by the surgeon was also available. All patients received a posterior-stabilized
Zimmer-Biomet Vanguard implant, which has 10 possible sizes.
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Table 1. Description of the MRI scan protocol.

Parameter Value

Scanner GE OptimaTM MR450w
Field strength 1.5 T
Scan type 3D
Scan direction Sagittal
Sequence Fat saturated T1 spoiled gradient echo
Slice thickness 1 mm
Pixel size 0.4 mm

Our group lasso method relies on meshes which have point correspondences and
identical adjacency matrices. To achieve this, we employ a previously developed statistical
shape model (SSM) which was created based on a training set of 524 MRI scans independent
from the dataset used for training the hypergraph regularized group lasso [26]. The SSM
was fitted to all bones in the dataset to obtain point correspondence. Next, a non-rigid
surface registration is applied to register the fitted model to the target femur [27]. Finally
the vertex coordinates of the registered femur meshes are stacked in a matrix X ∈ RN×3p,
where N indicates the number of femur meshes in the dataset, and p the number of points
in the mesh. Finally, all columns of the data matrix X are scaled to have a mean of zero
and a standard deviation of 1. The implant sizes are coded as an ordinal variable with a
range from 1 to 10, represented by y. Based on a stratified split, 70% of the samples are
used for creating the model and the remaining samples form the test set to measure the
final accuracy of the model.

2.2. Hypergraph Representation of a Triangular Mesh

A triangular mesh can be represented as a simple undirected graph characterized by a
set of vertices and edges: G = (V, E). Figure 1 represents a femur mesh with edges repre-
sented as black lines. Simple graphs can be represented by a Laplacian matrix L ∈ Rp×p,
defined as the difference of the adjacency and degree matrices. The Laplacian matrix
has useful properties for analysing the structure of a graph. However, the simple graph
structure of a mesh is not compatible with the regression framework proposed in this
study. Therefore, the mesh will be represented by a hypergraph, a generalization of a graph.
Hypergraphs have hyperedges which can connect any number of vertices. In a simple
graph, each vertex represents a point in 3D space, while for the hypergraph we split each
of these points into three vertices: one for each coordinate (Figure 2). All edges of the
original graph become hyperedges in the hypergraph connecting 6 vertices, hence it is a
6-uniform hypergraph.

Figure 1. A mesh of the distal femur.
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(a) (b)
Figure 2. Graph and hypergraph structure for a mesh in 3D space. (a) Graph structure. (b) Hyper-
graph structure.

For hypergraphs, the incidence matrix H ∈ R|V|×|E| identifies which vertices are part
of a hyperedge:

Hij =

{
1 if vi ∈ Ej
0 if vi /∈ Ej

(1)

Similarly, two diagonal degree matrices can be defined: the edge degree matrix
De ∈ R|E|×|E| and the vertex degree matrix Dv ∈ R|V|×|V|.

Deij =

{
∑
|V|
k=1 Hki if i = j

0 otherwise
Dvij =

{
∑
|E|
k=1 Hik if i = j

0 otherwise
(2)

Based on these matrices, the hypergraph Laplacian can be defined as:

LH = Dv −HD−1
e HT (3)

2.3. Hypergraph Regularized Group Lasso

The target of the hypergraph regularized group lasso is to obtain a subset of points on
the femur mesh, the coordinates of which can be linearly combined to predict the femur
implant size. This can be accomplished by the following optimization problem:

min
β

1
2
‖y− Xβ‖2

2 + λG ∑
g∈P
‖βg‖2 +

λL
2

βTLH β +
λR
2

βTIβ (4)

The objective function has four terms. The first term is a least squares term trying to
represent the implant size y as a linear combination of the vertex locations of the mesh,
parameterized by β. The parameter vector β indicates the importance of each vertex’s
coordinates in predicting the femoral implant size. The second term is a group lasso regu-
larization term which results in sparsity in the points selected. P is the set of 3-tuples in
which each tuple g references the column indices corresponding to the group of {x, y, z}
coordinates of a point on the mesh. βg ∈ R3 is a set of 3 of the model parameters corre-
sponding with the {x, y, z} coordinates from point pg. This regularization forces either all
coordinates of a point to be included in the model or all coordinates of the point are found
to be uninformative to the model, in which case they receive a zero-valued βg coefficient.
As a result, the group sparsity term creates model interpretability by expressing the femoral
size as a linear combination of a small subset of points on the mesh. The third term forces
the model coefficients of vertices linked by an edge, to be similar in value. We opted to use
this penalty term because our hypothesis is that vertices linked by an edge are nearby in
space, hence they should have a similar influence on the model. The last term is a ridge
penalty to obtain uniqueness of the solution. The group lasso itself does not necessarily
result in a unique solution because it is not strictly convex [28]. The addition of the ridge
regularization leads to a strictly convex function guaranteeing a unique solution.
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The group lasso problem is a convex non-differentiable problem as it is discontinuous
at βg = 0. For these types of problems computationally efficient solvers exist based on
the proximal gradient method which alternatively optimize each group [29]. Therefore,
the objective function should be group separable. However, the hypergraph regularization
term is not. Nevertheless, the objective function can be rewritten as a normal group lasso
problem which can be solved using the proximal gradient method.

By combining the ridge penalty with the hyper-graph Laplacian regularization, the ob-
jective function can be simplified. More specifically, the weighted sum of the identity matrix
and the hypergraph Laplacian is a positive definite matrix. Hence, it can be decomposed
using a Cholesky decomposition [30]: λR

λL
I + LH = UTU. Using the upper triangular matrix

U we augment the feature matrix X and target vector y as follows [31]:

X̃ =

[
X√
λLU

]
∈ R(N+3p)×3p (5)

ỹ =

[
y

03p

]
∈ RN+3p (6)

03p is a column vector with 3p zero values. Using this augmented data matrix and
target vector, the optimization problem can be reformulated as a standard group lasso,
which, in turn, is fully group-separable:

min
β

1
2
‖ỹ− ∑

g∈P
X̃gβg‖2

2 + λG ∑
g∈P
‖βg‖2 (7)

Tibshirani et al. proposed a proximal gradient solving method to find the optimal
solution for this convex problem [29]. The algorithm cycles over each group g and iteratively
solves three equations until convergence. This inner iterative loop can be accelerated with
the Nesterov acceleration method [32]:

r := ỹ− ∑
i 6=g

X̃iβ
0
i

ωt+1
g = βt

g + νX̃T
g (rg − X̃gβt

g)

βt+1
g =

(
1− νλG
‖ωt

g‖2

)
+

ωt+1
g

βt+1
g := βt+1

g +
t

t + 3
(βt+1

g − βt
g)

(8)

The ν parameter is the step size in the optimization and should be carefully set to
converge sufficiently fast while avoiding divergence from the optimum. (q)+ := max{0, q}
is the positive part function. In Equation (8), the superscripts indicate the iteration count.
The complete algorithm is described in Algorithm 1. Mathematical operations, such as
additions, norm calculation, and matrix-vector products were performed using compressed
sparse column operations to reduce both computational time and memory footprint [33].
The algorithm’s accuracy is determined by three parameters λG, λR, and λL, which control
the relative strength of the three regularization terms. Larger values of λG improve the
interpretability by reducing the number of points in the final solution. Larger values of
λL improve smoothness of the coefficient values across neighbouring points on the mesh.
Finally, larger values of λR, generally avoid overfitting of the model by reducing the values
of the model parameters. To determine the optimal values for these three parameters, a 3D
logarithmic grid search approach was combined with five-fold cross validation on the
training set. The range of λG, λR and λL started at 10−6 and was increased by a factor of 10
until the value of 1000 was reached.
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Algorithm 1: Hypergraph regularized group Lasso.
Input: X, y, LH , λG, λL, λR, ν, tol, max_iter
Output: β

Sparse Cholesky decomposition: LH + λR
λL

I→ UTU;

X̃ =

[
X√
λLU

]
ỹ =

[
y

03p

]
;

Initialize β← U (− 1√
N

, 1√
N
);

i← 0;
while not converged and i < max_iter do

r← ỹ− X̃β;
for g ∈ P do

rg ← r + X̃gβ0
g;

t← 0;
while ‖βt

g − βt−1
g ‖ < tol do

t← t + 1;
θt

g ← βt−1
g + t

t+3 (βt−1
g − βt−2

g );
ωt

g ← θt
g + νX̃T

g (rg − X̃gθt
g);

βt
g ←

(
1− νλG

‖ωt
g‖2

)
+

ωt
g;

end
r← rg − X̃g(βt

g − β0
g);

i← i + 1;
end

end

2.4. Baseline Method

To establish a baseline, our method was compared against statistical shape mode
coefficient-based linear regression. While fitting the SSM to each of the femurs in the
dataset, the shape mode coefficients are obtained. These coefficients quantify the presence
of the uncorrelated modes of shape variation. For example, the first shape mode variation
is generally a measure for bone volume and, hence, should correlate with the required
implant size. Using an elastic net, the shape mode coefficients were regressed to the femoral
implant size [31]. The hyperparameters of the elastic net were tuned using grid search
during a five-fold cross validation procedure.

3. Results

All meshes in the dataset had 22,476 vertices after SSM fitting and non-linear regis-
tration resulting in a data matrix X ∈ R312×67428. The data matrix is augmented with the
upper triangular matrix from the Cholesky decomposition resulting in a data matrix of
size X̃ ∈ R67.740×67.428 with 88% sparsity. Owing to the sparsity of the problem, it becomes
feasible to solve the hypergraph regularized group lasso efficiently through the use of
sparse matrix and vector calculations.

The algorithm performance in terms of average accuracy of femoral implant size pre-
diction ŷ and average mean squared error (MSE) over all folds, during the cross-validation
procedure, is displayed in Figure 3. Figure 3a,b visualize the effect of λG and λL on the
accuracy and MSE, respectively, with constant λR = 1. Figure 3c,d visualize the effect of
λR on the accuracy and MSE, respectively, for constant λG = 100 and λL = 10. During the
cross validation stage the average calculation time for training with one combination of
hyperparameters was 28.7 min on an Intel® Xeon® E5-1620 v3 CPU and 64 GB RAM memory.

λG = 100, λL = 10, and λR = 1 resulted in optimal performance during cross-
validation with a test set accuracy and accuracy up to one size smaller or larger of 70.08% and
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99.11%, respectively. The final solution has a sparsity of 99.8%, which represent 43 vertices
from the bone mesh with non-zero model coefficients (Figure 4). Gray zones identify vertices
with zero coefficients resulting from the model’s sparsity. The vertices have a colour on the
scale from yellow to red indicating low to high importance. Figure 5 provides an overview
of the model’s performance per iteration of training. The convergence towards the final
model coefficients β is defined as ‖βt − βt−1‖2

2. One can observe the clear link between
sparsity of the solution and the model’s performance in terms of MSE and accuracy. On the
other hand, the baseline method obtained a severely lower test set accuracy of 58.9%.

(a) (b)

(c) (d)
Figure 3. The average model performance over the cross-validation folds for different values of λG,
λL, and λR in terms of accuracy and MSE. (a) Accuracy as a function of λL and λG with λR = 1.
(b) MSE as a function of λL and λG with λR = 1. (c) Accuracy as a function of λR with λG = 100 and
λL = 10. (d) MSE as a function of λR with λG = 100 and λL = 10.

Figure 4. A medial, anterior, lateral, posterior, and distal view of the vertex importance for the model.
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Figure 5. The learning curve obtained from training the model with the optimal hyperparameters.

From the model coefficients β, the importance of each point p can be derived by the
norm of its corresponding coordinates’ model coefficients: ‖βp‖2. Figure 4 visualizes the
vertices importance values of the final model coefficients on different views of the femur.
The coefficient vector βg can also be interpreted by the direction it points to, representing
the direction of variation which is most sensitive to variation in the implant size changes.
In Figure 6, the directions of the model coefficients have been displayed by arrows drawn
from vertex location with non-zero ‖βg‖2 in the direction of βg. All arrows were normalized
to unit length.

Figure 6. A medial, anterior, lateral, posterior, and distal view of the directions of the βg vectors for
the vertices with non-zero coefficients.

4. Discussion

The group sparsity regularization has the largest impact on the model accuracy as
shown in Figure 3. For λL > 10 model performance starts to decrease significantly due
to the diminishing effect of sparsity resulting in decreasing generalization. Nevertheless,
the effect of the hypergraph regularization cannot be neglected, as can be seen in Figure 3,
where the MSE starts to decrease for values of λL > 0.1. The L2 regularization results in
the desirable property of uniqueness of the solution. However, at higher values of λR the
accuracy and MSE start to decrease as a result of reduced sparsity.
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During the optimizer’s iterations the amount of sparsity increases while the model’s
MSE decreases, resulting in model interpretability (Figure 5). The final solution has small
clusters of points above the patellofemoral articular cartilage, on the femoral posterior
condyles, on the femoral distal condylar area, and around the medial and lateral rim
of the femoral distal cartilage layer are selected by the model. These regions also hold
important anatomical information for determining femoral implant size. For example,
the points selected on the anterior femoral shaft above the patellofemoral articular surface
determine whether femoral implant notching might occur due to undersizing, where the
implant undercuts the femoral cortical bone surface. Femoral notching is associated with
an increased likelihood of supracondular fracture [34]. Therefore, these regions are likely
taken into account by the model.

One interesting observation is that vertices in the model are very often present in small
clusters of neighbours. This is most likely due to the hypergraph regularization which has
a smoothing effect, trying to force neighbouring vertices to have similar model coefficients.
These clusters seem to increase the model’s generalization. Our hypothesis is that they
make the algorithm more robust against errors in the non-linear registration performed
after the SSM fit.

In Figure 6, the directions of bone shape variation which are predictive of the femoral
implant size are visualized. All of these directions point outward from the bone indicating,
that larger bones result in larger implant sizes, as expected. At first glance, these arrows
seem to point normal to the surface of the bone mesh. However, at closer inspection, some
βg directions deviate up to 67.8° from the direction of the surface normal. For example,
the vertices selected by the model on the distal lateral condyle point significantly more
posterior in comparison with the direction of the surface normal at these points. This
indicates that the anteroposterior variation in bone shape at the femoral condyles causes a
change in femoral implant size, which is conform with clinical knowledge.

Practical implementation of our method could be through a software application
which starts from the patient’s MRI scan, and subsequently automatically segments it
using previously investigated methods [35]. Next, the application could propose implant
size based on the prediction from our proposed model. Alternatively, the model can
be integrated in 3D templating software from an implant manufacturer. Our method is
compatible with current generation implants with fixed increments between sizes.

Several studies have investigated the accuracy of 2D templating (Table 2) [3–7]. In the
table, bold values indicate the best performance per metric. Although 2D templating is
frequently performed, it has relatively low accuracy (48–64%). Furthermore, 2D templating
is a manual procedure. On the other hand, manual 3D templating shows far greater
accuracy of 93.9–100% [4,7,8]. Implant size selection based on manual 3D templating with
MRI scans has been shown to have excellent intra- and interclass correlation coefficients
amongst surgeons [36]. The intra-class correlation ranged from 96.6% to 99%, and the
inter-class correction was 97%. Hence, it is a suitable medium for preoperative assessment
of the required implant size. To the best of our knowledge there is only one study which
investigated an automatic 2D templating method with 19.2% accuracy [37].

For our dataset, we can compare the accuracy of the model with that of the femoral
implant size proposed by the instrumentation manufacturer. The test set accuracy of the
femoral implant size proposed by the manufacturer is 23.1%, while our model obtained
an accuracy of 70.08%. This accuracy improvement will result in a more efficient planning
experience for the surgeon by reducing planning time. However, both the manufacturer’s
default and our method obtain the same test set accuracy up to one size larger or smaller
of 99.11%. Furthermore, our proposed method also significantly surpasses the baseline
method in terms of accuracy.

Our method outperforms other methods relying on demographic data in terms of both
the absolute accuracy and the accuracy up to 1 size smaller or larger (Table 3). Therefore,
we conclude that geometric features extracted from the 3D anatomical model provide
additional information that improves implant size prediction accuracy. Furthermore, all
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other investigated methods rely on features defined based on clinical expertise. In com-
parison, our method automatically extracts the relevant features which determine the
femoral implant size. The study by Lambrechts et al., (2022) obtained a higher absolute
accuracy compared to our currently proposed method, however, it relied on a significant
amount of clinical knowledge to extract relevant features from the 3D bone models and
uses non-linear models [23]. One of the limitations of this comparison is the difference in
focus: our method predicts the preoperatively planned implant size, which differs slightly
from the intra-operatively used implant size predicted by the other studies relying on
demographic data.

Table 2. Comparison of manual methods for predicting the required femoral implant size in terms of
their accuracy. Bold values indicate the best performance per metric.

Study Absolute Accuracy +1/−1 Size Accuracy Modality

Trickett et al. 2009 [3] 48% 98% 2D: X-ray
Miller et al. 2012 [4] 64% 100% 2D: X-ray
Unnanuntana et al. 2007 [5] 50.4% 97.3% 2D: X-ray
Pietrzak et al. 2019 [6] 52.9% - 2D: X-Ray
Ettinger et al. 2016 [7] 59.6% 97.9% 2D: X-ray
Pietrzak et al. 2019 [6] 96.6% - 3D: CT
Ettinger et al. 2016 [7] 100% 100% 3D: MRI
Schotanus et al. 2016 [8] 93.9% - 3D: MRI

Table 3. Comparison of automatic methods for predicting femoral implant size in terms of their accu-
racy. Bold values indicate the best performance per metric.

Study Absolute Accuracy +1/−1 Size Accuracy Modality

Seaver et al. 2020 [37] 19.2% 51.2% 2D: X-ray
Trainor et al. 2018 [11] 56% 99% Shoe size

Sershon et al. 2017 [17] -
85–95%
(implant dependent) Demographics

Bhowmik-Stoker et al. 2018 [19] - 94% Demographics
Sershon et al. 2019 [18] - 76% Demographics
Blevins et al. 2020 [22] - 94.4% Demographics
Wallace et al. 2020 [2] 43.7% 90.1% Demographics
Kunze et al. 2021 [16] 48.4% 95% Demographics
Naylor et al. 2022 [21] - 83.09% Demographics
Lambrechts et al. 2022 [23] 82.2% - 3D: MRI
Manufacturer’s default plan 23.1% 99.11% 3D: MRI
Shape coefficient regression 58.93% 98.21% 3D: MRI
Hypergraph regularized group lasso 70.08% 99.11% 3D: MRI

More accurate implant size prediction using our method might positively impact total
knee arthroplasty surgery through improved logistics requiring reduced inventory, less
trays to sterilize and reduced operating room setup times. These measures might reduce the
cost associated with the treatment. Furthermore, accurate templating helps the surgeon to
be better prepared for surgery and can potentially reduce the operative times. Nevertheless,
these claims need to be further validated.

The advantages of our model are its fast calculation time and the ability to produce
accurate results when limited data are available. However, there are also points of improve-
ment. The proposed method was validated for a single surgeon. Hence, further research
can be conducted to investigate generalization to a larger population of surgeons. Addi-
tional research could look into combining the proposed mesh-based features with relevant
demographic data to improve model accuracy. Another limitation is the linearity implied
by our model. Possibly, non-linearities could provide higher accuracy through interaction
of the vertex coordinates, such as distances or angles. Finally, it could be investigated if this
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method yields equal improvement for predicting tibial implant sizes. Tibial and femoral
implant sizes are correlated and, thus, a method combining both bones could help increase
the accuracy.

5. Conclusions

We presented a femoral implant sizing algorithm based on a regression framework
mapping the bone mesh vertices locations to the implant size. For this under-determined
problem, group sparsity ensured selection of the most predictive vertices on the mesh.
Extra prior information was added, through hypergraph regularization, to the optimization
problem by including the mesh’s graph structure to constrain neighbouring to have similar
impact on the regressed implant size. From our experiments we found that the group
sparsity had the largest impact on the model performance, while the hypergraph-based
regularization mainly improved robustness. In total, 43 anatomical locations were identified
which could be used to predict the implant size. Our method was successful at predicting
the femoral implant size, as preoperatively planned by a surgeon. Our method was accurate
in 70.08% of test set cases, in determining the femoral implant size in comparison with
an accuracy of 23.1% for the implant size provided in the preoperative plan from the
instrumentation manufacturer. Towards future work, an extension of the method could
include simultaneous prediction of the femoral and tibial implant sizes, since they are
correlated. Furthermore, a non-linear model might, such as graph convolutional networks,
might improve model performance.
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