
Citation: Li, J.; Kang, F.; Chen, C.;

Tong, S.; Jia, Y.; Zhang, C.; Wang, Y.

The Improved A* Algorithm for

Quadrotor UAVs under Forest

Obstacle Avoidance Path Planning.

Appl. Sci. 2023, 13, 4290. https://

doi.org/10.3390/app13074290

Academic Editors: Yosoon Choi and

Dimitris Mourtzis

Received: 11 December 2022

Revised: 5 March 2023

Accepted: 23 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The Improved A* Algorithm for Quadrotor UAVs under Forest
Obstacle Avoidance Path Planning
Jiale Li 1, Feng Kang 1 , Chongchong Chen 1, Siyuan Tong 1, Yalan Jia 2, Chenxi Zhang 1 and Yaxiong Wang 1,*

1 Key Laboratory of State Forestry and Grassland Administration on Forestry Equipment and Automation,
School of Technology, Beijing Forestry University, Beijing 100083, China

2 UAV Center Amy Aviation Institute, Beijing 101116, China
* Correspondence: yaxiongwang87@bjfu.edu.cn

Abstract: In order to improve the obstacle avoidance and endurance capability of quadrotor UAVs
performing tasks such as forest inspection and rescue search, this paper proposes improvements to
address the problems of too many traversed nodes, too many redundant corners, too-large turning
angles and unsmooth generated paths in the traditional A* algorithm in path planning. The traditional
A* algorithm is improved by using a segmented evaluation function with dynamic heuristic and
weighting processing, a steering cost heuristic function based on heading angle deviation control,
a redundant turning points removal strategy, and a quasi-uniform cubic b-spline. Through the
test comparison of different complexity map scenarios, it is found that the improved A* algorithm
reduces the number of traversed nodes by 64.87% on average, the total turning angle by 54.53%
on average, the path search time by 49.64% on average, and the path length by 12.52% on average
compared to the traditional A* algorithm, and there is no obvious turning point in the path. The real-
world applicability of the improved A* algorithm is confirmed by comparing the effect of different
algorithms on obstacle avoidance in a map of a real plantation forest environment.

Keywords: UAV; improved A* algorithm; path planning; remove redundant turning points; path
smoothing

1. Introduction

Unmanned aerial vehicles (UAVs) have been extensively utilized in forestry appli-
cations such as forest inspection, rescue, and monitoring due to their high flexibility and
real-time inspection capabilities [1,2]. However, limited payload capacity and hardware
technology pose challenges to the endurance of UAVs [3]. With the expansion of planta-
tion forest areas, it has become crucial to enhance the autonomous flight and endurance
capabilities of UAVs to efficiently perform continuous inspection and monitoring tasks.

Due to the level of industrial development, most researchers have optimized the
path planning algorithm to achieve reasonable task path planning according to the actual
application needs of UAVs, thereby reducing energy consumption and enhancing obstacle
avoidance and safety [4]. Key performance indicators, such as the shortest path length, path
search time, number of turning points, total turning angle, and path smoothness, are used
to evaluate energy consumption [5]. Obstacle avoidance path planning techniques have
been extensively studied in two-dimensional environments [6,7] to plan safe and collision-
free paths in working environments with obstacles. These techniques have gradually been
applied to automatic manipulators [8], ground robots [9], and other related fields. The
rapidly-exploring random tree (RRT) [10] algorithm, based on uniform random sampling, is
among the global path planning algorithms that have probabilistic completeness. However,
its expansion efficiency is low, and it tends to fall into optimal local values. To address these
limitations, a number of variants have been derived, such as RRT-connect [11], Q-RRT* [12],
Informed RRT* [13], BIT* [14], etc. However, these algorithms do not consider path

Appl. Sci. 2023, 13, 4290. https://doi.org/10.3390/app13074290 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074290
https://doi.org/10.3390/app13074290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9845-3790
https://orcid.org/0000-0003-4370-7009
https://doi.org/10.3390/app13074290
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074290?type=check_update&version=2

Appl. Sci. 2023, 13, 4290 2 of 19

smoothness, resulting in a large number of turning points that increase energy consumption.
To address this issue, many scholars have attempted to use intelligent algorithms to solve
related problems.

Yang et al. [15] proposed an improved RRT algorithm that introduces ant colony
optimization (ACO) in the process of expanding the random tree to make the planning
path asymptotically optimal. Li et al. [16] introduced the metropolitan criterion into the
ACO node screening mechanism to solve the multi-UAV trajectory planning problem in
static environments. Zhou et al. [17] proposed a 3D spatial path planning algorithm that
imitates basic mechanisms of plant growth, including phototropism, negative geotropism,
and branching to achieve fast planning speed, few path nodes, and low-latency, real-time
planning. Zhang et al. [18,19] proposed the use of a priori maps to pre-plan alternative
paths offline and select one of them for execution by online navigation. They later proposed
a heuristic navigation method without a priori maps [20] that use an environment-based
probabilistic representation to maximize the likelihood of successful navigation to a target.
These algorithms improve the efficiency of path search and achieve asymptotic optimality
of paths to some extent, but path smoothing is not well covered.

Several researchers have applied neural network techniques to the field of path plan-
ning. Among them, Fan et al. [21] proposed an efficient and locally connected Hopfield
neural network (HNN) that dynamically tracks the numerical potential field of the HNN
using a hill-climbing method to find collision-free paths without any unexpected local at-
traction points. Gao et al. [22] proposed a novel competitive self-organizing neural network
algorithm with new adversarial-based learning to generate better neurons in the initial
stage. They followed it up with a secondary competitive layer on top of the hidden layer,
thus improving the accuracy and convergence speed of the algorithm. However, path
planning often needs to deal with complex and changing environments, and the neural
network algorithm has poor generalization ability, making it less effective in such scenarios.

Among heuristic path planning algorithms, ABC [23] algorithm, GA [24,25] algorithm,
SA [26] algorithm, Grey Wolf [27,28] algorithm, and PSO [29] algorithm are commonly used.
However, the ABC algorithm and Grey Wolf algorithm have the problem of convergence
speed being too fast or premature convergence, resulting in relatively low accuracy. The
GA algorithm, SA algorithm, and PSO algorithm have the problem of slow convergence
speed and being easily affected by parameters, which leads to their low efficiency. The
Dijkstra algorithm [30], proposed by EW Dijkstra, solves the problem of finding the shortest
distance between two points through a breadth-first search. However, with increasing
grid density, the computational volume rapidly expands, making it difficult to meet real-
time performance requirements. Local path planning algorithms, such as the artificial
potential field (APF) algorithm, have been utilized in numerous scenarios, including mobile
robots [31,32] and autonomous vehicles [33]. However, the traditional APF algorithm is
susceptible to falling into local minima, which may prevent it from reaching the target point,
and local oscillations. To address these issues, Liu and colleagues [34] replaced the repulsive
potential field function in the APF algorithm with a Gaussian function. Nevertheless, the
path planning of Unmanned Aerial Vehicles (UAVs) may still become trapped in local
minima when the obstacle is situated on the connecting line between the current position
and the target position. Moreover, the D*Lite [35] algorithm, which is suitable for dynamic
unknown environments and allows variable starting points but fixed target points, can
result in non-smooth paths that are prone to colliding with obstacles, and the search process
may also fail to converge, leading to the algorithm becoming stuck in a dead loop.

The A* algorithm based on grid map search, originally proposed by Hart et al. [36],
combines the strengths of mathematical and heuristic searches, using a heuristic function to
guide the search direction, thus reducing search volume and improving efficiency. Several
researchers have contributed to the improvement of the A* algorithm in various ways. For
example, Ju et al. [37] developed novel distance formulas for the A* algorithm to obtain
the shortest path under certain conditions, while Cao et al. [38] assigned a fixed weight
to the heuristic function to reduce the number of node searches and shorten the search

Appl. Sci. 2023, 13, 4290 3 of 19

time. Gochev proposed the anytime-tree-restoring-weighted A* (ATRA*) algorithm [39],
which uses a heuristic approach to focus on the search scope and reuses previous search
information to further reduce the search time. Huang et al. [40] improved the A* algorithm’s
heuristic function by dynamically adjusting weights and optimizing the search and turning
points to reduce data processing time and grid search. However, the four-directional search
range reduces the possibility of obtaining the shortest path, and the path generated may
not be smooth due to the large turning angles.

To address these limitations, Xin et al. [41] extended the search neighborhood of the
A* algorithm to an infinite number of neighbors, resulting in shorter path lengths with
a smaller number of turning points, but at the expense of significantly increased search
time. Chen et al. [42] improved the algorithm with directed search to reduce the number of
traversed nodes by eliminating the path of symmetric search. Kong et al. [43] introduced
the bidirectional search mechanism, improved the traditional calculation method of the
evaluation function, and selected the appropriate weight coefficient for the evaluation
function to reduce redundant nodes in the search process and improve computational
efficiency. Lin et al. [44] optimized the path by analyzing the influence of the parent node
of the current node on the heuristic function and using optimal weights to propose an
improved A* algorithm to improve computational efficiency, albeit at the expense of the
optimal path. Islam et al. [45] proposed a dynamic multi-heuristic A* (DMHA*) algorithm
to solve the problem of wasting a lot of search time around local minima, while Fu et al. [46]
proposed an improved A* algorithm that judges the presence of obstacles between the
current path point and the target point to shorten the path. However, the computational
cost of Fu’s method is high, and it cannot smooth the turning path. Zhou et al. [47] adopted
a hybrid-state A* kinodynamic path searching method to find a safe and minimum-time
initial trajectory in the discretized control space and to improve the smoothness and
clearance of the trajectory by a B-spline optimization. Wu et al. [48] introduced a rewiring
process to remove redundant points in the path, which in turn re-corrected the path and
optimized the path length, but there were still invalid turning points. Muñoz et al. [49]
assigned weights to each pair of vertices in the path generated by the A* algorithm to
develop a pruning strategy, which removed invalid waypoints from the path and achieved
path smoothing, creating a better navigation experience for the user. Liu et al. [50] designed
a dynamic fusion pathfinding algorithm (DFPA) based on Delaunay triangulation and
improved A* algorithm to implement path planning for mobile robots.

In summary, the A* algorithm, which incorporates heuristic intelligent search, exhibits
good path optimality and search efficiency and is more suitable for static map scenarios.
However, due to the special characteristics of plantation forests (such as the unstructured
and complex inter-forest environment and the high density of tree trunks and branches
obstruction), the path planned by A* algorithms may increase the UAV’s flight energy
consumption and affect flight safety. In addition, current improvements to the A* algorithm
often sacrifice the performance of other indicators to achieve the desired indicator perfor-
mance in specific scenarios. To address these challenges, this paper proposes an improved
algorithm that enhances the autonomous flying capability of UAVs in forest environments
and reduces flight energy consumption by developing cost evaluation functions, heuristic
functions, turning point removal strategies, and smooth optimization.

In addition, the innovation and main contributions of this paper are as follows:

1. This paper proposes a segmented cost evaluation function with parameterized weight
factors (a and b) assigned to actual cost and heuristic cost in each stage, where the
weight factor of the heuristic cost function is adaptively and dynamically adjusted.
The optimal parameter combinations under different environmental conditions are
obtained to enhance the global search capability for the fast and accurate acquisition
of optimal paths.

2. The algorithm incorporates turn cost with UAV heading angle constraints into the
heuristic function to enhance heuristic search, reducing unnecessary turning points

Appl. Sci. 2023, 13, 4290 4 of 19

and sharp turns, making the planning path smoother, and guiding the UAV towards
the target direction.

3. The paper proposes a strategy for removing redundant turning points by reselecting
path nodes on path segments composed of turning points, avoiding the process
of turning point removal from falling into local optima while achieving a quadratic
programming process on the path, allowing for a more significant reduction of turning
points in the shortest path.

The rest of the paper is organized as follows. Section 2 presents a comprehensive
account of the proposed enhancements to the traditional A* algorithm, along with the
experimental design details. The comparative simulation results of various algorithms are
illustrated in Section 3. The experimental results are discussed in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Materials and Methods

In this section, a segmented cost evaluation function is proposed to optimize the
global search. The steering cost, constrained by the heading angle, is introduced into the
heuristic function to enhance the heuristic capabilities. The cost functions are endowed with
parametrical weight factors (the weight factor of the heuristic function is set as an adaptive
dynamic adjustment), and the optimal parameter combination is explored to improve the
global search ability. In the operation of removing redundant turning points and smoothing
the path, a new turning point removal strategy and path smoothing optimization scheme
are proposed.

The performance simulation experiments were designed to prove the improved A*
algorithm’s superiority over the traditional A* algorithm. According to previous work [51],
comparison experiments based on a 3D point cloud map of a plantation forest were carried
out using data gathered by a mobile measurement platform constructed with a Velodyne
VLP-16 LiDAR system and an inertial measurement unit (IMU) to test the various algo-
rithms in this article in order to confirm the effectiveness of the upgraded A* algorithm’s
path planning functionality.

2.1. Traditional A* Algorithm

The A* algorithm is a grid-based optimal path search algorithm that can be combined
with the Dijkstra algorithm and Best-First-Search algorithm (BFS) [52]. Its core idea is to
plan a collision-free minimum movement cost path from the starting position to the target
position on a given map. It calculates the priority of each node through the cost function
represented by Equation (1):

f (n) = g(n) + h(n) (1)

where f (n) is the total cost estimate from the initial state via state n to the target state, and
the higher the value, the lower priority; g(n) is the actual cost from the initial state to state
n; and h(n) is the estimated cost of the optimal path from state n to the target state, also
known as the heuristic cost of A* algorithm.

2.2. Improved A* Algorithm

The heuristic search of the traditional A* algorithm is relatively simplistic, and the
weight relationship between cost functions is not taken into account, which leads to a
higher number of nodes being searched and reduced efficiency. Additionally, to ensure
the shortest path, the algorithm has more turning points, resulting in a path that is not
smooth [40]. In this paper, to meet the requirements of high efficiency, low energy consump-
tion, smoothness, and continuity for forestry inspection UAVs, an improved A* obstacle
avoidance algorithm is proposed. The algorithm improves the traditional A* algorithm in
the following four steps.

Appl. Sci. 2023, 13, 4290 5 of 19

2.2.1. Segmented Evaluation Function with Dynamic Heuristics and Weighted Processing

In the A* algorithm, both the cost function and the heuristic function are typically
composed of distances. However, the value of the heuristic function can significantly
impact the algorithm’s performance. If the estimated value of h(n) is much smaller than
g(n), then the value of f (n) depends on g(n), and the A* algorithm behaves similarly to
the Dijkstra algorithm, which conducts an extensive search with a slower convergence
speed. Conversely, if the estimated value of h(n) is much larger than g(n), then the A*
algorithm evolves into the Best-First-Search algorithm (BFS), which can quickly find a path,
but the path may not be optimal for a UAV. Therefore, the A* algorithm can balance the
rate of convergence and path quality by assigning weights to g(n) and h(n) and adjusting
them dynamically.

Additionally, assuming that the actual cost of the shortest distance from the current
point to the target point is d(n), three situations may arise. When h(n) < d(n), the
algorithm may need to search more nodes, leading to lower efficiency, but the shortest path
can be found. When h(n) > d(n), the number of search nodes decreases, and the search
efficiency increases, but the shortest path cannot be guaranteed. When h(n) = d(n), the
shortest path can be searched with high efficiency. Based on these considerations, different
weights are assigned to g(n) and h(n), respectively, with the weight coefficient of h(n) set as
the dynamic response. If the current node is far away from the target position, the weight
coefficient of h(n) is larger. As the UAV approaches the target point, the weight coefficient
of h(n) gradually decreases. Therefore, a preliminary evaluation function can be obtained.

f (n) = ag(n) +
(

b +
d
L

)
h(n) (2)

where a and b are the weight factors, d is the distance from the current node to the target
position, and L is the distance between the starting position and the target position.

To balance search speed and path quality, this study adopts a segmented evaluation
function that assigns different weights to the cost function and heuristic function in different
stages. This approach enhances heuristics to speed up search without compromising path
quality. The evaluation function of the algorithm is calculated as follows:

f (n) =

 ag(n) +
(

b + d
L

)
h(n), h(n) ≥ L

3

g(n) +
(

d
L

)
h(n), h(n) < L

3

(3)

According to the above discussion on the weight relationship between g(n) and h(n),
the factors of a and b in the second segment of the evaluation function to 1 and 0, respectively,
in order to maintain the accuracy of the later path search. To determine the appropriate
values of weight factors a and b for g(n) and h(n) in the first segment of the evaluation
function, the experiments were conducted using a randomly distributed grid map of size
30 × 30 with an obstacle proportion of 0.4. The experimental results are presented in
Section 3.1.

2.2.2. Heuristic Function for Adding Steering Cost

The heuristic function utilized in the conventional A* algorithm employs a single
distance approach for node selection, which can result in an increased number of turning
points and subsequently impact the UAV’s flight continuity and smoothness. To address
this issue, a corner constraint is introduced during each node selection to decrease the
number of points with large angles. Additionally, excess corners are corrected to avoid local
optima. Therefore, this paper introduces the difference between the current heading angle
of UAVs and the target direction angle and establishes the heuristic function containing
steering cost under different angle differences.

While the theoretical shortest distance between the current node and the target point
is a straight line, obstacles will exist during the actual flight. As such, the line linking the

Appl. Sci. 2023, 13, 4290 6 of 19

current node to the next node will form a particular angle β ∈ [0, π] with the line linking
the current node to the target point. The degree of path fitting is enhanced as β decreases.

In the global coordinate system, the vector
−−−→
UPUg denotes the direction from the current

position to the target position, while vector
−−−→
UPUpi (i = 1, 2, 3, 4 . . .) denotes the possible

heading of the UAVs toward the next location. Figure 1 provides a visual representation of
this concept, and the red star represents the target point.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19

number of points with large angles. Additionally, excess corners are corrected to avoid
local optima. Therefore, this paper introduces the difference between the current heading
angle of UAVs and the target direction angle and establishes the heuristic function con-
taining steering cost under different angle differences.

While the theoretical shortest distance between the current node and the target point
is a straight line, obstacles will exist during the actual flight. As such, the line linking the
current node to the next node will form a particular angle β∈[0, π] with the line linking
the current node to the target point. The degree of path fitting is enhanced as β decreases.
In the global coordinate system, the vector 𝑈 𝑈⃗ denotes the direction from the current
position to the target position, while vector 𝑈 𝑈 ⃗ (i=1,2,3,4…) denotes the possible head-
ing of the UAVs toward the next location. Figure 1 provides a visual representation of this
concept, and the red star represents the target point.

Figure 1. The vector representation from the current point to the travel point and the target point.

The angle β can be calculated using the formula for finding the angle between two
vectors in the global coordinate system. 𝛽 = cos ⃗∙ ⃗⃗ ⃗ ,𝑖 = 1,2,3,4 … (4)

where 𝑈 𝑈⃗ = 𝑥 − 𝑥 ，𝑦 − 𝑦 ; 𝑈 𝑈 ⃗ = 𝑥 − 𝑥 ，𝑦 − 𝑦 , and 𝑥 , 𝑦 , 𝑥 , 𝑦 , 𝑥 , 𝑦 are the coordinate values of the target point 𝑈 , the current point 𝑈 , and the next
possible node 𝑈 in the global coordinate system.

Equation (5) shows the improved heuristic function of steering cost. ℎ(𝛽) = 𝑤 × 𝛽 × ℎ (5)

where h(β) is the heuristic function of steering cost, ℎ is the initial distance-based heu-
ristic function, and w is the weight coefficient, whose value is taken to adjust the strength
of the heuristic information and facilitate the calculation and selection of the optimal path,
mainly determined by the grid size and the steering cost function.
The equation of the improved heuristic function is obtained as follows: ℎ(𝑛) = (1 + 𝑘 × 𝛽) × ℎ , 𝛽 ∈ [0, π] (6)

Based on the difference between the current heading direction of the UAV and the
target position, the steering cost proportion is adjusted accordingly to minimize each
steering angle and approach the target direction, thus ensuring global or relatively opti-
mal path planning.

Figure 1. The vector representation from the current point to the travel point and the target point.

The angle β can be calculated using the formula for finding the angle between two
vectors in the global coordinate system.

βi = cos−1

−−−→
UPUg ·

−−−→
UPUpi∣∣∣∣−−−→UPUg

∣∣∣∣∣∣∣∣−−−→UPUpi

∣∣∣∣ , i = 1, 2, 3, 4 . . . (4)

where
−−−→
UPUg =

(
xg − xp, yg − yp

)
;
−−−→
UPUpi =

(
xpi − xp, ypi − yp

)
, and xg, yg, xp, yp, xpi, ypi

are the coordinate values of the target point Ug, the current point UP, and the next possible
node Upi in the global coordinate system.

Equation (5) shows the improved heuristic function of steering cost.

h(β) = w× β× hd (5)

where h(β) is the heuristic function of steering cost, hd is the initial distance-based heuristic
function, and w is the weight coefficient, whose value is taken to adjust the strength of the
heuristic information and facilitate the calculation and selection of the optimal path, mainly
determined by the grid size and the steering cost function.

The equation of the improved heuristic function is obtained as follows:

h(n) = (1 + k× β)× hd, β ∈ [0,π] (6)

Based on the difference between the current heading direction of the UAV and the
target position, the steering cost proportion is adjusted accordingly to minimize each
steering angle and approach the target direction, thus ensuring global or relatively optimal
path planning.

2.2.3. Removing Redundant Turning Points

As previously discussed, the traditional A* algorithm tends to generate paths with
multiple turning points in order to achieve the shortest path. However, the excessive

Appl. Sci. 2023, 13, 4290 7 of 19

number of turns during UAV forest inspection not only leads to unstable flight but also
consumes more energy.

Currently, most redundant turning point removal strategies adopt the approach il-
lustrated in Figure 2a, where P1, P2, P3, and P4 represent the initial turning points of the
generated path. According to the rule of redundant turning point removal, node P1 should
be connected to turning point P3. After collision detection, if the path segment formed
passes through an obstacle, turning point P2 is retained as the initial node of the new path
segment and connected to node P4. As the path segment formed by P2P4 does not collide
with any obstacles, the redundant turning point P3 can be removed. Finally, a new path
P1→P2→P4 is obtained. However, the actual optimal path would be a direct connection
between nodes P1 and P4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19

2.2.3. Removing Redundant Turning Points
As previously discussed, the traditional A* algorithm tends to generate paths with

multiple turning points in order to achieve the shortest path. However, the excessive num-
ber of turns during UAV forest inspection not only leads to unstable flight but also con-
sumes more energy.

Currently, most redundant turning point removal strategies adopt the approach il-
lustrated in Figure 2a, where 𝑃 , 𝑃 , 𝑃 , and 𝑃 represent the initial turning points of the
generated path. According to the rule of redundant turning point removal, node 𝑃
should be connected to turning point 𝑃 . After collision detection, if the path segment
formed passes through an obstacle, turning point 𝑃 is retained as the initial node of the
new path segment and connected to node 𝑃 . As the path segment formed by 𝑃 𝑃 does
not collide with any obstacles, the redundant turning point 𝑃 can be removed. Finally, a
new path 𝑃 →𝑃 →𝑃 is obtained. However, the actual optimal path would be a direct
connection between nodes 𝑃 and 𝑃 .

(a) (b)

Figure 2. (a) Schematic diagram of local optimum; and (b) strategies for removing redundant turn-
ing points.

To address this local optimum, as shown in Figure 2b, the target node 𝑃 is con-
nected directly to the initial node 𝑃 . If the newly formed path intersects with an obstacle,
the target node is connected to the initial nodeʹs sub-node (not necessarily a turning point
in the path), and collision detection is performed until an obstacle-free path segment con-
necting 𝑃 to 𝑃 (a node in the middle) is obtained. The nodes, including turning points
between 𝑃 and 𝑃 are then removed, and the node 𝑃 is used as the starting point of the
next path segment to repeat the above operation until it is connected to 𝑃 (a node in the
path close to the initial node, but not necessarily a turning point). Then the node 𝑃 is
used as the new starting point of the next path segment to repeat the above steps until it
is connected to the initial node 𝑃 . This brief introduction outlines the process of removing
turning points. In actual applications, it may require multiple iterations of steps to obtain
an optimized path with redundant turning points removed.

The above comparison indicates that the rewiring strategy proposed in this paper
allows for a broader selection of nodes when rewiring the path, which is not limited to
turning points, resulting in a shorter path with fewer turns. Moreover, our pruning strat-
egy for removing turning points is forward-backward, which enables efficient removal
with minimal collision detection and effectively avoids local optima.

2.2.4. Smoothing Based on Quasi-uniform Cubic B-spline Curves
After removing the turning points, the smoothness of the path will be improved, and

the number of turning points, total turn angle, and path length will be reduced, but the
path is not yet better smooth due to the presence of some necessary corners.

Figure 2. (a) Schematic diagram of local optimum; and (b) strategies for removing redundant
turning points.

To address this local optimum, as shown in Figure 2b, the target node Pg is connected
directly to the initial node Ps. If the newly formed path intersects with an obstacle, the
target node is connected to the initial node’s sub-node (not necessarily a turning point in the
path), and collision detection is performed until an obstacle-free path segment connecting
Pg to Pn (a node in the middle) is obtained. The nodes, including turning points between
Pg and Pn are then removed, and the node Pn is used as the starting point of the next path
segment to repeat the above operation until it is connected to Pm (a node in the path close
to the initial node, but not necessarily a turning point). Then the node Pm is used as the new
starting point of the next path segment to repeat the above steps until it is connected to the
initial node Ps. This brief introduction outlines the process of removing turning points. In
actual applications, it may require multiple iterations of steps to obtain an optimized path
with redundant turning points removed.

The above comparison indicates that the rewiring strategy proposed in this paper
allows for a broader selection of nodes when rewiring the path, which is not limited to
turning points, resulting in a shorter path with fewer turns. Moreover, our pruning strategy
for removing turning points is forward-backward, which enables efficient removal with
minimal collision detection and effectively avoids local optima.

2.2.4. Smoothing Based on Quasi-Uniform Cubic B-Spline Curves

After removing the turning points, the smoothness of the path will be improved, and
the number of turning points, total turn angle, and path length will be reduced, but the
path is not yet better smooth due to the presence of some necessary corners.

B-spline is a special manifestation of the spline curve, which can flexibly smooth the
path by taking advantage of its merits, such as convex hull, geometric invariance, local
support, and non-negativity [47] to better adapt to various actual trajectory requirements.

To ensure that the optimized path encompasses both the starting and target points
while maintaining continuous smoothness, this paper utilizes quasi-uniform cubic B-spline

Appl. Sci. 2023, 13, 4290 8 of 19

curves to smooth the path. However, in practical applications, excessive smoothness may
lead to collisions with obstacles. To mitigate this issue, the search range of control points is
constrained, ensuring that the path after quasi-uniform cubic B-spline curve processing
remains close to the path after removing redundant turning points. To achieve this, the
paper sets the search radius of the control points accordingly.

R ≤ 0.6r (7)

where R is the search radius of the control points and r is the grid grain size.

2.3. Improved A* Algorithm Performance Simulation

As pointed out above, the enhanced A* obstacle avoidance algorithm represents an
improvement over the conventional A* algorithm. This is achieved through the use of
a segmented cost function that takes into account weighted processing, as well as the
incorporation of a dynamic heuristic function that considers steering cost, turning points
optimization, and smoothing optimization.

To evaluate the superiority of the improved A* algorithm, the simulation experiments
were conducted using MATLAB R2022a on an Intel (R) Core (TM) i5-7500 CPU @ 3.40 GHz
computer. The four simulation environments were created with a fixed obstacle proportion
of 40% but a varying number of grids and obstacle distributions. The scene layout and
the locations of the starting and target points are depicted in Figure 3. And the green
circle represents the starting point and the red star represents the target point. The paper
compared the obstacle avoidance performance of the improved A* algorithm against the
traditional A* algorithm using various evaluation metrics, including data processing time,
number of traversal nodes, number of turning points, total turning angle, and path length.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 19

B-spline is a special manifestation of the spline curve, which can flexibly smooth the
path by taking advantage of its merits, such as convex hull, geometric invariance, local
support, and non-negativity [47] to better adapt to various actual trajectory requirements.

To ensure that the optimized path encompasses both the starting and target points
while maintaining continuous smoothness, this paper utilizes quasi-uniform cubic B-
spline curves to smooth the path. However, in practical applications, excessive smooth-
ness may lead to collisions with obstacles. To mitigate this issue, the search range of con-
trol points is constrained, ensuring that the path after quasi-uniform cubic B-spline curve
processing remains close to the path after removing redundant turning points. To achieve
this, the paper sets the search radius of the control points accordingly. 𝑅 0.6𝑟 (7)

where R is the search radius of the control points and r is the grid grain size.

2.3. Improved A* Algorithm Performance Simulation
As pointed out above, the enhanced A* obstacle avoidance algorithm represents an

improvement over the conventional A* algorithm. This is achieved through the use of a
segmented cost function that takes into account weighted processing, as well as the incor-
poration of a dynamic heuristic function that considers steering cost, turning points opti-
mization, and smoothing optimization.

To evaluate the superiority of the improved A* algorithm, the simulation experi-
ments were conducted using MATLAB R2022a on an Intel (R) Core (TM) i5-7500 CPU @
3.40 GHz computer. The four simulation environments were created with a fixed obstacle
proportion of 40% but a varying number of grids and obstacle distributions. The scene
layout and the locations of the starting and target points are depicted in Figure 3. And the
green circle represents the starting point and the red star represents the target point. The
paper compared the obstacle avoidance performance of the improved A* algorithm
against the traditional A* algorithm using various evaluation metrics, including data pro-
cessing time, number of traversal nodes, number of turning points, total turning angle,
and path length.

(a) (b) (c) (d)

Figure 3. Obstacle environment maps with different numbers of grids: (a) grid size 20 × 20, start
point coordinates (1, 20), end point coordinates (20, 1); (b) grid size 30 × 30, start point coordinates
(1, 30), end point coordinates (30, 1); (c) grid size 40 × 40, start point coordinates (1, 40), end point
coordinates (40, 1); and (d) grid size 50 × 50, start point coordinates (1, 50), end point coordinates
(50, 1).

2.4. Comparison Experiments Based on 3D Point Cloud Map of Plantation Forest
The present study conducted a comparative experiment between the improved A*

algorithm and the traditional A* algorithm in various obstacle environments to validate
the superiority of the former. However, this experiment alone is insufficient since the ac-
tual environment encountered by UAVs during flight within a forest may differ from the
map created in a random setting. To address this limitation, this study utilized a real 3D

Figure 3. Obstacle environment maps with different numbers of grids: (a) grid size 20× 20, start point
coordinates (1, 20), end point coordinates (20, 1); (b) grid size 30 × 30, start point coordinates (1, 30),
end point coordinates (30, 1); (c) grid size 40× 40, start point coordinates (1, 40), end point coordinates
(40, 1); and (d) grid size 50 × 50, start point coordinates (1, 50), end point coordinates (50, 1).

2.4. Comparison Experiments Based on 3D Point Cloud Map of Plantation Forest

The present study conducted a comparative experiment between the improved A*
algorithm and the traditional A* algorithm in various obstacle environments to validate the
superiority of the former. However, this experiment alone is insufficient since the actual
environment encountered by UAVs during flight within a forest may differ from the map
created in a random setting. To address this limitation, this study utilized a real 3D point
cloud map of a plantation forest to compare the path planning effectiveness of different
algorithms, including the traditional A* algorithm, the improved A* algorithm proposed
in the literature [38], the RRT algorithm, and the APF algorithm. Figure 4 illustrates the
environment map information and processing flow of the plantation forest map.

Appl. Sci. 2023, 13, 4290 9 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19

point cloud map of a plantation forest to compare the path planning effectiveness of dif-
ferent algorithms, including the traditional A* algorithm, the improved A* algorithm pro-
posed in the literature [38], the RRT algorithm, and the APF algorithm. Figure 4 illustrates
the environment map information and processing flow of the plantation forest map.

(a)

(b)

(c) (d)

Figure 4. Acquisition and processing process of actual plantation forest map: (a) three-dimensional
point cloud map of the plantation forest; (b) Octomap of the plantation forest; (c) grid map of the
two-dimensional projection surface of the plantation forest; and (d) two-dimensional projection
map of the plantation forest after re-rasterization.

As shown in Figure 4a, the point cloud data was obtained from a handheld 3D scan-
ning device of the plantation forest located in Bajia Park, Haidian District, Beijing. The test
area was selected using CloudCompare software, and the PassThrough filtering method
and RadiusOutlierRemoval were applied to remove the background noise and outliers,

Figure 4. Acquisition and processing process of actual plantation forest map: (a) three-dimensional
point cloud map of the plantation forest; (b) Octomap of the plantation forest; (c) grid map of the
two-dimensional projection surface of the plantation forest; and (d) two-dimensional projection map
of the plantation forest after re-rasterization.

As shown in Figure 4a, the point cloud data was obtained from a handheld 3D
scanning device of the plantation forest located in Bajia Park, Haidian District, Beijing.
The test area was selected using CloudCompare software, and the PassThrough filtering
method and RadiusOutlierRemoval were applied to remove the background noise and
outliers, respectively [51]. Since the point cloud data was relatively sparse, voxelization was
performed to transform the point clouds into an Octomap, which is a three-dimensional
map creation tool based on octree, and the plantation forest’s 3D reconstruction was
completed in ROS [53], as shown in Figure 4b. Subsequently, the two-dimensional grid

Appl. Sci. 2023, 13, 4290 10 of 19

map was obtained by projecting the plane of the plantation forest where the UAV flight
height was located, as shown in Figure 4c. This map was discretized into a large number
of pixel grids composed of black and white grids, with black representing obstacles and
white representing passable areas. The pixel size of the map is 974 × 785. In computer
science, a binary matrix is usually used to represent this grid map, with the position of each
matrix element representing the grid position, the element value of 1 indicating that the
position is occupied by obstacles, and 0 representing the unoccupied area. Due to the large
number of grids in the obtained two-dimensional map, directly importing it into MATLAB
2022a for use would consume a considerable amount of storage, and path search would
require significant computational time. Therefore, on the premise of preserving the location,
shape, and size of obstacles in the original map, simple image processing was performed
to obtain a real map with fewer grids. As illustrated in Figure 4d, the black outline of the
tree trunk intercepted in this plane is considered an obstacle. The two-dimensional map
of the plantation forest after re-rasterization was composed of 246 × 200 grids, based on
the image pixel ratio of the two-dimensional grid map. By setting different start and end
coordinates, the performance comparison results of the five algorithms in different complex
scenes were obtained.

3. Results
3.1. Segmented Evaluation Function Parameter Determination Results

Experimental designs were conducted to assign different values to parameters a and
b in order to obtain the relevant index results. Figure 5 presents the number of nodes
traversed and the search time of the algorithm when the weight factors a and b take various
values. It can be observed that when factor a was set to five or six, the number of nodes
traversed and the path search time of the algorithm was found to be the highest. This
is primarily due to the fact that, at this stage, the algorithm is more inclined toward the
Dijkstra algorithm, resulting in weaker heuristic information.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19

respectively [51]. Since the point cloud data was relatively sparse, voxelization was per-
formed to transform the point clouds into an Octomap, which is a three-dimensional map
creation tool based on octree, and the plantation forestʹs 3D reconstruction was completed
in ROS [53], as shown in Figure 4b. Subsequently, the two-dimensional grid map was ob-
tained by projecting the plane of the plantation forest where the UAV flight height was
located, as shown in Figure 4c. This map was discretized into a large number of pixel grids
composed of black and white grids, with black representing obstacles and white repre-
senting passable areas. The pixel size of the map is 974 × 785. In computer science, a binary
matrix is usually used to represent this grid map, with the position of each matrix element
representing the grid position, the element value of 1 indicating that the position is occu-
pied by obstacles, and 0 representing the unoccupied area. Due to the large number of
grids in the obtained two-dimensional map, directly importing it into MATLAB 2022a for
use would consume a considerable amount of storage, and path search would require
significant computational time. Therefore, on the premise of preserving the location,
shape, and size of obstacles in the original map, simple image processing was performed
to obtain a real map with fewer grids. As illustrated in Figure 4d, the black outline of the
tree trunk intercepted in this plane is considered an obstacle. The two-dimensional map
of the plantation forest after re-rasterization was composed of 246 × 200 grids, based on
the image pixel ratio of the two-dimensional grid map. By setting different start and end
coordinates, the performance comparison results of the five algorithms in different com-
plex scenes were obtained.

3. Results
3.1. Segmented Evaluation Function Parameter Determination Results

Experimental designs were conducted to assign different values to parameters a and
b in order to obtain the relevant index results. Figure 5 presents the number of nodes trav-
ersed and the search time of the algorithm when the weight factors a and b take various
values. It can be observed that when factor a was set to five or six, the number of nodes
traversed and the path search time of the algorithm was found to be the highest. This is
primarily due to the fact that, at this stage, the algorithm is more inclined toward the
Dijkstra algorithm, resulting in weaker heuristic information.

(a) (b)

Figure 5. Results of evaluation indexes with different parameters: (a) path search time with different
parameters; and (b) number of traversal nodes with different parameters.

The optimal parameter combination obtained in the initial experiment was adopted
for the second test, where different obstacle maps were utilized, and the starting and ending
positions were varied. The relative lengths of the resulting paths are presented in Figure 6.

6

5

4

3

2

1

54321

Pa
th

 s
ea

rc
h

tim
e

The value of factor b

 a=1
 a=2
 a=3
 a=4
 a=5
 a=6

0

500

400

300

200

100

54321

N
um

be
r o

f t
ra

ve
rs

al
 n

od
es

The value of factor b

 a=1
 a=2
 a=3
 a=4
 a=5
 a=6

0

Figure 5. Results of evaluation indexes with different parameters: (a) path search time with different
parameters; and (b) number of traversal nodes with different parameters.

The optimal parameter combination obtained in the initial experiment was adopted
for the second test, where different obstacle maps were utilized, and the starting and ending
positions were varied. The relative lengths of the resulting paths are presented in Figure 6.

Appl. Sci. 2023, 13, 4290 11 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19

Figure 6. Relative length of paths with different parameters.

The results depicted in Figure 6 indicate that when factor a is set to two, the path
length obtained is the shortest among all tested values, with an even shorter path length
observed when b is in the range of [1, 3]. Additionally, Table 1 shows the corresponding
path search time and the number of traversed nodes within this interval.

Table 1. Path search time and number of traversed nodes corresponding to different b values.

Parameter b Path Search Time(s) Number of Nodes Traversed
1 0.714 144

1.5 0.709 144
2 0.713 142

2.5 0.732 141
3 0.775 141

Based on the results shown in Table 1, the differences in path search time and the
number of traversed nodes are found to be relatively small when factor a takes the value
of two, and factor b falls in the range of [1, 3]. Figure 6 illustrates that when a is set to two
and b is one, the shortest paths are obtained in different obstacle maps, and the optimal
results are achieved when compared. Therefore, this study ultimately determines the val-
ues of factors a and b to be two and one, respectively, to obtain the final evaluation func-
tion:

𝑓(𝑛) = 2𝑔(𝑛) + 1 + 𝑑𝐿 ℎ(𝑛) , ℎ(𝑛) ≥ 𝐿3𝑔(𝑛) + 𝑑𝐿 ℎ(𝑛) , ℎ(𝑛) < 𝐿3 (8)

3.2. Performance Simulation Experiment Results
This study employed Matlab to build four simulation environments to test the per-

formance of the improved A* algorithm proposed in Section 2.2. The evaluation metrics
included data processing time, number of traversal nodes, number of turning points, total
turning angle, and path length. In Section 3.1, the weight parameter values in the evalua-
tion function of the improved A* algorithm were determined. Based on the simulation
experiments, the path planning trajectories of the traditional A* algorithm and the im-
proved A* algorithm in different environments were obtained and are shown in Figure 7.

0 1 2 3 4 5
44

45

46

47

48

49

50

51

Pa
th

 re
la

tiv
e

le
ng

th

The value of factor b

 a=1
 a=2
 a=3
 a=4

Figure 6. Relative length of paths with different parameters.

The results depicted in Figure 6 indicate that when factor a is set to two, the path
length obtained is the shortest among all tested values, with an even shorter path length
observed when b is in the range of [1, 3]. Additionally, Table 1 shows the corresponding
path search time and the number of traversed nodes within this interval.

Table 1. Path search time and number of traversed nodes corresponding to different b values.

Parameter b Path Search Time(s) Number of Nodes Traversed

1 0.714 144
1.5 0.709 144
2 0.713 142

2.5 0.732 141
3 0.775 141

Based on the results shown in Table 1, the differences in path search time and the
number of traversed nodes are found to be relatively small when factor a takes the value of
two, and factor b falls in the range of [1, 3]. Figure 6 illustrates that when a is set to two and
b is one, the shortest paths are obtained in different obstacle maps, and the optimal results
are achieved when compared. Therefore, this study ultimately determines the values of
factors a and b to be two and one, respectively, to obtain the final evaluation function:

f (n) =

 2g(n) +
(

1 + d
L

)
h(n), h(n) ≥ L

3

g(n) +
(

d
L

)
h(n), h(n) < L

3

(8)

3.2. Performance Simulation Experiment Results

This study employed Matlab to build four simulation environments to test the per-
formance of the improved A* algorithm proposed in Section 2.2. The evaluation metrics
included data processing time, number of traversal nodes, number of turning points, total
turning angle, and path length. In Section 3.1, the weight parameter values in the evaluation
function of the improved A* algorithm were determined. Based on the simulation experi-
ments, the path planning trajectories of the traditional A* algorithm and the improved A*
algorithm in different environments were obtained and are shown in Figure 7.

Appl. Sci. 2023, 13, 4290 12 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19

Note: In the above four groups of graphs, from left to right, each group shows the path planning
effect of traditional A* algorithm, add Optimization 1, add Optimization 1 and Optimization 2,
add Optimization 1 and Optimization 2 and optimization 3.

Figure 7. Path planning trajectories for different environmental maps and optimization steps. (a)
Environments 1; (b) Environments 2; (c) Environments 3; (d) Environments 4;

It can be seen from Figure 7 that both the traditional A* algorithm and the optimized
A* algorithm can achieve effective obstacle avoidance. Nevertheless, the traditional A*

Figure 7. Path planning trajectories for different environmental maps and optimization steps. (a) En-
vironments 1; (b) Environments 2; (c) Environments 3; (d) Environments 4. Note: In the above four
groups of graphs, from left to right, each group shows the path planning effect of traditional A*
algorithm, add Optimization 1, add Optimization 1 and Optimization 2, add Optimization 1 and
Optimization 2 and Optimization 3. And the green circle represents the starting point and the red
star represents the target point.

Appl. Sci. 2023, 13, 4290 13 of 19

It can be seen from Figure 7 that both the traditional A* algorithm and the optimized
A* algorithm can achieve effective obstacle avoidance. Nevertheless, the traditional A*
algorithm requires more grid traversals during pathfinding, resulting in longer pathfinding
times. After optimization 1, the algorithm became more targeted in its path search, result-
ing in a substantial reduction in the number of grid searches and data processing time.
Optimization 2, built on the foundation of optimization 1, eliminated all redundant turning
points, significantly reducing the total number of turning points and total turning angle
while still maintaining the necessary turning points for obstacle avoidance. Subsequently,
optimization 3 was added to smooth the path using quasi-uniform cubic B-spline curves
based on optimizations 1 and 2. The broken lines at the turning points were replaced by
smooth curves, resulting in a path with no distinct turning points. The total turning angle
was further reduced, and the corresponding path length was also shortened.

The performance evaluation index results of the algorithms for different environments
and optimization steps are shown in Table 2.

Table 2. Performance of the algorithms with different environments and optimization steps.

Environment Optimization Steps
and Methods

Data
Processing

Time (s)

Number of
Nodes

Traversed

Number of
Turning Points

Path
Length

Total Turning
Angle

Traditional A* 1.52 161 14 36.49 810◦

20 × 20 Optimization 1 0.49 75 14 36.49 810◦

Grid Optimization 1 + 2 0.53 75 8 31.62 190.50◦

Optimization 1 + 2 + 3 0.54 75 0 30.58 187.84◦

Traditional A* 3.20 456 35 62.38 2070◦

30 × 30 Optimization 1 1.06 195 35 62.38 2070◦

Grid Optimization 1 + 2 1.42 195 20 55.55 975.95◦

Optimization 1 + 2 + 3 1.43 195 0 54.01 895.78◦

Traditional A* 4.77 719 33 84.38 2250◦

40 × 40 Optimization 1 1.01 218 44 86.48 2870◦

Grid Optimization 1 + 2 2.97 218 29 79.18 1475.90◦

Optimization 1 + 2 + 3 2.99 218 0 75.13 1424.28◦

Traditional A* 7.77 1166 48 100.70 2925◦

50 × 50 Optimization 1 1.43 243 50 102.18 2925◦

Grid Optimization 1 + 2 4.53 243 33 97.25 1755.03◦

Optimization 1 + 2 + 3 4.55 243 0 91.14 1525.22◦

Note: Where optimization 1 is the segmented evaluation function with dynamic heuristics and weighted pro-
cessing, Optimization 2 is the redundant turning point removal strategy, and optimization 3 is the smoothing
optimization of quasi-uniform cubic B-sample curves.

Further analysis of the data presented in Table 2 reveals that optimization 1 results in
a decrease of 64.87% in the average number of traversed nodes and a reduction of 73.77%
in the data processing time. On the basis of optimization 1, optimization 2 further reduces
the number of newly generated path turns by an average of 32.27%, path length by an
average of 8.48%, total turn angle by an average of 50.83%, and data processing time by
an average of 50.05%. By adding optimization 3 to the paths generated by optimization 1
and optimization 2, the final performance of the improved A* algorithm is achieved, which
demonstrates an average reduction of 64.87% in the number of traversed nodes, an average
reduction of 49.64% in data processing time, and a shorter and smoother path with no
significant turning point. The average reduction in path length and total turning angle is
12.52% and 54.53%, respectively.

The simulation results show that the improved A* algorithm proposed in this paper
significantly reduces the data processing time, the number of traversed nodes, the number
of turning points, and the total turning angle of obstacle avoidance, resulting in a shorter
and smoother path, which is better suited for efficient, smooth and continuous flights of
UAVs in plantation forests.

Appl. Sci. 2023, 13, 4290 14 of 19

3.3. Comparison Experiments Results Based on 3D Point Cloud Map of Plantation Forest

To validate the effectiveness of the improved A* algorithm in practical plantation
forest environments, it was compared with the traditional A* algorithm, an improved A*
algorithm proposed in the literature [38], the RRT algorithm, and the APF algorithm. The
evaluation criteria were based on the path search time, path length, and total turning angle
of the generated path. Figure 8 depicts the trajectories planned by the four algorithms
under different starting and ending points, where the blue five-pointed star indicates the
starting point, and the green circle represents the target position. Moreover, the coordinates
presented in the figure are the grid coordinates of the map after re-rasterization, and each
grid was set to 1 × 1 in size. The results of evaluation metrics corresponding to different
algorithms are shown in Table 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

3.3. Comparison Experiments Results Based on 3D Point Cloud Map of Plantation Forest
To validate the effectiveness of the improved A* algorithm in practical plantation for-

est environments, it was compared with the traditional A* algorithm, an improved A* al-
gorithm proposed in the literature [38], the RRT algorithm, and the APF algorithm. The
evaluation criteria were based on the path search time, path length, and total turning angle
of the generated path. Figure 8 depicts the trajectories planned by the four algorithms
under different starting and ending points, where the blue five-pointed star indicates the
starting point, and the green circle represents the target position. Moreover, the coordi-
nates presented in the figure are the grid coordinates of the map after re-rasterization, and
each grid was set to 1 × 1 in size. The results of evaluation metrics corresponding to dif-
ferent algorithms are shown in Table 3.

(a) (b)

(c) (d)

Note: Where blue path trajectory represents traditional A* algorithm, green represents the im-
proved A* algorithm in this paper, purple represents the improved A* algorithm in literature[38],
red represents the APF algorithm, and black represents the RRT algorithm.

Figure 8. Path planning trajectory with different starting and target point positions. (a) start point
coordinates (10, 182), end point coordinates (240, 8); (b) start point coordinates (38, 35), end point
coordinates (220, 162); (c) start point coordinates (8, 112), end point coordinates (206, 138); (d) start
point coordinates (72, 194), end point coordinates (125, 8);

Figure 8. Path planning trajectory with different starting and target point positions. (a) start point
coordinates (10, 182), end point coordinates (240, 8); (b) start point coordinates (38, 35), end point
coordinates (220, 162); (c) start point coordinates (8, 112), end point coordinates (206, 138); (d) start
point coordinates (72, 194), end point coordinates (125, 8); Note: Where blue path trajectory represents
traditional A* algorithm, green represents the improved A* algorithm in this paper, purple represents
the improved A* algorithm in literature [38], red represents the APF algorithm, and black represents
the RRT algorithm.

Appl. Sci. 2023, 13, 4290 15 of 19

Table 3. Algorithm performance for different starting points and target point positions.

Environment Algorithm Path Search
Time (s) Path Length Total

Turning Angle

1

Traditional A* 4.36 312.10 495.00◦

RRT 47.92 370.82 3816.09◦

APF 78.64 299.26 1025.95◦

A* in reference [39] 4.09 304.32 482.46◦

Improved A* 3.49 294.50 44.61◦

2

Traditional A* 2.24 239.36 315.00◦

RRT 52.20 339 3636.93◦

APF 56.19 228.88 397.07◦

A* in reference [39] 1.98 237.43 157.93◦

Improved A* 1.35 225.64 15.40◦

3

Traditional A* 0.48 210.60 405.00◦

RRT 35.80 360.00 4571.42◦

APF 47.89 204.23 635.60◦

A* in reference [39] 0.42 206.32 508.93◦

Improved A* 0.31 200.53 41.85◦

4

Traditional A* 3.23 211.54 765◦

RRT 24.92 258.00 3181.67◦

APF 46.60 197.87 601.88◦

A* in reference [39] 2.21 204.99 589.46◦

Improved A* 1.97 194.95 54.13◦

The results in Table 3 indicate that the traditional A* algorithm generates a path with
a short path length and spends less time in the pathfinding process due to its inherent
heuristic capabilities.

However, it generates more turning points and has a larger total turning angle, and the
trajectory is often close to the edge of obstacles, which increases the risk of collision. Due to
the lack of heuristic guidance, the RRT algorithm based on random sampling generates
paths with a large number of nodes, which appear more tortuous, resulting in more time
consumption during the search process, and the obtained path length and total turning
angle are the largest. The APF algorithm generates paths with shorter lengths but takes
the longest time in the pathfinding process. The improved A* algorithm proposed in the
literature [38] reduces the path search time and path length to some extent and can generally
achieve a reduction in the total turning angle. However, the trajectory is sometimes close to
the edge of obstacles. In contrast, the improved A* algorithm proposed in this paper has
the shortest path search time and generates paths with no significant turning points, the
shortest length, and the smallest total turning angle. Importantly, it avoids the situation
where the algorithm searches for a path close to the edge of an obstacle to obtain the shortest
path. Specifically, compared with the traditional A* algorithm, the improved A* algorithm
reduces the path search time by an average of 33.53%, the path length by an average of
6.00%, and the total turning angle by an average of 92.17%. Compared with the improved
A* algorithm proposed in the literature [38], the improved A* algorithm reduces the path
search time by an average of 20.89%, the path length by an average of 3.98%, and the total
turning angle by an average of 90.90%. Compared with the RRT algorithm, the improved
A* algorithm reduces the path search time by an average of 95.34%, the path length by an
average of 30.69%, and the total turning angle by an average of 98.95%. Compared with the
APF algorithm, the improved A* algorithm reduces the path search time by an average of
97.07%, the path length by an average of 1.58%, and the total turning angle by an average
of 94.05%.

4. Discussion

In order to enhance the safety of UAV autonomous obstacle avoidance and reduce
unnecessary flight energy consumption in the plantation forest. Combined with the op-

Appl. Sci. 2023, 13, 4290 16 of 19

erating environment and flight requirements of UAVs, the traditional A* algorithm has
been improved through the segmented cost function of weighted processing with the
dynamic heuristic function of steering cost, turning points optimization, and smoothing
optimization.

Through the parameter determination experiment, the optimal combination of weight
coefficients for the cost function was obtained as the basis for subsequent experiments. The
performance simulation experiment results show that, compared with the traditional A*
algorithm with a unified weight, the average number of traversed nodes is reduced by
64.87%, and the data processing time is reduced by 73.77%, indicating that the combination
of weight coefficients can effectively reduce the data processing time and the number of
node searches, while achieving a better balance between the rate of convergence and the
path quality. Furthermore, by introducing the strategy of removing turning points, the re-
dundant nodes (including turning points) in the path were eliminated, further reducing the
path length and total turning angle while improving the path’s smoothness. Subsequently,
the path with redundant turning points removed was smoothed using quasi-uniform cubic
B-spline curves, with the fitting degree of the curves controlled to ensure the flight safety
of UAVs by maintaining a distance range between the trajectory and obstacles. After
smoothing, the final path did not exhibit obvious turning points, and the path length and
total turning angle were further reduced. On average, the shortest path length is reduced
by 12.52%, the total turning angle is reduced by 54.53%, and the total time spent is reduced
by 49.64%, meeting the requirements of low energy consumption, high efficiency, and high
safety for UAV flight in plantation forests.

The comparison experiments of various algorithms conducted in the plantation forest
map revealed that, among the selected algorithms, the RRT algorithm yielded the longest
path length and largest total turning angles and consumed a considerable amount of time,
thus exhibiting lower overall efficiency. The APF algorithm, the improved A* algorithm
proposed in the literature [38], and the improved A* algorithm proposed in this paper
yielded shorter paths and generated smoother trajectories in comparison to the traditional
A* algorithm. However, the APF algorithm and the improved A* algorithm proposed in
the literature [38] exhibited collision risks as the path trajectory was closer to the edge
of the obstacle. Moreover, the algorithm proposed in the literature [38] did not consider
the effect of changing weights on path search, thus leading to a longer path and larger
total turns. The APF algorithm took more search time, and its lack of global perception
led to an increased probability of falling into a local optimum. In contrast, the improved
A* algorithm in this paper reduced the path length and search time while ensuring the
safety of obstacle avoidance, significantly reducing the total turning angle, improving the
smoothness and continuity of UAV flight, reducing energy consumption, and proving to be
more suitable for the operating environment of plantation forests.

To summarize, this study aims to enhance the obstacle avoidance and endurance
capability of UAVs in unstructured plantation forests. It may provide new insights for
improving the safety and efficiency of UAV autonomous flight, which can broaden the
range of applications for UAVs. In the future, we plan to optimize the obstacle avoidance
algorithm further by combining it with other intelligent algorithms to plan optimal paths
for UAVs in dynamic environments and extend its application to other scenarios.

5. Conclusions

This study presented an improved A* obstacle avoidance algorithm for UAVs to
avoid obstacles in unstructured plantation forests. Improved the traditional A* obstacle
avoidance algorithm through segmented cost function of weighted processing with the
dynamic heuristic function of steering cost, turning points optimization, and smoothing
optimization. In performance experiments, the improved algorithm outperforms the
traditional A* algorithm with a reduction of 64.87% in traversed nodes on average, 49.64%
in search time on average, and 12.52% in path length on average. Additionally, the improved
algorithm exhibits no obvious turning point and a 54.53% reduction in total turning angle

Appl. Sci. 2023, 13, 4290 17 of 19

on average. In comparison with the RRT algorithm and APF algorithm, the improved
algorithm significantly reduces path search time and total turning angle by at least 90%.
Moreover, the path length is reduced by 30.69% on average compared with the RRT
algorithm and 1.58% on average compared with the APF algorithm. Compared with the
traditional A* algorithm, the improved algorithm reduces the path search time by 33.53%
on average, the path length by 6.00% on average, and the total turning angle by 92.17%
on average. Compared with the improved A* algorithm proposed in the literature [38],
the path search time is reduced by 20.89% on average, the path length is reduced by 3.98%
on average, and the total turning angle is reduced by 90.90% on average. Based on these
results, the algorithm presented in this article can achieve a better balance between path
search efficiency and trajectory quality while improving obstacle avoidance safety of UAVs
and reducing energy consumption, providing a new solution for the autonomous flight of
UAVs in plantation forest environments.

Author Contributions: Conceptualization, F.K., Y.W. and J.L.; methodology, C.C., S.T., C.Z. and
J.L.; investigation, F.K. and Y.W.; resources, F.K., Y.J. and Y.W.; data curation, J.L.; writing—original
draft preparation, J.L.; writing—review and editing, C.C., S.T. and J.L.; supervision, F.K. and Y.W.;
funding acquisition, F.K. and Y.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
(No. BLX201820).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data required to reproduce these findings cannot be shared at
this time as the data also forms part of an ongoing study.

Acknowledgments: Thanks to the Key Lab of State Forestry and Grassland Administration on
Forestry Equipment and Automation for providing the equipment for algorithm validation and
data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, L.; Meng, F. Application analysis of multi-rotor UAV in forest fire prevention and control. For. Sci. Technol. Inf. 2020,

52, 105–107.
2. Wang, Z.; Zhou, Y.; Li, X.; Wu, Z.; Cen, B.; Zeng, Y. Application analysis of UAV in forest fire prevention. For. Environ. Sci. 2016,

32, 31–35.
3. Chiaraviglio, L.; D’Andreagiovanni, F.; Liu, W.; Gutierrez, J.; Blefari-Melazzi, N.; Choo, K.K.; Alouini, M.S. Multi-Area Throughput

and Energy Optimization of UAV-aided Cellular Networks Powered by Solar Panels and Grid. IEEE Trans. Mob. Comput. 2021,
20, 2427–2444. [CrossRef]

4. Di Franco, C.; Buttazzo, G. Energy-aware coverage path planning of UAVs. In Proceedings of the International Conference on
Autonomous Robot Systems and Competitions, Vila Real, Portugal, 8–10 April 2015; pp. 111–117. [CrossRef]

5. Ji, X.; Meng, X.; Wang, A.; Hua, Q.; Wang, F.; Chen, R.; Zhang, J.; Fang, D. E2PP: An Energy-Effifcient Path Planning Method for
UAV-Assisted Data Collection. Secur. Commun. Netw. 2020, 2020, 8850505:1–8850505:13. [CrossRef]

6. Kuwata, Y. Real-Time Trajectory Design for Unmanned Aerial Vehicles Using Receding Horizon Control; Institute of Technology:
Cambridge, MA, USA, 2003.

7. Ye, W.; Ma, D.W.; Fan, H.D. Algorithm for low altitude penetration aircraft path planning with improved ant colony algorithm.
Chin. J. Aeronaut. 2005, 18, 304–309. [CrossRef]

8. Chu, X.; Hu, Q.; Zhang, J. Path planning and collision avoidance for a multi-arm space maneuverable robot. IEEE Trans. Aerosp.
Electron. Syst. 2018, 54, 217–232. [CrossRef]

9. Xi, F.; Zeng, X.; Ji, S.; Chen, G.; Cai, C. Path planning of mobile robot based on Improved-RRT algorithm. Comput. Sci. 2019,
46, 247–253. [CrossRef]

10. LaValle, S.; Kuffner, J. Rapidly-exploring random trees: Progress and prospects. Algorithmic Comput. Robot. New Dir. 2001,
5, 293–308. [CrossRef]

http://doi.org/10.1109/TMC.2020.2980834
http://doi.org/10.1109/ICARSC.2015.17
http://doi.org/10.1155/2020/8850505
http://doi.org/10.1016/S1000-9361(11)60249-5
http://doi.org/10.1109/TAES.2017.2747938
http://doi.org/10.11896/j.issn.1002-137X.2019.04.039
http://doi.org/10.1201/9781439864135-43

Appl. Sci. 2023, 13, 4290 18 of 19

11. LaValle, S.; Kuffner, J. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 ICRA.
Millennium Conference, San Francisco, CA, USA, 24–28 April 2000; IEEE International Conference on Robotics and Automation,
Symposia Proceedings (Cat. No. 00CH37065). pp. 995–1001. [CrossRef]

12. Jeong, I.; Lee, S.; Kim, J. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and
convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]

13. Gammell, J.; Srinivasa, S.; Barfoot, T. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Chicago, IL, USA, 14–18 September 2014. [CrossRef]

14. Gammell, J.; Srinivasa, S.; Barfoot, T. Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Seattle, WA, USA, 26–30 May 2015. [CrossRef]

15. Yang, F.; Fang, X.; Gao, F.; Zhou, X.; Li, H.; Jin, H.; Song, Y. Obstacle Avoidance Path Planning for UAV Based on Improved RRT
Algorithm. Discret. Dyn. Nat. Soc. 2022, 2022, 4544499. [CrossRef]

16. Li, B.; Qi, X.; Yu, B.; Liu, L. Trajectory Planning for UAV Based on Improved ACO Algorithm. IEEE Access 2020, 8, 2995–3006.
[CrossRef]

17. Zhou, Y.; Su, Y.; Xie, A.; Kong, L. A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV. Chin.
J. Aeronaut. 2021, 34, 199–209. [CrossRef]

18. Zhang, J.; Chadha, R.G.; Velivela, V.; Singh, S. P-CAP: Precomputed alternative paths to enable aggressive aerial maneuvers in
cluttered environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018. [CrossRef]

19. Zhang, J.; Chadha, R.G.; Velivela, V.; Singh, S. P-CAL: Pre-computed alternative lanes for aggressive aerial collision avoidance. In
Proceedings of the 12th International Conference on Field and Service Robotics (FSR), Tokyo, Japan, 29–31 August 2019.

20. Zhang, J.; Hu, C.; Chadha, R.G.; Singh, S. Maximum Likelihood Path Planning for Fast Aerial Maneuvers and Collision Avoidance.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macao, China, 3–8 November
2019; pp. 2805–2812. [CrossRef]

21. Fan, C.; Chen, W.; Xi, Y. Hopfield neural networks for path planning in dynamic and unknown environments. Control Theory
Appl. 2004, 21, 345–350.

22. Gao, M.; Wei, P.; Liu, Y. Competitive Self-Organizing Neural Network Based UAV Path Planning. In Proceedings of the IEEE 6th
International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 2376–2381.
[CrossRef]

23. Wei, B.; Yang, R.; Shu, S.; Wan, Y.; Miao, J. Path planning of mobile robots based on ion motion-artificial bee colony algorithm. J.
Comput. Appl. 2021, 41, 379–383.

24. Pan, Y.; Yang, Y.; Li, W. A Deep Learning Trained by Genetic Algorithm to Improve the Efficiency of Path Planning for Data
Collection with Multi-UAV. IEEE Access 2021, 9, 7994–8005. [CrossRef]

25. Das, M.; Roy, A.; Maity, S.; Kar, S.; Sengupta, S. Solving fuzzy dynamic ship routing and scheduling problem through new genetic
algorithm. Decis. Mak. Appl. Manag. Eng. 2022, 5, 329–361. [CrossRef]

26. Chen, X.; Chen, J.; Du, C.; Xu, Y. Region Coverage Path Planning of Multiple Disconnected Convex Polygons Based on Simulated
Annealing Algorithm. In Proceedings of the IEEE 4th International Conference on Computer and Communication Engineering
Technology (CCET), Beijing, China, 13–15 August 2021; pp. 238–242. [CrossRef]

27. Zhang, W.; Zhang, S.; Wu, F.; Wang, Y. Path Planning of UAV Based on Improved Adaptive Grey Wolf Optimization Algorithm.
IEEE Access 2021, 9, 89400–89411. [CrossRef]

28. Negi, G.; Kumar, A.; Pant, S.; Ram, M. Optimization of Complex System Reliability using Hybrid Grey Wolf Optimizer. Decis.
Mak. Appl. Manag. Eng. 2021, 4, 241–256. [CrossRef]

29. Ganguly, S. Multi-objective distributed generation penetration planning with load model using particle swarm optimization.
Decis. Mak. Appl. Manag. Eng. 2020, 3, 30–42. [CrossRef]

30. Dijkstra, E. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
31. Kovacs, B.; Szayer, G.; Tajti, F.; Burdelis, M.; Korondi, P. A novel potential field method for path planning of mobile robots by

adapting animal motion attributes. Robot. Auton. Syst. 2016, 82, 24–34. [CrossRef]
32. Orozco-Rosas, U.; Montiel, O.; Sepulveda, R. Mobile robot path planning using membrane evolutionary artificial potential field.

Appl. Soft Comput. 2019, 77, 236–251. [CrossRef]
33. Huang, Z.; Chu, D.; Wu, C.; He, Y. Path planning and cooperative control for automated vehicle platoon using hybrid automata.

IEEE Trans. Intell. Transp. Syst. 2019, 20, 959–974. [CrossRef]
34. Liu, J.; Xu, C.; Wu, Z.; Chen, Y. Intelligent rebar layout in rc building frames using artificial potential field. Autom. Constr. 2020,

114, 103172. [CrossRef]
35. Huang, L.; Zhou, F. Path planning of moving robot based on path optimization of D*Lite algorithm. Control Decis. 2020, 35,

877–884. [CrossRef]
36. Hart, P.; Nilsson, N.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1972, 4, 28–29. [CrossRef]

http://doi.org/10.1109/ROBOT.2000.844730
http://doi.org/10.1016/j.eswa.2019.01.032
http://doi.org/10.1109/IROS.2014.6942976
http://doi.org/10.1109/ICRA.2015.7139620
http://doi.org/10.1155/2022/4544499
http://doi.org/10.1109/ACCESS.2019.2962340
http://doi.org/10.1016/j.cja.2020.12.018
http://doi.org/10.1109/IROS.2018.8593826
http://doi.org/10.1109/IROS40897.2019.8967828
http://doi.org/10.1109/ICCC51575.2020.9344904
http://doi.org/10.1109/ACCESS.2021.3049892
http://doi.org/10.31181/dmame181221030d
http://doi.org/10.1109/CCET52649.2021.9544414
http://doi.org/10.1109/ACCESS.2021.3090776
http://doi.org/10.31181/dmame210402241n
http://doi.org/10.31181/dmame2003065g
http://doi.org/10.1007/BF01386390
http://doi.org/10.1016/j.robot.2016.04.007
http://doi.org/10.1016/j.asoc.2019.01.036
http://doi.org/10.1109/TITS.2018.2841967
http://doi.org/10.1016/j.autcon.2020.103172
http://doi.org/10.13195/j.kzyjc.2018.0583
http://doi.org/10.1109/TSSC.1968.300136

Appl. Sci. 2023, 13, 4290 19 of 19

37. Ju, C.; Luo, Q.; Yan, X. Path Planning Using an Improved A-star Algorithm. In Proceedings of the 11th International Conference
on Prognostics and System Health Management (PHM), Jinan, China, 23–25 October 2020; pp. 23–26. [CrossRef]

38. Cao, R.; Zhang, Z.; Li, S.; Zhang, M.; Li, H.; Li, M. Multi-machine Cooperation Global Path Planning Based on A-star Algorithm
and Bezier Curve. Trans. Chin. Soc. Agric. Mach. 2021, 52, 548–554. [CrossRef]

39. Gochev, K.; Safonova, A.; Likhachev, M. Anytime tree-restoring weighted A* graph search. In Proceedings of the Seventh Annual
Symposium on Combinatorial Search, Prague, Czech Republic, 15–17 August 2014; pp. 80–88.

40. Huang, X.; Dong, X.; Ma, J.; Liu, K.; Ahmed, S.; Lin, J.; Qiu, B. The Improved A* Obstacle Avoidance Algorithm for the Plant
Protection UAV with Millimeter Wave Radar and Monocular Camera Data Fusion. Remote Sens. 2021, 13, 3364. [CrossRef]

41. Xin, Y.; Liang, H.; Du, M. An improved A* algorithm for searching infinite neighborhoods. Robot 2014, 36, 627–633. [CrossRef]
42. Chen, J.; Cui, Y.; Liu, X. Path planning method of mobile robot based on improved A* algorithm. Appl. Res. Comput. 2020,

37, 118–119.
43. Kong, J.; Zhang, P.; Liu, X. Research on Improved A* Algorithm of Bidirectional Search Mechanism. Comput. Eng. Appl. 2021,

57, 231–237. [CrossRef]
44. Lin, M.; Yuan, K.; Shi, C.; Wang, Y. Path planning of mobile robot based on improved A∗ algorithm. In Proceedings of the 29th

Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 3570–3576. [CrossRef]
45. Islam, F.; Narayanan, V.; Likhachev, M. Dynamic multi-heuristic A*. In Proceedings of the IEEE International Conference on

Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 2376–2382, 2152–4092. [CrossRef]
46. Fu, B.; Chen, L.; Zhou, Y. An improved A* algorithm for the industrial robot path planning with high success rate and short

length. Robot. Auton. Syst. 2018, 106, 26–37. [CrossRef]
47. Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE

Robot. Autom. Lett. 2019, 4, 3529–3536. [CrossRef]
48. Wu, X.; Xu, L.; Zhen, R.; Wu, X. Bi-Directional Adaptive A* Algorithm Toward Optimal Path Planning for Large-Scale UAV Under

Multi-Constraints. IEEE Access 2020, 8, 85431–85440. [CrossRef]
49. Muñoz, J.; Li, B.; Rong, X.; Xiao, J.; Tian, Y.; Arditi, A. An assistive indoor navigation system for the visually impaired in

multi-floor environments. In Proceedings of the IEEE 7th Annual International Conference on CYBER Technology in Automation,
Control, and Intelligent Systems (CYBER), Honolulu, HI, USA, 31 July–4 August 2017; pp. 7–12. [CrossRef]

50. Liu, Z.; Liu, H.; Lu, Z. A dynamic fusion pathfinding algorithm using delaunay triangulation and improved A-star for mobile
robots. IEEE Access 2021, 9, 20602–20621. [CrossRef]

51. Zhou, S.; Kang, F.; Li, W.; Kan, J.; Zheng, Y.; He, G. Extracting Diameter at Breast Height with a Handheld Mobile LiDAR System
in an Outdoor Environment. Sensors 2019, 19, 3212. [CrossRef]

52. Shen, K.; You, Z.; Liu, Y.; Huang, T. Mobile robot planning based on improved a* algorithm. Appl. Res. Comput. 2022, 41, 75–79.
[CrossRef]

53. Wang, H.; Liu, Y. A low-cost autonomous navigation system for a quadrotor in complex outdoor environments. Int. J. Adv. Robot.
Syst. 2020, 17, 1729881420905150. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/PHM-Jinan48558.2020.00012
http://doi.org/10.6041/j.issn.1000-1298.2021.S0.070
http://doi.org/10.3390/rs13173364
http://doi.org/10.13973/j.cnki.robot.2014.0627
http://doi.org/10.3778/j.issn.1002-8331.2002-0016
http://doi.org/10.1109/CCDC.2017.7979125
http://doi.org/10.1109/ICRA.2015.7139515
http://doi.org/10.1016/j.robot.2018.04.007
http://doi.org/10.1109/LRA.2019.2927938
http://doi.org/10.1109/ACCESS.2020.2990153
http://doi.org/10.1109/CYBER.2017.8446088
http://doi.org/10.1109/ACCESS.2021.3055231
http://doi.org/10.3390/s19143212
http://doi.org/10.19734/j.issn.1001-3695.2022.04.0256
http://doi.org/10.1177/1729881420905150

	Introduction
	Materials and Methods
	Traditional A* Algorithm
	Improved A* Algorithm
	Segmented Evaluation Function with Dynamic Heuristics and Weighted Processing
	Heuristic Function for Adding Steering Cost
	Removing Redundant Turning Points
	Smoothing Based on Quasi-Uniform Cubic B-Spline Curves

	Improved A* Algorithm Performance Simulation
	Comparison Experiments Based on 3D Point Cloud Map of Plantation Forest

	Results
	Segmented Evaluation Function Parameter Determination Results
	Performance Simulation Experiment Results
	Comparison Experiments Results Based on 3D Point Cloud Map of Plantation Forest

	Discussion
	Conclusions
	References

