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Abstract: Point absorber wave energy converter (WEC) control strategies often require accurate
models for maximum energy extraction. While linear models are suitable for small motions, the focus
is on the nonlinear model of an hour-glass shaped buoy undergoing large vertical displacements.
Closed-form expressions for the static and dynamic Froude–Krylov forces are developed. It is shown
that, in general, the dynamic and static forces are of similar magnitude, which is not the case for a
spherical buoy. While the dynamic force reduces the amplitude of the net buoy force, its shape predicts
a larger buoy response than if neglected, causing the nonlinear terms to have an even more significant
effect. An input-state feedback linearizing controller is developed to show how the nonlinear model
can be used in a control law. A 2.5 m buoy example is simulated to illustrate the approach of tracking
an arbitrary displacement reference. For the case considered, the extracted power is 30% larger when
the nonlinear dynamic FK force is used in the control law. The hourglass buoy is also compared to
a spherical buoy to illustrate differences in their response to regular waves and energy extraction
when using the same control laws. A spherical buoy diameter of 7.5 m was required to obtain the
same power output as a 5 m tall hourglass buoy. A power-force-amplitude (PFA) metric is introduced
to compare energy extraction performance and power take-off requirements. The hourglass buoy’s
PFA was 13% larger than the spherical buoy implying that it can produce similar power but with less
control effort.

Keywords: wave energy; nonlinear model; Froude–Krylov force; input-state feedback linearization;
power-force-amplitude

1. Introduction

Sea waves are an attractive source of energy due to their relatively large energy density
as compared to solar and wind resources [1]. This same high-energy sea environment
conspires against the widespread use of wave energy converters (WECs) due to engineering
challenges, including extreme event survivability and maintenance [2–5]. Extracting energy
and transferring it to a load efficiently is a WEC’s typical objective. Harmonizing its
mechanical, power take-off (PTO), and control strategy designs may lead to the practical
application of WECs for terrestrial and at-sea energy grids.

A point absorber WEC’s PTO extracts energy from the relative velocity between its
floating buoy and fixed base. By definition, maximum energy extraction is achieved by
controlling its PTO force such that the integrated product of the force and relative velocity
is maximized subject to the PTO’s force and stroke limits. At times the PTO will do work
on the buoy, momentarily sacrificing energy extraction to produce a buoy response leading
to greater energy extraction later. Energy optimal control has been studied extensively
for assumed buoy geometries, including quantifying upper bounds [1,6,7], impedance
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matching [7–11], and both closed-form [12] and numerical optimal control solutions [13]
such as with model predictive control [14–16]. Early efforts focused on buoy response
regimes that can be modeled using linear differential equations considering a buoy’s
nonlinear response a more recent focus [17–19].

While this paper investigates a particular buoy geometry, the hourglass shape of
Wilson et al. [17,20,21], it is important to note that understanding mechanical energy
extraction is only part of the more complex problem of energy production. Addressing this
system-level objective requires simultaneous consideration of the entire process, including
the design of the WEC, its PTO, and electrical energy transmission power electronics [22].

Since a point absorber’s buoy shape and mass affects its dynamics response, the shape
is a crucial design consideration and should be exploited. Garcia et al. [23,24] quantified
the benefit of the simultaneous design of a point absorber’s buoy geometry and control law.
Adaptive shape modification is another method for expanding the performance of a WEC
operating in off-nominal sea conditions [25]. The review article by Garcia and Forehand
provides a comprehensive accounting of past and current efforts in shape optimization,
clearly illustrating the importance of geometry for a broad range of WEC types.

While buoy shape affects a WEC’s model form when operating in a linear regime, it
can profoundly affect its nonlinear model and response. Computational fluid dynamics
(CFD) models can capture these effects but are impractical for real-time, model-based
control laws [26]. Closed-form nonlinear Froude–Krylov (FK) force models have been
developed in [27–29] to incorporate buoy shape effects into model-based control laws for
large-motion, nonlinear operating regimes. Giorgi et al. [27] present an analytical approach
with 2% error to derive the nonlinear FK forces using Airy’s wave theory for deep water
waves to represent the static and dynamic pressure forces acting on the buoy.

Researchers have proposed various control strategies that incorporate the analytical
nonlinear FK forces. The authors in [30,31] developed a sliding mode controller for a
heaving point absorber that demonstrated the robustness and energy maximization of the
WEC. In [32], an optimal model-based control was developed for a data-based modeled
heaving point absorber. The latching control is a well-established technique that has also
been used in WECs, including those that utilize the computationally efficient closed-form
nonlinear FK forces [26,33,34]. All of these papers have used conventional buoy shapes such
as spheres and cylinders, which have well-studied hydrodynamics. In this study, a state
feedback linearization control scheme is proposed for an unconventional hourglass-shaped
heaving point absorber.

An hourglass-shaped, point absorber buoy was considered in three recent articles by
Wilson et al. [17,20,21] and is the motivation for this paper. In [20], the authors developed
the hourglass-shaped buoy’s nonlinear hydrostatic force term and compared its energy
extraction performance to a cylindrical buoy. Using the results from [35], where a cubic
term was inserted into the cylindrical buoy’s control strategy, the authors recreated the
effect naturally through the hourglass shape of the buoy. They showed that the hourglass
buoy provided the same reactive power management as the nonlinear control of [35]
using a velocity feedback control law. In [17], the hourglass buoy control was extended
further using the Hamiltonian surface shaping and power flow control (HSSPFC) technique.
The model for the hourglass buoy was the same as [20] where again, the dynamic Froude–
Krylov force was not included. The energy extraction performance of the hourglass buoy
was compared to a cylindrical buoy with an artificially applied cubic nonlinearity. A key
result was that the hourglass buoy, containing the natural cubic nonlinearity, outperformed
the cylindrical buoy with the artificial cubic term. In [21], a rate feedback control strategy
was used for an hourglass-shaped buoy point absorber capable of adapting its cone angle
based on incident wave conditions. Using an irregular wave example, it was shown that
the energy extraction increased by 50% when the cone angle was varied. The model used
for the simulation was the same as described previously.

The goal of this paper is to explore the effect of the nonlinear dynamic Froude–Krylov
force, derived using the approach of Giorgi and Ringwood [27], on an hourglass-shaped
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buoy point absorber. We first examine the buoy’s simulated response to regular waves
with and without the dynamic FK force in the model. It is shown that neglecting this
term can lead to underprediction of the buoy motion in some cases. Thus, it should be
included in the analysis and model-based control system design. Adjusting the draft could
potentially increase the energy extracted, as shown on a spherical buoy in [36]. However,
for the hourglass-shaped buoy, varying the draft leads to additional terms in the static
and dynamic Froude–Krylov force expressions. Therefore, in this study, the considered
buoy’s draft is at its vertical midpoint in all cases. A feedback linearizing controller is used
to investigate further the effect of including the dynamic FK force term in the hourglass-
shaped buoy’s PTO control law. It should be noted that this control strategy is provided
merely as an example of how the nonlinear model can be used in a model-based control
strategy. A sinusoidal reference trajectory is used but is not presumed to be optimal from
an energy extraction perspective. Finally, the closed-loop energy extraction performance
of hourglass and spherical buoys are compared using the previously mentioned feedback
linearizing controller, where the nonlinear models are used for each of their control laws.
This is performed to illustrate the unique behavior of the hourglass shape to help explain
why it extracts greater energy than a similarly sized spherical buoy.

This article has three contributions. First, the closed-form dynamic Froude–Krylov
force expression for an hourglass-shaped buoy was developed. Second, we show that the
dynamic Froude–Krylov force of an hourglass-shaped buoy is not negligible and should
be considered during analysis and control system design. Third, the closed-loop energy
extraction of an hourglass point absorber is greater than a similarly sized spherical device.

The remainder of this paper is organized as follows. Section 2 describes the model
used by the simulation and the control law, including developing the hourglass buoy’s
FK forces. Section 3 shows the contributions of the static and dynamic FK forces to the
buoy’s free response. Section 4 develops the feedback linearization control law used for
evaluating the performance of the hourglass and spherical buoys whose FK force model is
described in Section 5. The results of a simulated case study are provided in Section 6 with
concluding remarks in Section 7.

2. Hourglass Buoy Model

The buoy of mass m and weight Fg has the geometry shown in Figure 1 where its
dynamic model of Equation (1) is used for simulation, assessing energy extraction perfor-
mance, and by the model-based control law.

mζ̈ = Fg + Ff k,s + Ff k,d + Fr + Fc (1)

The buoy is constrained to heave with potentially large vertical displacement ζ defined
relative to the still water line. This assumption simplifies the model considerably compared
to general motion, and state space models such as used in [37]. The nonlinear static and
dynamic Froude–Krylov forces, Ff k,s and Ff k,d, are the main focus of this work and are
developed in Section 2.1. The radiation force model, Fr, is described in Section 2.2, and the
power take-off (PTO) device is assumed to be ideal and applies Fc to the buoy according to
the control law of Section 4.

It is assumed that the waves are regular with their elevation given by Equation (2).
The waves are also assumed to be linear with steepness, Sw = 2A/λ ≤ 0.018, and wave-
length, λ, much greater than the buoy’s maximum diameter or λ� 2h tan (α) and are the
justification for neglecting the diffraction forces [8].

η = A cos (ωt) (2)



Appl. Sci. 2023, 13, 4316 4 of 15

<latexit sha1_base64="Fm7mQv8WFdeAlRWjz+iE1gDeruE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7bHgxWMV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6qI76pbJbcecgq8TLSRlyNPqlr94gZmmE0jBBte56bmL8jCrDmcBpsZdqTCgb0yF2LZU0Qu1n80un5NwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5qw5mdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07RhuAtv7xKWtWKd125vL8q12t5HAU4hTO4AA9uoA530IAmMAjhGV7hzRk7L86787FoXXPymRP4A+fzBz6AjSY=</latexit>

2h

Still Water
Line

Draft Line

Wave 
Elevation

<latexit sha1_base64="tXqd/YeaDIIPY2qaKxKCrbtLNzk=">AAAB63icbVBNS8NAEN3Ur1q/qh69BIvgqSQq2mPBi8cK9gPaUDbbSbt0dxN2J0IJ/QtePCji1T/kzX/jps1Bqw8GHu/NMDMvTAQ36HlfTmltfWNzq7xd2dnd2z+oHh51TJxqBm0Wi1j3QmpAcAVt5Cigl2igMhTQDae3ud99BG14rB5wlkAg6VjxiDOKuTQApMNqzat7C7h/iV+QGinQGlY/B6OYpRIUMkGN6ftegkFGNXImYF4ZpAYSyqZ0DH1LFZVggmxx69w9s8rIjWJtS6G7UH9OZFQaM5Oh7ZQUJ2bVy8X/vH6KUSPIuEpSBMWWi6JUuBi7+ePuiGtgKGaWUKa5vdVlE6opQxtPxYbgr778l3Qu6v51/fL+qtZsFHGUyQk5JefEJzekSe5Ii7QJIxPyRF7IqyOdZ+fNeV+2lpxi5pj8gvPxDQh8jjY=</latexit>⌘
<latexit sha1_base64="oxnFYU6zDIxmIFKoatl7nCPyrM0=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7bHgxWMF+wFtKJPtpl262cTdjVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GtzO//cSU5rF8MJOE+REOJQ85RWOlTpX0UCQj7JfKbsWdg6wSLydlyNHol756g5imEZOGCtS667mJ8TNUhlPBpsVeqlmCdIxD1rVUYsS0n83vnZJzqwxIGCtb0pC5+nsiw0jrSRTYzgjNSC97M/E/r5uasOZnXCapYZIuFoWpICYms+fJgCtGjZhYglRxeyuhI1RIjY2oaEPwll9eJa1qxbuuXN5fleu1PI4CnMIZXIAHN1CHO2hAEygIeIZXeHMenRfn3flYtK45+cwJ/IHz+QNTbo98</latexit>

2↵
<latexit sha1_base64="oxnFYU6zDIxmIFKoatl7nCPyrM0=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7bHgxWMF+wFtKJPtpl262cTdjVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GtzO//cSU5rF8MJOE+REOJQ85RWOlTpX0UCQj7JfKbsWdg6wSLydlyNHol756g5imEZOGCtS667mJ8TNUhlPBpsVeqlmCdIxD1rVUYsS0n83vnZJzqwxIGCtb0pC5+nsiw0jrSRTYzgjNSC97M/E/r5uasOZnXCapYZIuFoWpICYms+fJgCtGjZhYglRxeyuhI1RIjY2oaEPwll9eJa1qxbuuXN5fleu1PI4CnMIZXIAHN1CHO2hAEygIeIZXeHMenRfn3flYtK45+cwJ/IHz+QNTbo98</latexit>

2↵

<latexit sha1_base64="ZtarHeJ9Wwb95F7VfZjFtfyXGgo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVKEcSLx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCas+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyd12+rF+VqpUsjjycwCmcgwc3UIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOXTjPo=</latexit>x

<latexit sha1_base64="0kb+H3tzce8VX6+G1icUiH0b5pA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVKEcSLx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCas+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyd12+rF+VqpUsjjycwCmcgwc3UIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjbjPw=</latexit>z

<latexit sha1_base64="Jq82fGCH6fl7qokoI1i0bhc/H50=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeCF48V7Ae0oWy2m3bpZhN2J0IN/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnC/YgOlQgFo2ilZu+JI+2XK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3ZKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuimHNz4RKUuSKLRaFqSQYk9nnZCA0ZygnllCmhb2VsBHVlKHNp2RD8JZfXiWti6p3Xb28v6rUa3kcRTiBUzgHD26gDnfQgCYwEPAMr/DmKOfFeXc+Fq0FJ585hj9wPn8A6BiOug==</latexit>

⇣

PTO

Fixed Base

Figure 1. Hourglass buoy, notation, and coordinate system. Blue denotes the submerged volume.

2.1. Froude–Krylov Force

The Froude–Krylov (FK) force, Ff k of Equation (3), is the integration of the pressure
field forces, ~P(t), over the instantaneous wetted surface of the buoy, S [27]

Ff k = −
∫ ∫

~P(t) · n̂ dS (3)

where n̂ is the unit vector pointing outwards from the buoy’s surface. The pressure will be
approximated using Airy’s Wave Theory shown in Equation (4)

P(t) = ρgeχz A cos (ωt)− ρgz (4)

where ρ is the density of water, g is the gravity acceleration constant, and χ is the wave
number. The two terms of ~P(t), after substitution into Equation (3), give the dynamic and
static FK forces used in Equation (1).

Ff k = Ff k,d + Ff k,s (5)

The approach of Giorgi and Ringwood [27] is used to obtain closed-form expressions
for the FK forces shown in Equation (6) where cylindrical coordinates are used when
integrating Equation (3).

Ff k,s = −ρg
∫ 2π

0

∫ z2

z1

z f (z) f ′(z)dz dθ

Ff k,d = −ρgA cos (ωt)
∫ 2π

0

∫ z2

z1

eχz f (z) f ′(z)dz dθ

(6)

The revolution profile for the hourglass buoy geometry of Figure 1 is f (z) = α(z + h) for
the lower cone and f (z) = α(z− ζ + η) for the upper cone with α = tan (α). The cylin-
drical coordinate rotation limits, [0, 2π], and the vertical limits, [z1, z2], are based on the
instantaneous wetted surface with again with two parts: (1) the immersed portion of the
lower cone with vertical limits [−h, 0] and the immersed part of the upper cone with limits
[ζ − η, 0]. The resulting FK force terms are given in Equation (7) where the first term of
Ff k,s is the weight of the buoy, Fg.

Ff k,s =
1
3

πρgα2
[

h3 + (η − ζ)3
]

Ff k,d =
2π

χ2 ρgα2η
[
2− e−χh − e−χ(η−ζ) − χ(h + η − ζ)

] (7)
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Rewriting Equation (7) for substitution into Equation (1) yields Equation (8) where
the first equation is the buoyancy force and is the same as developed in [17] using a
geometric approach.

Fb = Ff k,s + Fg =
1
3

πρgα2(η − ζ)3

Ff k,d =
2π

χ2 ρgα2η
[
2− e−χh − e−χ(η−ζ) − χ(h + η − ζ)

] (8)

2.2. Radiation Force

Although not entirely consistent with the large motion assumption mentioned earlier,
a linear radiation force model is used here to keep the focus on the effect of the FK forces.
The radiation forces are split into two components, one related to velocity and the other to
acceleration, shown in Equation (9) [30],

Fr =
∫ ∞

0
hr(τ)ζ̇(t− τ)dτ −ma ζ̈ (9)

where hr is the radiation impulse response function and ma is the added mass. However, in
our analysis, we consider regular harmonic waves of Equation (2) where the integral of
Equation (9) becomes Equation (10).

Fr = −bζ̇ −ma ζ̈ (10)

where b is the linear damping constant specific to the regular wave frequency. Substituting
Equation (10) and Equation (8) into Equation (1), and neglecting the diffraction force yields
the nonlinear model we will use for the rest of the analysis.

Mζ̈ + bζ̇ − 1
3

πρgα2(η − ζ)3 − 2π

χ2 ρgα2η
[
2− e−χh − e−χ(η−ζ) − χ(h + η − ζ)

]
= Fc (11)

where M = m + ma.
A point absorber is often modeled using the Cummins equation shown in

Equation (12) [8,38,39].

Mζ̈ +
∫ ∞

0
hr(τ)ζ̇(t− τ)dτ + kζ = f f (12)

where f f contains all external forces applied to the buoy, including diffraction, and those
supplied by the power take-off. It is instructive to compare Equation (12) to the nonlinear
model of Equation (11). The first two terms were introduced in Section 2.2. The third term
of Equation (12), kζ, models the linear hydrostatic force and is valid for small motions
about an equilibrium. This is replaced with a cubic term in Equation (11) appropriate for
potentially large vertical displacement. The fourth term on the right of Equation (11) is the
dynamic Froude–Krylov force and could be included in the f f of Equation (12) as it can be
classified as an external force. Typically, the f f includes the linear diffraction force, which
we have neglected as mentioned previously, and the PTO control force, Fc of Equation (11).

3. Contribution of Froude–Krylov Forces to the Free Response

Before exploring the control system design of Section 4, it is helpful to examine the
relative effects of the terms in Equation (11). Instead of a nondimensional assessment, we
will use the example buoy used for the control system design and rewrite Equation (11) as

Mζ̈ + bζ̇ − Fb − Ff k,d = Fc (13)

The buoy characteristics are given in Table 1, where ma and b were obtained using
WAMIT for the buoy geometry of Figure 1. The incident regular, linear wave has a period
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of 18 s and an amplitude of A = 0.35 m. The amplitude was selected to yield maximum
buoy displacement such that it nearly leaves the water. While this is not physically possible
for a free-floating buoy, it provides a limiting scenario. Assuming the water depth, hw, is
large such that χhw � 1, the dispersion equation.

ω2 = gχ tanh (χhw) ≈ gχ (14)

gives χ ≈ ω2

g = 0.0125 with wavelength λ = 2π
χ = 502.65m.

Table 1. Hourglass buoy parameters.

Feature Symbol Value Units

Height 2h 5 m
Cone Angle α 60 degree

Draft h0 2.5 m
Mass m 50, 376 kg

Density ρb 1000 kg/m3

Added Mass ma 59, 250 kg
Damping b 20, 000 N/(m/s)

It should be noted that under some conditions, the dynamic FK force is small compared
to Fb and could be neglected. For example, for large wavelength, small wave amplitudes,
small buoy displacements, and small buoy size such that χη � 1, χζ � 1 and, χh� 1, the
Taylor series expansion of Equation (8) gives Ff k,d ≈ 0.

A Simulink simulation using a fixed-step solver, ODE3, with a 0.01 s time step was
created using Equation (13) where the dynamic FK force could be selectively included.
The model parameters are provided in Table 1 where the hydrodynamic coefficients ma and
b were calculated using WAMIT’s boundary-element-method solver [40]. The hourglass
buoy geometry was discretized by a 221-panel mesh, and the solution was calculated over
the angular frequency range of 0.1–12 rad/s with 0.01 rad/s increments. The equilibrium
configuration was with the buoy submerged to its halfway point. To check convergence, the
mesh was increased to 349 panels yielding nearly identical results as the 221-panel model.
Figure 2 compares the three noninertial forces of Equation (11), as well as their sum, for the
regular wave described above with Fc = 0. The buoyancy and dynamic FK forces, Fb and
Ff k,d, are of similar amplitude but phase shifted nearly 180◦. The radiation damping force,
bζ̇, is small in comparison. The force sum is also shown and illustrates an interesting result
arising from the combination of Fb and Ff k,d. Namely, the force sum changes sign often,
which is not the case if Ff k,d is omitted. This has a dramatic effect on the buoy motion.

To further investigate the effect of the combination of Fb and Ff k,d a simulation was
performed with Ff k,d = 0 with the results shown in Figure 3. For these conditions, the buoy
behaves as a wave-follower with very little vertical motion and thus very low Fb, about
15 kN compared to the 600 kN of Figure 2. When Ff k,d is omitted, the buoy response cannot
fully excite its buoyancy force’s nonlinearity. In contrast, when Ff k,d is included, the buoy
motion is excited, effectively turning on the nonlinearity that leads to even greater motion.
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Figure 2. Simulated steady state results comparing the three noninertial terms of Equation (11):
Fb = Ff k,s + Fg, Ff k,d, bζ̇ and their sum (upper plot) and the buoy displacement and wave elevation
(lower plot) for a deep water wave with T = 18 s and the buoy parameters shown in Table 1.

Figure 3. Simulated steady state results of a model without Ff k,d. The upper plot is Fb = Ff k,s + Fg

force and the lower plot is the buoy displacement.

4. Control Design

A general control architecture for extracting energy is shown in Figure 4, where it
is assumed the instantaneous displacement states, wave elevation η, and the reference
displacement states, ζr, ζ̇r and ζ̈r are known. A variety of control laws could be used
with this architecture, where we will consider feedback linearization with a sinusoidal
reference to illustrate a model-based approach. It should be noted that this results in the
cancellation of all the nonlinear terms in Equation (13). Such cancellation is avoided by
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including these terms in the reference command leading to a control solution that does not
require a reference and relies on exploiting the buoy’s nonlinear response to extract energy.

WECControl
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Fc

Figure 4. Control architecture illustrating its access to wave elevation, buoy states, and reference states.

The error states are defined by Equation (15)

e1 = ζ − ζr

e2 = ζ̇ − ζ̇r
(15)

and then differentiated to form Equation (16).

ė1 = e2

ė2 = ζ̈ − ζ̈r
(16)

Equation (11) can be solved for ζ̈

ζ̈ = M−1
(

Fc−bζ̇ +
1
3

πρgα2(η − ζ)3

+
2π

χ2 ρgα2η
[
2− e−χh − e−χ(η−ζ) − χ(h + η − ζ)

]) (17)

and substituted into ė2 of Equation (16) to create Equation (18)

ė2 = ν− b
M

e2 (18)

where ν is:

ν = M−1
(

Fc−bζ̇r +
1
3

πρgα2(η − ζ)3

+
2π

χ2 ρgα2η
[
2− e−χh − e−χ(η−ζ) − χ(h + η − ζ)

])
− ζ̈r

(19)

and the error state system of Equation (16) is written compactly in Equation (20).

ė1 = e2

ė2 = − b
M

e2 + ν
(20)

State feedback control
ν = −~k T~e (21)

is applied to ν and the control law is Equation (22)

Fc = −M~k T~e + Mζ̈r+bζ̇r −
1
3

πρgα2(η − ζ)3

− 2π

χ2 ρgα2η
[
2− e−χh − e−χ(η−ζ) − χ(h + η − ζ)

] (22)

which is simply Equation (23).

Fc = −M~k T~e + Mζ̈r+bζ̇r − Fb − Ff k,d (23)
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A variety of methods can be used to create the gain vector ~k, where the infinite
horizon, linear quadratic regulator approach is used, which minimizes the cost function of
Equation (24) [41]

J =
∫ ∞

0
(~eTQ~e + νT Rν)dt (24)

where in our case

Q =

[
10 0
0 1

]
and R = 1 (25)

yielding~k T =
[
3.16 2.53

]
. The effect of varying the Q11 gain value, nominally set to 10,

will be examined in Section 6.3.
The control law shown in the block diagram of Figure 4 can be summarized by

Equation (23), the error vector of Equation (15), the hourglass buoy parameters of Table 1,
the Froude–Krylov terms of Equation (8) and the gains of~k above. It requires the reference
trajectory and measurements of the wave elevation and the buoy displacement states.

5. Spherical Buoy Model

In Section 6, the energy extraction results of applying the control law of Section 4 to
the hourglass buoy and the spherical buoy of [30] are discussed. A brief description of the
spherical buoy model is provided here.

The spherical buoy model form is identical to that of the hourglass buoy of Equation (13) but
with different expressions for the buoyancy and dynamic FK forces shown in Equation (26)).

Fb =
1
3

πρg(η − ζ)
[
3R2 − (η − ζ)2

]
Ff k,d =

2π

χ2 ρgη
[
1− e−χ(η+R−ζ) − χ

(
η − ζ + Re−χ(η+R−ζ)

)] (26)

The control law form is the same as given in Equation (23) with Fb and Ff k,d of
Equation (26) and the spherical buoy parameters provided above. The LQR gains are the
same as those used for the hourglass buoy.

6. Results

The hourglass and spherical buoys described above were modeled in Simulink and
simulated using a fixed-step solver, ODE3, with a 0.01 s time step. The Simulink model
is shown in Figure 5 where a MATLAB Function was used to implement the buoy dy-
namic model. The control law was organized into a subsystem. The incident regular wave
elevation of Equation (2) was A = 0.5 m with a period of six seconds, ω = π

3 match-
ing the conditions of [30]. The reference displacement, ζr of Equation (27), used by the
tracking control law, had the same period but with an amplitude of two meters shown in
Equation (27).

ζr = 2 sin
(π

3
t
)

(27)

The absorbed energy, E, was calculated using Equation (28).

E =
∫ t

0
Fc ζ̇ dt (28)

Two closed-loop cases are explored below: (1) the effect of including the nonlinear FK
force in the control law and (2) a comparison between the hourglass and spherical buoys.
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Figure 5. Simulink model of the closed loop system. The plant model for both the hourglass and
spherical buoys was implemented using a MATLAB Function block and an integrator.

6.1. Effect of the Nonlinear FK Force

Calculating Ff k,d in the control law requires knowledge of the wave number and
hence more information about the incident waves. If Ff k,d has negligible performance on
the closed-loop energy extraction, then a model-based control strategy would be easier
to implement.

Figure 6 compares the energy extraction performance of the hourglass buoy using
the control law of Equation (23) with and without Ff k,d. The power is about 30% larger
for the case where Ff k,d is used in the control law. As expected, the closed-loop tracking
performance suffered due to the model uncertainty, as illustrated in the last two plots
of Figure 6. The last plot shows the error between the reference trajectory and the buoy
displacement response using e1 of Equation (15). For the case where the dynamic Froude–
Krylov force is included in the control law, the error is nearly zero. In contrast, the error is
about 0.8 m when the dynamic term is neglected by the control law. This same behavior is
illustrated in the velocity response in the third plot. The PTO force increased slightly as
the control law compensated for the model uncertainty through its error correction term.
The position tracking error, shown in the last subplot, could be improved by increasing the
~k of Equation (21) but was not performed here.

Figure 6. Closed–loop hourglass buoy response comparing the effect of including Ff k,d in the control law.
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6.2. Hourglass and Spherical Buoy Comparison

The free-response results of Section 3 indicated that the hourglass buoy possessed
synergistic behavior between its buoyancy and dynamic FK forces. In this section, we
compare the closed-loop response of the hourglass buoy to a spherical one using the control
law of Equation (23).

Two cases are considered: (1) a diameter of 5 m compared to the hourglass buoy whose
total height was also 2h = 5 m, and (2) a diameter of 7.5 m so that the power generated for
both buoys was approximately equal. The properties of the two spherical buoys are given
in Table 2 where the added mass and damping were estimated from [42].

Table 2. Spherical buoy parameters.

Feature Symbol Case 1 Case 2 Units

Radius R 2.5 3.75 m
Draft hd 2.5 3.75 m
Mass m 32,725 110,446 kg

Density ρb 500 500 kg/m3

Added Mass ma 14,019 47,492 kg
Damping b 11,208 18,665 N/(m/s)

Figure 7 shows the energy extracted, control force, velocity, and position error, ζr − ζ.
The energy and control force plots show the results of both buoys. Since the tracking
response was nearly identical for both buoys, the velocity and position error plots are
shown for only the hourglass buoy.

Figure 7. Closed–loop response and performance comparing the hourglass and spherical buoys.
The hourglass buoy height and the spherical buoy diameter are both 5 m.

While the hourglass-shaped buoy shows about 160% increased energy extraction over
the sphere, it should not be concluded that the hourglass shape is better than the spherical
one for all conditions. An examination of the control force and velocity plots shows that
the hourglass force is better aligned with the buoy velocity peaks. Thus, more energy is
extracted. This could be due to differences in the mass properties of the two buoys and the
effect this has on their responses resulting from their different nonlinear Froude–Krylov
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force expressions. Furthermore, the hourglass buoy control amplitude is near twice that of
the sphere.

To explore this further, the radius of the spherical buoy was increased to 3.75 m to
yield similar energy extraction as the hourglass shown in Figure 8. This resulted in larger
control forces, but the phasing between the control force and velocity was not as efficient as
with the hourglass buoy for these conditions.

Figure 8. Closed–loop response and performance comparing the hourglass and spherical buoys.
The hourglass buoy’s height is 5 m, and the spherical buoy diameter is 7.5 m so as to yield a similar
energy extraction performance as the hourglass buoy.

A comparison of the power used in the Figures above gives a partial indicator of the
WEC’s performance. As a performance metric, extracted power ignores the requirements
placed on the PTO in terms of force and stroke. Equation (29) was used to capture this and
allow comparison across different geometries. This power, force, amplitude (PFA) metric
reduces commensurately with the PTO size in terms of maximum force and stroke.

PFA =
AP

AF A
(29)

where AP is the amplitude of the real power, AF is the amplitude of the control force and A
is the amplitude of the buoy position.

The PFA for the hourglass is 0.99 compared to 0.88 for the 3.75-m diameter sphere,
about a 13% improvement for the hourglass buoy. Since, in both cases, the tracking control
was nearly perfect, the buoy position had no effect.

6.3. Sensitivity Analysis

To observe the robustness of the controller, a sensitivity analysis was performed for
the hourglass-shaped buoy by simultaneously increasing the added mass, ma, and the
wave number, χ, used by the controller by 50%. The model used ma = 59, 250 kg and
χ = 0.0125 as described in Section 3. When these values are used by the controller, the
resulting response is referred to as “Exact” whereas the “Perturbed” values were increased
to ma = 88, 875 kg and χ = 0.0188.

Figure 9 shows the results where the LQR gain vector is unchanged from Section 4.
The last plot shows that the tracking performance contains some errors for the perturbed
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case. However, this error is sufficiently small that it did not affect the energy production or
the actuator force. Table 3 shows that the displacement tracking error is reduced as the Q11
gain of the LQR controller is increased.

Figure 9. Comparison of the controller performance when using the exact model parameters and
perturbed values.

Table 3. Displacement tracking error due to Q11 LQR gain value.

First State Gain Displacement Error (m)

10 0.130
20 0.098
50 0.064

100 0.015

7. Conclusions and Future Work

Buoy geometry can significantly impact a point absorber’s dynamic response due to
the static and dynamic Froude–Krylov forces. The hourglass-shaped buoy’s static and dy-
namic force expressions have nonlinearities of the form (η− ζ)3 and -η

[
e−χ(η−ζ) + χ(η − ζ)

]
,

respectively, as seen in Equation (8). Although the nonlinear dynamic forces are less than
the static, their shape results in a total force that excites the buoy’s vertical motion more
than the static force alone. This additional motion results in the nonlinear terms, both static
and dynamic, having an even more significant effect. Exploiting buoy shapes to create
synergy between the static and dynamic forces can be used to increase the efficiency of a
point absorber. While this effect is evident in the hourglass buoy, it may be possible to find
shapes that are easier to implement physically, with similar synergy between their static
and dynamic forces.

Model-based control usually requires reduced-order models that can execute in real
time. The nonlinear dynamic forces, though less than the static, were found to impact the
energy extraction of the closed-loop system. This effect will vary under different wave
conditions, but they should be included when possible.

Experimental validation of static and dynamic Froude–Krylov force expressions for
the hourglass buoy is one of the next steps. Incorporating the effects of significant motion
on added mass and radiation damping into the control law should be explored. Shape
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adaptation, and its effect on the Froude–Krylov forces, is yet another feature that could be
exploited to increase point absorber efficiency.
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