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Abstract: Latest progress in development of artificial intelligence (AI), especially machine learning
(ML), allows to develop automated technologies that can eliminate or at least reduce human errors in
analyzing health data. Due to the ethics of usage of AI in pathology and laboratory medicine, to the
present day, pathologists analyze slides of histopathologic tissues that are stained with hematoxylin
and eosin under the microscope; by law it cannot be substituted and must go under visual observation,
as pathologists are fully accountable for the result. However, a profuse number of automated systems
could solve complex problems that require an extremely fast response, accuracy, or take place on
tasks that require both a fast and accurate response at the same time. Such systems that are based on
ML algorithms can be adapted to work with medical imaging data, for instance whole slide images
(WSIs) that allow clinicians to review a much larger number of health cases in a shorter time and give
the ability to identify the preliminary stages of cancer or other diseases improving health monitoring
strategies. Moreover, the increased opportunity to forecast and take control of the spread of global
diseases could help to create a preliminary analysis and viable solutions. Accurate identification of a
tumor, especially at an early stage, requires extensive expert knowledge, so often the cancerous tissue
is identified only after experiencing its side effects. The main goal of our study was to expand the
ability to find more accurate ML methods and techniques that can lead to detecting tumor damaged
tissues in histopathological WSIs. According to the experiments that we conducted, there was a 1%
AUC difference between the training and test datasets. Over several training iterations, the U-Net
model was able to reduce the model size by almost twice while also improving accuracy from 0.95491
to 0.95515 AUC. Convolutional models worked well on groups of different sizes when properly
trained. With the TTA (test time augmentation) method the result improved to 0.96870, and with
the addition of the multi-model ensemble, it improved to 0.96977. We found out that flaws in the
models can be found and fixed by using specialized analysis techniques. A correction of the image
processing parameters was sufficient to raise the AUC by almost 0.3%. The result of the individual
model increased to 0.96664 AUC (a more than 1% better result than the previous best model) after
additional training data preparation. This is an arduous task due to certain factors: using such
systems’ applications globally needs to achieve maximum accuracy and improvement in the ethics of
Al usage in medicine; furthermore if hospitals could give scientific inquiry validation, while retaining
patient data anonymity with clinical information that could be systemically analyzed and improved
by scientists, thereby proving Al benefits.

Keywords: machine learning; automatization; histopathology; medical imaging

1. Introduction

Machine learning integration in the medical field, especially image analysis for
histopathology and cancer research could make a huge impact due to the possibility
of rapid and more accurate results. In recent years, advancements in technology have
revolutionized the health system enabling it to use digitized imaging in order review
patient data through computer systems and applications. Digital content can be simply
stored without losing its quality and reshared between health specialists, especially because
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of the increasing number of image analysis applications and large image compression
tools [1–3]. Unfortunately, switching from glass to digital analysis requires new expensive
hardware, extensive memory size and especially trained technicians [4]. To this day a
legitimate comparison research method using accepted Al techniques that could be used
for histopathology does not exist, especially because of expensive hardware and eligible
access to patient data. Additionally, the main challenge is that different WSI’s scanners
lower the results, and the most significant barrier to the widespread use of Al approaches
in the clinic is undoubtedly the limited generalizability of algorithms [5]. Despite this,
medical professionals might help develop new techniques that could be applied in clinical
practice as the start of implementing Al in histology [4].

A cancer, also called tumor, is a formation of altered, unregulated, unlimitedly pro-
liferating but not clearly defined clusters of abnormal cells that lead to terminal illnesses.
There are three main types of tumors: benign, premalignant, and malignant. Benign tumors
are defined as less dangerous and harmful due to the fact of being noninvasive, however,
certain cases declare that they can become malignant. Malignant tumors usually grow
rapidly, penetrating and destroying healthy tissues, spreading to distant organs and finally,
metastasize [6,7]. There is a variety tumor identification methods: magnetic resonance
imaging (MRI), computed tomography (CT), Single-Photon-Emission Computed Tomogra-
phy (SPECT), and other medical imaging technologies are used to determine the exact type,
location, and level of threat that cancer-damaged tissue has [8,9]. International research
for cancer statistics in 2020 showed over 19.3 million new cancer cases from all over the
world. Even though the medical field is rapidly growing and progressing, the World Health
Organization (WHO) declared that cancer is the main leading cause of death, unfortunately
reflecting the size of population [10].

In histopathology analysis, specialists must focus on objective and accurate identifi-
cation of diagnosis due to the complexity of diseases. Digital imaging allows to analyze
histopathological specimens with a quantification of slides technique using machine learn-
ing methods as deep learning. Such promising technology of multi-layered artificial neural
networks allows to perform a quantity of tasks adapting consistent tasks. Other studies
have suggested that using digital histopathological images makes it possible to identify
cancer cells [11–13]. To increase the efficiency of tumor identification research with the re-
duction in errors, automatization using mathematical methods could be a solution. Taking
into consideration this relevant case, Al experts [14–17] have already developed a variety
of fully exploitable technologies that take place in the medical field. For instance, to detect
or identify a brain, spine and chest tumor, the following methods are applicable: K-means,
SVM, Level Set, Adaboost, Naive Bayes classifier, ANN classifier, convolutional neural
networks, multilayer perceptron neural networks for analyzing magnetic resonance, and
computed tomography type data analysis [18–22].

In this article, we use machine learning for recognizing cancer cells that are applied
over histopathological images consisting immense number of pixels. We are aware of
deep learning methods that can benefit the identification and recognition of tumor cells.
The machine learning algorithm goes over the given data, or as in our cases an image,
or an image that shows cancer affected tissue, following an algorithm mode to ascertain
from the training data and assign to make a prediction for further work. If this algorithm
advances and increases the number of executions of improved and correct diagnosis—then
we consider it as a learned task [23]. To explain machine learning, we use certain terms: su-
pervised, unsupervised, semi-supervised, and reinforcement learning [24] algorithms [25].
Furthermore, deep learning gives us opportunities to explore wide-ranging data [26]. To
gain the best possible accuracy, we must use an artificial neural network (ANN) as one of
the machine learning techniques that allows to remove the artifacts (errors) that naturally
appear in different types of data. Such errors, especially in the medical field, are one of
the most common issues for misinterpretation. An ANN can be explained as assembly
of neurons that are arranged in a sequence of multiple layers. The activation of an ANN
begins from an input layer whose main aim is to correctly choose the format and transfer
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data to different layers until it reaches the last or the output layer. Fascinatingly, all other
layers have different numbers of neurons and are identified as hidden because they play an
important role allowing to learn data structure and give the ability to classify its type. In
general, the operation of neural networks is very similar to linear regression, which means
that each individual neuron is just like a linear regression model consisting of input data,
its weights, bias and finally the output [27,28]. Medical image analysis empowered by
deep learning, especially using a convolutional neural network (CNN), and its significant
results for different types of cancer detection in histopathology scans (two-dimensional
data), has drawn attention from scientists all over the world [29–31]. The main reason is
that it gives the ability to clinicians to make correct health diagnoses and receive precise
analysis of illnesses that can be compared with previous samples. Training deep learning
models, including CNN, demand significant training size and computing resources due
to the profuse number of pixels in an image [1,32]. One of the subtypes of CNN, called
the residual convolutional neural network (ResNet), can work with large datasets (the
training and test material) even if the neural network increases in depth (extend in num-
ber of stacked layers), benefiting in a reduction in error rate [33,34]. Another subtype of
CNN is the DenseNet, that reduces the vanishing gradient effect in DNN. This network
is formed of dense blocks that are detached by a transition layer that minimizes the size
of the delivered feature maps that will be transferred to the following layers. To compare
ResNet and DenseNet we must understand how data are being directed between the layers.
A transition layer, which aims to minimize the size of the generated feature maps that will
be sent to the following layers, separates each dense block in a DenseNet network [35]. A
residual learning unit is a feature of ResNet, which was created to counteract deep neural
network degeneration. This system is built as a feed-forward network with a shortcut link
that enables the addition of new inputs and outputs. The main benefit is that it increases
the classification accuracy without complicating the model’s actual design [36].

Following reviews of different tumor identification systems, it became obvious that
selecting the machine learning system that is best suited to produce the desired result
based on the current data comes only after the data has been properly analyzed and
processed [37–39]. There is a lot of space for improvement because most of the systems that
have been presented only process very small amounts of data using straightforward neural
networks [40,41]. Applying more recent advancements in data collection and processing,
which have been successfully used in other scientific fields, along with a new generation
of convolutional neural networks with a more complex structure, guarantees the most
accurate outcome for tumor detection.

In this research, we applied machine learning to histopathological images that consisted
of immense numbers of pixels to recognize cancer cells. Automatic systems can solve complex
problems that require an extremely fast response, accuracy, or take place on tasks that require
both a fast and accurate response at the same time. Such systems and image pre-processing
that are based on machine learning algorithms can be adapted to work with medical images,
especially whole slide images (WSIs), that will allow clinicians to review a much larger number
of health cases in a shorter time and give the ability to identify the preliminary stages of cancer
or other diseases, thereby improving health monitoring strategies.

The main contributions of this paper are as follows:

• Modern augmentation and image preprocessing methods to analyze WSIs,
• Creating an adaptive U-Net model architecture,
• Adding different optimizers for best outcoming result in AUC.

The paper is organized as follows:

• In Section 2, we did a review of machine learning models, architectures, algorithms,
and other techniques that can be used for histopathological WSIs,

• Section 3 outlines the methodology, that step by step describes the machine learning
model, dataset, and accuracy requirements for further experiments,

• Section 4 consists of the design of the experiments, the main values, graphical and
statistical results,
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• In Section 5, we list the major accomplishments and talk about the outcomes,
• In Section 6, we conclude our work and identify potential work directions.

2. Related Work
2.1. Medical Imaging

The field of computer-aided medical image analysis, particularly the recognition of can-
cer in histopathological images, has received extensive attention from researchers [42–44].
It has been heavily focused on the area of computer-aided medical image analysis, new and
improved applications in bioinformatics [45], particularly the identification of cancer in
histopathological images as it enhances the benefits of quality diagnostics for patients [46].
One of the medical disciplines that has seen a sizable number of deep learning applications
is digital pathology and microscopy, especially as advancements in technology have given
us an opportunity in using histopathological scans-digital images [47–49].

Bright prospects have been demonstrated for the detection, segmentation, and classifi-
cation of diseases, especially finding cancer cells using newly developed techniques that
provide pathologists with decision support and most likely are guiding to more accurate
results. A new cross-domain field of graph-based deep learning, which seeks to learn
informative representations of medical images in an end-to-end manner [50], has emerged
because of the increased attention given to the adaptation of deep learning from images.
Convolutional neural networks, a deep learning method that excels at tasks like histology
segmentation, are being used more frequently in pathology [51,52].

Thus, artificial intelligence tools based on machine learning techniques could funda-
mentally alter pathologists’ and medical professionals’ workflow in the future, whether
through computer-aided diagnosis or simply by accelerating laborious manual tasks. The
current rigid classification and analysis system that enables difficult visual recognition
tasks, like separating tumors from normal tissue in slides and classifying different types
of tumors [53] may be replaced by a more analytical and flexible model that incorporates
radiological, biological, and clinical variables based on deep learning [54,55].

2.2. Machine Learning Models

The study of algorithms and statistical models that computer systems use to accom-
plish a task without being explicitly programmed is known as ML and its main purpose is
to learn from data. Algorithms and statistical models are divided into groups according to
the main principle of operation. For instance, a function that maps an input to an output
that is learned through supervised learning using sample input-output pairs. Algorithms
that require outside assistance are those that fall under the category of supervised machine
learning. They use labelled training data made up of a collection of training examples to
infer a function [56]. Unsupervised learning undoubtedly is the biggest goal and struggle
for medical diagnostic systems [57,58]; unfortunately, most of these models simply cannot
be applied as they are capable of working only with a limited amount of imaging data [59].

Our attention was drawn to U-Net model, that is one of the most widely used CNN
architectures and differs from the others for two reasons. First, it is made of two parts: first—
descends resolution, second, after each block, a maximum signal selection operation is used,
which doubles the width and height. After this operation, the number of channels used
is doubled. The second part uses the same convolutional blocks, but the local resolution
reduction operation uses an up-sample operation that doubles the height and width. Later,
this layer is combined with high-frequency information from the dimensionally appropriate
first part of the network. By passing information from the left part of the network to the right
in this way, the network can gain more detailed and accurate information [60]. The U-Net
architecture can surely be implemented for histopathological data for nuclei segmentation
and, according to Ibtihaj et al. [61], it significantly improves segmentation performance.
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Learning Rate and Planning Algorithms

Another major challenge is the learning rate (LR). While using huge amounts of data
such as in histopathological medical images, the training time obviously takes longer and
to achieve the most optimal performance we need to choose a learning rate as one of the
hyper-parameters [62]. The LR describes any positive number that is less than the integer
one; it is also a parameter that controls the weight adjustment [63]. If the learning step is
specified as one or very close to one, it means that when the backpropagation calculation
is performed, the original weight matrix of the calculated layer will be adjusted using the
full error matrix. This means that adjusted model weights for the current data input will
return zero error. This is acceptable for one part of the data set from which the gradient is
calculated, but this tightening to one set at a time means that if the next set will not likely to
be like the current one, output will show an error and subsequently the gradient itself will
be very large. Such a process will cause the model to diverge. The opposite of this process
would slow the convergence, or the model will turn to stagnation. This happens when too
small a learning step is chosen. During this process, the calculated model weight correction
matrix is multiplied by a number very close to zero, thus performing an extremely minimal
weight correction. Compared to too large a learning step, a small constant close to zero
does not cause an impact. The model is learning, but the process is slightly slower than it
could be [64].

From a practical perspective, a deep artificial neural model occasionally performs
remarkably well on training data but dreadfully on testing data. This behavior happens
when the model overlearns; it remembers the numerical values of the model’s inputs
and classes, nevertheless it fails to learn the necessary features from the training data.
Regularization techniques are used to address this issue because a model that has been
overtrained cannot be used for real medical cases. Comparing to other machine learning
algorithms, regularization is a relatively simple operation. Its purpose is to prevent the
model from memorizing incoming data by adjusting the values of the weight matrix
throughout the model. Scientists use regularization even as a consistent strategy while
analyzing histopathological imaging [61,65].

Another useful idea for using DNN is transfer learning, and the use of this technique
to solve such issues as extracting certain features or tuning [66]. Basically, when there is
a small amount of labeled data in the target dataset, it is demonstrated to be a powerful
tool to combat overfitting. The authors of [67] observed that transfer learning performed
successfully full training, achieving this in a shorter period also lowering the labor required
for manual data labeling.

Resources are the most common issue when using deep neural networks to solve
complex problems. As we said above, it is necessary to wisely choose and use a sufficiently
large and complex deep neural network in situations where the data are extremely complex
and extensive.

3. Materials and Methods
3.1. Proposed Model

To achieve objective results, it is important to maintain a standardized training process.
In the field of machine learning, even small changes can dramatically determine or change the
result. For equal initialization of weights, we used Xavier’s algorithm [67–69]. It led us to fix a
random seed so we could use the same model with the exact same initialization weights for
different experiments. We did not limit or fix how long learning can last because the model
might have different architectures. The only limitation we set was the verification algorithm
that counts the duration of learning; the main reason was that it halts learning if the model has
not improved in the previous ten iterations. Besides that, we used the SGD optimizer [70] with
acceleration, and a cyclic learning step with warm-up was used for training purposes. For the
first 1000 iterations, the model learns with a fixed learning step of 1 × 10−4 and then gradually
increases to 5 × 10−3 over 2400 iterations and descends to 5 × 10−5 over 3600 iterations,
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shown in Figure 1. Warm-up applies only to the first epoch. The total number of iterations
per epoch that we used was 6000, while the batch size was 64.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 18 
 

It led us to fix a random seed so we could use the same model with the exact same initial-
ization weights for different experiments. We did not limit or fix how long learning can 
last because the model might have different architectures. The only limitation we set was 
the verification algorithm that counts the duration of learning; the main reason was that 
it halts learning if the model has not improved in the previous ten iterations. Besides that, 
we used the SGD optimizer [70] with acceleration, and a cyclic learning step with warm-
up was used for training purposes. For the first 1000 iterations, the model learns with a 
fixed learning step of 1 × 10−4 and then gradually increases to 5 × 10−3 over 2400 iterations 
and descends to 5 × 10−5 over 3600 iterations, shown in Figure 1. Warm-up applies only to 
the first epoch. The total number of iterations per epoch that we used was 6000, while the 
batch size was 64.  

 
Figure 1. An example model that learns with fixed learning rate. 

In the interim, testing and validation data sets were not augmented or otherwise ad-
justed. Additionally, 5 million artificially augmented images were created from the train-
ing dataset for training. In addition to that, for experiments that compare models, but not 
individual model accuracy by adjusting data or hyper parameters, we used Binary Cross-
Entropy objective function as well as AUS metrics. Before creating a new neural network 
architecture, changing the objective function, or training data, it is necessary to find out 
whether the data set is suitable. The fastest way to do this is to use trained models. Using 
this process, it is possible to draw conclusions about how each architecture affects the final 
accuracy. For this work, the ResNet, DenseNet, MobileNet, EfficientNet, Inception archi-
tectures [71–73] were selected from their derived versions from the Tensorflow library. 
All these models were already trained on the ImageNet dataset [74], which means that 
each model already had 1000 output classes. 

Proper data processing is one of the most crucial components of training deep neural 
networks. Considering a number of more than 200,000 WSIs seems to be enough for train-
ing data, however as we previously stated, larger convolutional models easily remember 
the statistics of incoming data and tend to retrain. As a result, using augmentation tech-
niques such as cropping, vertical and horizontal conversion, random rotation by 0–360 
degrees, and contrast adjustment shown in Figure 2, let us create synthetic data with the 
same class value but a different representation. The original information was tightly com-
pressed in *.h5 format. For each set type—training, validation, or testing—were divided 
into two files: actual images, and the values for the classes according to the corresponding 
index are in the other. These assemblies were scanned using the h5py library. Afterwards, 
a generator function was created, which simultaneously reads from two files and com-
bines the read values into a pair. Next, these data were appropriately augmented and 
converted to 32-bit floating point format depending on the type. For final training, the 
data are typically compressed into some deep learning-friendly data format. Because the 
Tensorflow library was used in this work, all data were stored in *.tfrecord format. Before 

Figure 1. An example model that learns with fixed learning rate.

In the interim, testing and validation data sets were not augmented or otherwise
adjusted. Additionally, 5 million artificially augmented images were created from the
training dataset for training. In addition to that, for experiments that compare models,
but not individual model accuracy by adjusting data or hyper parameters, we used Binary
Cross-Entropy objective function as well as AUS metrics. Before creating a new neural
network architecture, changing the objective function, or training data, it is necessary to
find out whether the data set is suitable. The fastest way to do this is to use trained models.
Using this process, it is possible to draw conclusions about how each architecture affects
the final accuracy. For this work, the ResNet, DenseNet, MobileNet, EfficientNet, Inception
architectures [71–73] were selected from their derived versions from the Tensorflow library.
All these models were already trained on the ImageNet dataset [74], which means that each
model already had 1000 output classes.

Proper data processing is one of the most crucial components of training deep neural
networks. Considering a number of more than 200,000 WSIs seems to be enough for training
data, however as we previously stated, larger convolutional models easily remember the
statistics of incoming data and tend to retrain. As a result, using augmentation techniques
such as cropping, vertical and horizontal conversion, random rotation by 0–360 degrees,
and contrast adjustment shown in Figure 2, let us create synthetic data with the same class
value but a different representation. The original information was tightly compressed in
*.h5 format. For each set type—training, validation, or testing—were divided into two files:
actual images, and the values for the classes according to the corresponding index are in
the other. These assemblies were scanned using the h5py library. Afterwards, a generator
function was created, which simultaneously reads from two files and combines the read
values into a pair. Next, these data were appropriately augmented and converted to 32-bit
floating point format depending on the type. For final training, the data are typically
compressed into some deep learning-friendly data format. Because the Tensorflow library
was used in this work, all data were stored in *.tfrecord format. Before the images were
sent to the input layer of the model, the data were normalized. Each pixel in the image was
given a value between [−1, 1] during normalization; the Equation (1) is shown below.

x = x/127.5 − 1 (1)
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3.2. Dataset

We used the PatchCamelyon (https://github.com/basveeling/pcam), 2020 (accessed
on 2 January 2022) image classification dataset. It is made up of 327,680 color images
(96 × 96 pixels each) that were taken from a histopathologic image of a lymph node section
as shown in Figure 3. Each image has a binary label that indicates whether metastatic
tissue is present. The entire data set was divided into two parts. The first one was for
training only; it consisted of 262,144 photos. The second one was for testing; it contained
32,768 photos. The dataset authors assured that all the splits have an even distribution of
positive and negative examples, and there was no overlap in the whole slides images (WSI)
between any of the splits. When it comes to labeling, a patch with a positive label has at
least one pixel of tumor tissue in its central region. During the experiments, it was observed
that excessive sharpening, darkening or contrast enhancement of the image erases all the
information identifying the cancer from the histopathological image. Furthermore, it was
observed that the influence of heavy data on the total error of the training data set during
learning was extremely small.
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3.3. Accuracy Calculation

In practice, the performance of a neural network is evaluated by several criteria:
calculation speed, overall accuracy, adaptability when applied to a new data set, etc. As it is
very important to consider that final accuracy and reliability are the most important factors
for medical image analysis, calculation speed and memory space were not evaluated in
our work. We considered four estimates, wherein TP stands for true positives, FP for false

https://github.com/basveeling/pcam
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positives when the model mixes negatives with positive class, and FN for false negatives
when the model mixes positive with negative classes (equations listed sequentially):

• Precision using Equation (2),

Precision =
TP

TP + FP
(2)

• Recall using Equation (3),

Recall =
TP

FP + FN
(3)

• F1-score using Equation (4),

F1-score =
2 · Precision · Recall

Precision + Recall
(4)

• AUC. Measures the quality of the model in terms of sensitivity and accuracy over the
entire set of limits.

4. Experiments and Results
4.1. Experimental Setup

As we stated previously, the U-Net type architecture is currently one of the most
popular templates to search for a suitable architecture. It allows you to easily check the
signal information of different levels individually and by combining high and low frequency
signals in separate levels; in our work, we called it the M-model, shown in Figure 4.
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By default, U-Net networks form a complete U-shape—they transmit the entire input
signal to the output of the model, which is applicable in this work due to efficiency and
the type of task itself. Higher resolution output is usually used for image reproduction
or segmentation tasks. In this research, classification was performed from low-resolution
images, so the high-resolution output will not be superior. The following changes were
made to the intermediate modules of the network structure, that we will call the E-Module,
shown in Figure 5. Compared to the commonly used standard ResNet module, the E
module was more efficient and faster—two 3 × 3 convolutions were changed to one
compressed 3 × 3 convolution and one 1 × 1 convolution, with the same number of
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channels as the number of input layer channels. Furthermore, the typical ReLU (rectified
linear unit) activation was changed to PReLU (parametric rectified linear unit) [75]. In
this way, the model will be able to apply the best activation for each layer according to
the direction of the gradient. Together with this activation function, it was possible to see
the behavior of the model by analyzing the values of the activation coefficients. Finally, a
Dropout layer was added at the end of the module, which performs a dual regularization:
it reduces the signal bandwidth and allows the dropout factor to be increased to 1 at the
end of training to discard supposedly unnecessary parts of the model.
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Additionally, the entire network structure was reworked into a dynamic format. Based
on the principle of the EfficientNet architecture [76], the rules for growing the width and
length of the network were established and adaptive regularization were applied with
Equations (5)–(9) shown below:

• Number of filters (5):

Number of filters = max
(

16,
f · s · F

h · 2

)
· g (5)

• Number of blocks (6):

Number of blocks = max
(

2,
Number of filters

64

)
(6)

• Exclusion factor (7):

Exclusion factor = max
(

0.05,
Number of filters

m/2

)
(7)

• L2 regularization (8):

L2 regularization = 1 × e − 5 +
f
8
× 0.0001 (8)

where f is the base number of filters, F is the filter multiplier, s is the filter multiplier, h is
the height of the network in pixels, g is the number of convolutional groups of the network.
The number of blocks indicates how many internal blocks will make up the mesh module
after each decrease or increase in height and width of the mesh. Exclusion factor—indicates
how many neurons will be turned off in percentage in each block, where m indicates the
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maximum possible number of filters. The L2 regularization [77,78] specifies the value of
the L2 regularization constant for all network convolutions.

To understand whether all the changes made to the model gave advantages compared
to ResNet50 or DenseNet121 models, the following experiments were performed. Accord-
ing to the already presented formula for changing the structure of the model, three sizes
for f were selected: 8, 16, 32. Sizing allows us to see the areas where the network performs
too poorly, overlearns, and where it performs optimally. It is additionally important to
find out from which part of the network the best result can be obtained. Therefore, five
output layers were added to the already existing network. Accordingly, we noticed a trend
while comparing the results of all outputs. All models gave their best performance from
the outputs of L5 and R1. This suggests that using a model with such a structure for this
task, a higher resolution not only does not provide additional benefits, but also spoils the
result. We can be assured that the most suitable model size for this task is f = 16, as in the
first test, models where f = 8 and f = 32 performed worse. Among the model outputs, it
can also be seen that higher resolution did not provide enough benefits.

Overall, compared to the first experiment, most of the results have improved, espe-
cially the output AUC of L5 has increased from 0.95279 to 0.95341. According to these
results, it can be confidently stated that the U-Net type architecture did not provide
enough benefits for this task. Moreover, comparing the obtained results with ResNet50
and Densenet121, the new model was already superior in terms of accuracy and learning
speed—the new model reached the maximum result in eight epochs, which none of the
previously described models was able to do when learning with newly initialized weights.
According to the results of the first tests, the U-Net model was modified. We removed the
right part of U-Net layers and all intermediate connection, also fixed size multiplier f = 16.
Such pruning not only provided speed, but also allowed to gain greater accuracy due to
less information reuse, this improved model will be called the MS-model.

4.2. Results

First, we made additional training validation performed on the artificially augmented
and non-augmented datasets. The ResNet and DenseNet networks with ImageNet weights
were applied for the test. Both models performed with more than 1% greater accuracy
with augmented data than with non-augmented data (Table 1). It can be assumed that
these models were too large for such a task and most probably overlearned as a result,
however the AUC value on the training data set shown in Table 2 confirmed this. Without
augmentation, the AUC was almost at unity at 0.993, while with augmented data it was
only 0.975 with the ResNet50 model. Although retraining has occurred, the results show
that the data generated for training was fine, and the selected augmentations were useful.

Table 1. Learning from zero with testing data set.

AUC (Area under the Curve)

Model Using Augmentation Not Using Augmentation

ResNet50 0.95001 0.93988
DenseNet121 0.95511 0.93780

Table 2. Learning from zero with learning data set.

AUC (Area under the Curve)

Model Using Augmentation Not Using Augmentation

ResNet50 0.96501 0.99297
DenseNet121 0.98891 0.99971

After making sure that the training environment and data were correct and everything
was working as it should, further analysis was performed. Each selected model was trained
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twice. First, using ImageNet weights and then applying Xavier weights with initialization
according to the training protocol, results are shown in Table 3.

Table 3. Model architectures analysis results.

AUC (Area under the Curve)

Model ImageNet Weights Xavier Initialization Weights

DenseNet121 0.95672 0.94560
ResNet50 0.95078 0.94380

ResNet50 V2 0.95078 0.94380
MobileNetV1 0.94954 0.93855
MobileNetV2 0.95065 0.95395

Inception 0.94697 0.94608
EfficientNetB0 0.95121 0.94608
EfficientNetB1 0.93876 0.94608

EfficientNetB0 V2 0.94570 0.75981
EfficientNetB1 V2 0.94287 0.79871

Comparing with ImageNet weights, DenseNet achieved the best result. According to
the learning graph, it exceeded the AUC value of 0.95 after only two epochs. The next best
was ResNet50, although it did not show the second result according to the table, but it also
exceeded the AUC value of 0.95 after two epochs. Collectively, this means that these two
architectures were the most suitable for this task. Furthermore, the ResNetV1 and ResNetV2
models excelled the most. Although their results were not the best, they exceeded 0.94 AUC
in just five epochs. This shows that the ResNet-type blocks and persistent connections were
well suited for this task due to their fine gradient feedback.

A new training session was performed with the trimmed model called the MS-model.
Two tests were selected. The first was by extending the training using the best weights, as
shown in Table 4 and gave better results after reusing weights. As the original structure of
the network remained the same, weights could easily be transferred from one network to
another. The second was to train the same network with ever new weights initialization.

Table 4. MS-model results. New initialization indicates that the model weights were generated by
Xavier initialization from a newly chosen random point.

Learning Iteration AUC

Reusing weights 0.95501
New initialization 1 0.95498
New initialization 2 0.95508
New initialization 3 0.95505

A popular way to get a better result is to change the optimization algorithm. Although
all training was done with the SGD optimizer, which should potentially be the best for
this problem, other methods could potentially find a better solution simply because of the
difference in the optimization Hyper parameters. As a result, shown in Table 5, we learned
that of several optimizers, the best result was achieved with the AdamW optimizer.

Table 5. Comparison of optimization methods.

Learning Iteration AUC

SGD 0.95510
Adam 0.95475

AdamW 0.95515
Ranger 0.95500
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Based on the results of the last test that adding more regularization is better, changes
were made to the model and training code. The L2 regularization of the convolutional
weights used so far was increased to 1 × 10−4, and the learning frequency cycle used in the
SGD optimizer was converted to cosine. As expected, this teaching principle worked very
well. After the fifth iteration, we managed to achieve an AUC of 0.95911, which was almost
0.4% better than the last best model trained with the AdamW optimizer.

In addition to that, we added the TTA [79,80] method, as the training data were adjusted
very flexibly—we selected certain featuring: color channel change, vertical flip, horizontal flip,
rotate −90 degrees, rotate +90 degrees, lighten the image by 5%, darken the image by 25%;
unfortunately, the individually processed images results gained only 0.9590 AUC.

Another approach that did not require model retraining, reengineering, or other
changes was model ensemble. This can be done in several ways. We proposed two
methods for it. The first one, which combines the outputs of the different models according
to the arithmetic mean and returns a single result, and the next one, which combines the
weights of the different models into one common list of weight matrices.

5. Discussion

After all strategies and methods, we observed that different training optimizers, more
heavily augmented data, learning step graph, or even a well-chosen learning starting point
of the model, all influence the overall result when using them combined in an ensemble; it
can be argued that the models or weights will converge if their individual performance does
not overlap. This means that the models must make different errors among themselves.
Therefore, it is obvious that by combining the ensemble methods of the last two experiments,
it will be possible to achieve even higher accuracy.

It can be seen in Table 6 that all used methods are models that lead our MS-model to
be improved from 0.95918 to 0.96675 AUC.

Table 6. Summary of results. The difference column represents the AUC difference between the type
and the first starting point in DenseNet121.

AUC
(Area under the Curve)

Ensemble Type AUC Difference

DenseNet121 0.95672 -
M-model training 5 outputs together 0.95405 −0.267%

M-model training 5 outputs separately 0.95491 −0.1891%
MS-model 0.95508 −0.164%

MS-model with AdamW 0.95515 −0.157%
MS-model with repeated training 0.95911 0.239%

MS-model TTA 0.96870 1.198%
MS-model ensemble 0.96592 0.920%

MS-model connecting weights 0.96240 0.568%
TTA + weights and models ensemble 0.96922 1.250%

MS-model after corrections 0.96147 0.475%
MS-model after corrections with repeated training 0.96675 1.003%

Group of ensembles from all experiments 0.96977 1.305%
Optimized ensemble based on the best model 0.97673 2.001%

To sum up, it can be stated that artificial neural networks are able to distinguish
tissue areas affected by cancer quite well. The developed MS-model is more accurate
and faster than most of the models presented in the “Patch Chameleon” standings as
shown in Figure 6. It can be said that such accuracy was most influenced by the effective
architecture of the neural network and research on combining and assembling models.
As shown in Figure 7, we have reached a maximum F1 score of 0.924 with a threshold
of 0.393; this score measured on our last best model’s accuracy (that is evaluated from
precision and recall), as long as the confusion matrix is that shown in Figure 8, giving
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us a result of meaning how many times our best model gave us correct predictions: true
positives—15,096, true negatives—15,189, false negatives—1295, and false positives—1188.
According to experiments, even with less-than-ideally prepared training data, the last
ensemble method managed to exceed 0.9691 AUC.
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6. Conclusions

In this work, we proposed to use ML and different neural network techniques to find a
solution to WSIs histopathological data analysis. Our extensive experiments showed that the
application of artificial deep neural networks for the classification of medical images, com-
pared to other classical methods, are superior in almost all criteria. First, the CNN generalize
well and perform similarly well on unseen data, even with additional constraints. From the
obtained experiments, the AUC difference between the training and testing datasets was about
one percent. Second, these models were highly flexible, allowing the size and architecture
of the model to be experimentally tailored to the type of task. Using the M-model in several
training iterations, we managed to reduce the model size by almost twice and increase the
accuracy from 0.95491 to 0.95515 AUC. Third, when properly trained, convolutional models
perform well on groups of various sizes. The result increased to 0.96870 with the TTA method,
and 0.96977 with the addition of the multi-model ensemble. Fourth, by applying special
analysis methods, it was possible to identify the shortcomings of the models and correct
them. After finding that excessive and inappropriate image augmentation was detrimental
to learning, a correction of the image processing parameters was sufficient to increase the
AUC by almost 0.3%. Moreover, after additional training data preparation, the result of the
individual model increased to 0.96664 AUC.

Due to the complexity of histopathological images, current image classification meth-
ods still lack accuracy and stability, and even the final model ensemble result of 0.97673 was
not sufficient for the system to work autonomously. The results are too unpredictable, so
this type of system can only be used as a guide as an image analysis tool for the physician.

Nevertheless, even such an achievement is important—it is a step closer to the ideal
accuracy that would exceed human resolution.

In future work, not only another optimizing, and DNN techniques and architectures,
but also imaging improving unsupervised methods could be used to gain best accurate
results that further diagnostics tools for faster and more accurate cancer detection in
histopathology imaging.
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