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Abstract: This study aimed to evaluate prognostic factors associated with nidus obliteration following
stereotactic radiosurgery (SRS) for cerebral arteriovenous malformations. From January 2001 to
January 2018, 119 patients who underwent SRS with AVM were studied to analyze major prognostic
factors (age, prescription dose (Gy), volume (mm3), nidus size (cm), and Spetzler–Martin (SM) grade)
for nidus obliteration. A random forest and tree explainer was used to construct a predictive model
of nidus obliteration. The prognostic factors affecting nidus obliteration from most to least important
were age, nidus size, volume, total prescription dose, and SM grade, using a predictive model. In
a specific case for nidus size (1.5 cm), total dose (23 Gy), and SM grade (2), the result showed a
high obliteration score of 0.75 with the actual obliteration period of 6 months spent; the mean AUC
was 0.90 in K-fold cross validation. The predictive model identified the main contributing factors
associated with a prognostic of nidus obliteration from linear accelerator-based SRS for cerebral AVM.
It was confirmed that the results, including the prognostic factors, are potentially useful for outcome
prediction for patient and treatment.

Keywords: arteriovenous malformation; explainable predictive modeling; nidus obliteration; stereotactic
radiosurgery; prognostic factors

1. Introduction

Cerebral arteriovenous malformation (AVM) is a complex cerebrovascular disorder,
characterized by abnormal connections between arteries and veins that bypass the capillary
bed and form high-flow, atypical arteriovenous vascular connections and shunts within
the brain parenchyma. The central point of these abnormal connections is referred to as
the nidus, which can range in size and complexity. The nidus is composed of an intricate
network of tortuous, thin-walled vessels that are susceptible to rupture and bleeding [1].
Since brain stereotactic radiosurgery (SRS) was first introduced for AVM treatment in 1972,
SRS techniques reportedly have a high AVM local cure rate. Therefore, SRS has emerged as
an effective treatment that can replace the surgical treatment of cerebral AVM and can be
applied to patients who cannot undergo surgery or have a high surgical risk [2,3].

The size, location, and angioarchitecture of the nidus are crucial considerations in the
management of arteriovenous malformations (AVMs). These features can have a substan-
tial impact on the risk of hemorrhage and treatment outcomes after radiosurgery. Several
studies have investigated the contribution of these factors in predicting the likelihood
of achieving complete nidus obliteration [4–9]. Specifically, the factors related to nidus
obliteration are the presenting symptoms: whether embolization was performed before
surgery; the anatomical location of the lesion; the extent of the lesion in the cerebral cortex,
deep brain nucleus, or brain stem; the depth and maximal diameter of the lesion (nidus),
the shape of the lesion (diffuse or compact); number of draining veins; Spetzler–Martin
(SM) grade; presence of aneurysm; and presence of hematoma, among others. In the case
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of radiosurgery, factors related to the prescription dose (Gy) and factors such as homogene-
ity and conformity indexes are typically generated and evaluated during the process of
radiosurgery planning have been reported as predictors of the nidus obliteration [10]. In
addition, the effect of age on the prognosis of radiosurgery for AVM has been analyzed
and reported. In elderly patients aged ≥60 years, Ding et al. investigated AVM obliteration
was achieved in 66.7% population with a marginal dose of at least 22 Gy; the incidence of
radiation-induced complications was minimal, and the risk of bleeding during the latent
period was very low [11]. Meanwhile, Börcek et al. reported a high obliteration rate of
65.9% and low complication rate of 8.0% in pediatric AVM radiosurgery patients, based
on data collected from 20 studies with 1212 patients [12]. Considering that cerebral AVMs
are associated with active angiogenesis and rapid endothelial cell turnover, the treatment
response to irradiation increases with younger age, and early obliteration of the nidus has
been found to be related [12]. However, large-scale clinical studies have not shown any
differences related to age or sex, and a clear pathological treatment mechanism caused by
differences in radiation sensitivity according to age has not yet been established [13].

Several studies have analyzed various prognostic factors for outcome prediction
related to successful occlusion after radiosurgery of cerebral AVM with a conventional
machine learning approach [14,15]. In recent years, predictive models using artificial
intelligence (AI) techniques have been used to predict the prognosis of AVM treatment.
Oermann et al. (2016) reported that, by using prospective clinical data and machine learn-
ing, they obtained a specificity of 62% and a sensitivity of 85% for predicting prognosis
related to occlusion of malformed vessels in SRS for cerebral AVMs [14]. Meng et al. (2022)
presented results of a machine learning modeling study predicting the outcome of SRS
for residual arteriovenous malformations after partial embolization [15]. For 130 AVM
patients, researchers used 9 machine learning models including support vector machine
(SVM), K-nearest neighbor (KNN), and neuro network (NN), and reported performance of
AUC 0.66–0.78. The primary outcome was the obliteration rate, 70.77% (92 of 130), with
the follow-up of 43.8 months (range, 12–108 months). A favorable outcome occurred in
89 patients (68.46%), but 41 patients (31.54%) reported an unfavorable outcome. Although
an attempt was made to incorporate radiomic features in this study, in-depth feature analy-
sis was excluded. Saggi et al., (2022) conducted a study of a machine learning model for
hemorrhage prediction in pediatric patients with cerebral arteriovenous malformations [16].
Using data obtained from 186 pediatric patients, they implemented a random forest model,
a gradient-boosted decision tree, and an AdaBoost model to identify features in predicting
hemorrhage. Among the feature findings, gradient-boosted decision trees, AdaBoost, and
random forest models showed AVM location and a concurrent arterial aneurysm as the
important factors. However, the correlation of nidus obliteration based on prognostic
factors has not been focused on in the conventional modeling study.

In summary, these classical machine learning research results have not explained
the approach, from the perspective of correlation analysis, regarding how each studied
prognostic factor contributed to the obliteration probability. Similarly, machine learning
and deep learning models have been created through data training and testing, and only
results for the predictability and accuracy have been reported in existing AI studies [17,18].
Therefore, these models have generally been regarded as black boxes, because it is difficult
to intuitively understand the correlation or importance of factors contributing to prediction.
To solve this limitation, XAI techniques have emerged in research [19].

When employing AI within the medical domain, it is crucial to ensure the dependabil-
ity of the machine-generated predictions, as well as to provide comprehensive explanations
of the underlying concept to users, accompanied by persuasive outcomes to support the
approach. To provide explanations for the observed effects, a range of methods such as
regressors, decision trees, rule-based learners, and Bayesian models may be utilized in
conjunction with ensemble, support vector machines, and neural networks [18]. Predictive
models, as a decision-making support system in medical practice, can, therefore, provide
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insights for health professionals that are improved by data-based and mathematical-based
evidence [17].

Thus, this study employed explainable predictive modeling methods to investigate
the prognostic potential of factors possibly linked to nidus obliteration in individuals who
received cerebral AVM treatment via linear accelerator (LINAC)-based SRS. The predicted
results for specific patient cases were compared to evaluate the validity of the predictive
model, surpassing conventional research approaches for AVM prediction.

2. Materials and Methods
2.1. Patient Dataset

To predict nidus obliteration, data from 119 patients with AVM who underwent
radiosurgery (Novalis; Varian Medical Systems, Palo Alto, CA and BrainLAB, Feldkirchen,
Germany) at our institution from January 2001 to January 2018 were included in this study.
Exclusion criteria were: (a) under 6 months duration of follow-up patients, (b) previous
treatment SRS patients, (c) insufficient baseline data. Appropriate approval from the clinical
ethics committee of our institution (Inje University Ilsan Paik Hospital, IRB No: 2019-12-016)
was obtained.

In all patients, computed tomography angiography (CTA), magnetic resonance imag-
ing (MRI) with gadolinium enhancement, magnetic resonance angiography (MRA), and
trans-femoral cerebral angiography (TFCA) were used to identify and evaluate cerebral
AVMs. In this study, 66 patients (55.46%) who elected for radiosurgery as a therapeutic
intervention for AVM presented with SM grade III or higher, while 53 patients (44.54%)
had SM grade II or lower. The selection of a treatment method was contingent upon
the precise location of the AVM, with patients being carefully assessed for suitability for
surgical intervention/excision or radiosurgery by board-certified neurosurgeons. When
performing radiosurgery, a stereotactic head frame and equipment were used. In addi-
tion, biplanar cerebral angiography and computed tomography (CT) were combined to
develop radiosurgery plan. The image delineation for nidus, feeding arteries, and draining
veins were included, and radiation dose was calculated by the treatment planning system
(iPlan, BrainLAB, Feldkirchen, Germany) using a 6 MV photon beam with 80% isodose line
covered in total volume of nidus.

To identify the prognostic factors that affect AVM nidus obliteration, the neurosurgery
department of our hospital used their existing knowledge to rank the factors that af-
fect patient outcomes. Previously reported prognostic factors were also included in this
study [20–23]. The factors selected as contributing to AVM nidus obliteration were age,
total dose (Gy), AVM location (lobar or deep), AVM volume (mm3), preoperative neuro-
logical deficits, AVM nidus size, modified AVM score, Virginia radiosurgery AVM score
(VRAS), deep vein drainage, eloquent area, Spetzler–Martin (SM) grade, hemorrhage after
radiosurgery, and toxicity grade. Nidus obliteration was evaluated for all patients during
the follow-up period from 4 to 194 months (mean 33.4 months) by radiographic assessment
including TFCA, MRA, and CTA.

2.2. Explainable Predictive Modeling

Nidus obliteration prediction was performed using a random forest classifier with
a tree explainer. The correlations of each predictor and its weighted contribution to the
prediction were scored by determining the Shapley additive explanations (SHAP) values
(Figure 1). Our goals were to not only analyze the predictors affecting the nidus obliteration,
but also predict the nidus obliteration for individual patients using a local interpretation.
The performance (ROC/AUC) was evaluated using a cross validation method (Figure 1A).
Figure 1B illustrates the specific modeling process for the random forest classifier. The
dataset is partitioned into training and test set for prognostic factors (Xn) and a dependent
variable (Y) to construct trees for prediction, using a series of pipelines. The decision
outcome obtained from the trees is subsequently assessed by the test set, and a refined
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model is produced by means of parameter tuning including number of trees, depth of trees,
and bootstrapping of the features.
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Figure 1. Diagram for nidus obliteration prediction and feature importance analysis. (A) Entire
block diagram for the input, modeling, and output process including evaluation method. (B) Specific
pipeline for the random forest classifier modeling process for this study.

Important factors involved in radiosurgery, such as the AVM score, deep vein drainage,
eloquent area, and SM grade along with the features judged to be clinically relevant, were
also analyzed for SHAP; the contributions of all prognostic factors to the SHAP predictive
model were calculated by dividing the characteristics probability of each prognostic factor
by the total sum of each prognostic factor influencing the outcome (Equation (1)). Therefore,
the correlation between prognostic factors for nidus obliteration and the influence of each
factor were shown as SHAP values [24].
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where N is the number of features, PR
i is the set of features with order, v(PR

i ) is the
contribution of a set of features with order, v(PR

i ∪ {i}) is the contribution of a set of
features with order i and feature i.

Random Forest is a supervised learning method that can be applied to solve classifica-
tion or regression problems [25]. The method consists of a combination of tree predictors,
such that each tree is independent of any vector value and uses the same layout for
each vector created. For the prediction of nidus obliteration, training and testing split
were conducted.
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2.3. Performance Metric and Programming Environment

The ROC and AUC of the model were analyzed using K-fold cross validation. Python
3.9.12, scikit-learn 1.2.0 for predictive modeling, and SHAP 0.31.0 modules were used in
the programming environment.

3. Results
3.1. Patient Characteristics Analysis

The analyzed patients’ demographics are shown in Table 1. The mean age of the
patients was 34 years, and 21.85% of the patients were younger than 18 years. Patients with
Spetzler–Martin grade 3 or higher accounted for 55.46% of the total patient group. The
mean total dose was 25.74 Gy for radiosurgery, and the mean nidus size was 2.75 cm.

Table 1. Patients’ characteristics (n = 119).

Category Unit or
Sub-Category

Instance (%) or
Mean ± SD

Age years 34 ± 13

Age ≤ 18 years 26 (21.85%)

Sex
Male 82(68.91%)

Female 37(31.09%)

Previous rupture
Yes 64 (53.78%)

No 55 (46.22%)

Prior embolization
Yes 6 (5.04%)

No 113 (94.96%)

AVM Location
Lobar 60 (50.42%)

Deep 59 (49.58%)

SM grade

1 14 (11.76%)

2 39 (32.77%)

3 43 (36.13%)

4 15 (12.61%)

5 8 (6.72%)

Median score 3

AVM Volume mm3 Mean 7163 (IQR Q1: 1190, Q3:
7140, min: 64, max: 15,600)

Virginia radiosurgery AVM score

0 4 (3.36%)

1 24 (20.17%)

2 46 (38.66%)

3 40 (33.61%)

4 5 (4.20%)

Modified AVM score Median score 2.05

Deep vein drainage
Yes 51 (42.86%)

No 68 (57.14%)

FD Gy 20.28 ± 6.49)

Fx
Sx 102 (85.71%)

Fx 17 (14.29%)

TD Gy 25.74 ± 8.58

Dmax Gy 30.02 ± 9.83

Nidus size cm 2.75 ± 1.78

Note: SD = standard deviation; AVM = arteriovenous malformation; SM = Spetzler–Martin grade; FD = fractional
dose; Fx = fraction; Sx = single fraction; TD = total dose; Dmax = maximum dose; Gy = the unit of ionizing
radiation dose (J/kg).
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3.2. Importance of Factor Contributions to Prediction of Nidus Obliteration

Regarding the importance of each prognostic factor affecting nidus obliteration, the
specific contribution of high and low values for each factor to nidus obliteration was
analyzed. A predictive model was used to analyze the contribution of each prognostic
factor to nidus obliteration (Figure 2). The order of importance from highest to lowest
was age, nidus size, nidus volume (mm3), modified AVM score, total dose (Gy), SM grade,
preoperative neurological deficits, and Virginia radiosurgery AVM score.
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Figure 2. Feature importance for prediction of nidus obliteration.

For example, in the case of age, the mean age was 34 years and the data used for
analysis showed a higher rate of obliteration in younger patients (age < 30 years). Even
in the case of nidus size, patients with a size of <3 cm made a high contribution to nidus
obliteration; the higher the TD (Gy), the greater the contribution to curing AVM.

3.3. Correlations between Prognostic Factors and Nidus Obliteration

The correlations between prognostic factors that mainly affected nidus obliteration
were analyzed. Figure shows linearity, which means the correlation between the two groups
in a specific interval. In Figure 3A, when the volume was <10 cm3, a high total dose (Gy)
was given, which was interpreted as being highly associated with nidus obliteration. In
the treated patient group with nidus sizes of <3 cm, high obliteration could be expected if
the nidus size was small, even in the case of age < 30 years and age ≥ 30 years (Figure 3B).
In addition, the patient group with a high fractional dose and preoperative neurological
deficits of severe headaches had a VRAS of <2, indicating a higher SHAP value than in the
patient group with the same low score (Figure 3C,D).
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Figure 3. Factors highly associated with nidus obliteration in the correlation analysis. (A) Nidus
volume (mm3) vs. total dose, (B) Nidus size (cm) vs. age (years), (C) Fractional dose (Gy) vs. nidus
size (cm), and (D) Preoperative neurological deficits vs. Virginia radiosurgery AVM score (VRAS).
Note: Grey parts (dense regions of sample frequency), preoperative neurological deficit (1: headache,
2: incidental detection, 3: mental change, 4: sensory motor weakness, 5: stupor, 6: seizure, 7: dizziness,
8: syncope, 9: drowsy, 10: semicoma, and 11: diplopia), and VRAS (0–4).

Among the major factors, nidus volume and size were found to have definite effects.
Two factors could be analyzed as such a result when the standard deviation is not large
in the histogram of variables (Table 1). For example, the patient group with a total dose
of 20–25 Gy, which did not show a large deviation, accounted for 77% of the effect on
nidus obliteration, and the patient group with a volume of 76% had a volume of <10 mL
(Figure 3A,B).

3.4. Individual Obliteration Probability of the Prognostic Factors

Correlations of the factors with nidus obliteration of a specific patient were plotted.
In Figure 4A, the nidus volume in patient A who underwent AVM radiosurgery in our
institution was 4940 mm3, the nidus size was 3.2 cm, and the obliteration timepoint was
66 months. The SHAP value at this time showed a low value of 0.32, with a low probability
of curing AVM. Additionally, B can be interpreted in the same way as A (Figure 4B). In
Figure 4C, there was a relatively small volume, thus the obliteration probability was high.
Specifically, in case C, the small nidus size was 1.5 cm, Spetzler–Martin grade was 2, and
the obliteration date was 6 months. At this time, the SHAP value was 0.75 (Figure 4C), with
a high probability for nidus obliteration. Additionally, D showed high probability for nidus
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obliteration due to nidus size (1.6 cm). Similarly, the factors marked in red represent areas
that contributed highly to obliteration (0.85) in Figure 4D.
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Figure 4. Nidus obliteration probability with the related clinical and dosimetric features for each
patient. (A) For patient A, who underwent AVM radiosurgery in our institution, the nidus volume
was 4940 mm3, the nidus size was 3.2 cm, and the obliteration timepoint was 66 months (SHAP
value: 0.32), with a low probability of a delay in curing AVM). (B) In the case of B, in which the
delayed nidus obliteration was more than 60 months, the SHAP score was 0.26. (C) In case C, the
nidus size was 1.5 cm (small), the Spetzler–Martin grade was 2, and the obliteration timepoint was
6 months (0.75, with a high probability for nidus obliteration). (D) Patient D showed high obliteration
probability in nidus size (1.6 cm).

3.5. Partial Dependent Analysis for Nidus Obliteration

For 119 patients, the nidus size was classified in the 0.4 cm sectional range in the
third, fourth, and fifth bars; the probability of correlation with nidus obliteration was then
analyzed (Figure 5). The results showed that there was an obliteration probability of 76.5%
for 17 patients with a nidus size ranging from 1.4 to 1.8 cm. In the case of nidus sizes
ranging from 4.9 to 10.4 cm, the obliteration probability was 26.7%. The red arrow indicates
the trend whereby increases in nidus size led to decreases in the obliteration probability.
Overall, reasonable trends of a small nidus size increasing the probability of obliteration
and of a large nidus size delaying obliteration were observed.
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Figure 6. ROC and AUC are calculated by K-fold cross validation (K = 5). The mean AUC
is 0.90 ± 0.10 in performance measurement.
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4. Discussion
4.1. Prognostic Factors for Arteriovenous Malformation in Radiosurgery

An important factor in determining a local cure for cerebral AVM is nidus obliteration.
We used AI modeling with various predictors to predict nidus obliteration (Table 1). Since
the result in Figure 2 is shown in order of importance using a dataset that considered
the patient’s characteristics in our institution, the order of prognostic factors may vary
depending on the patient’s treatment outcome and their individual disease condition.
In particular, the major clinical factors considered to be radiologically related to nidus
obliteration are the extent and depth of the lesion, the maximum diameter of the lesion
(nidus), number of draining veins, SM grade, presence or absence of aneurysm, and
hematoma, among others [5,6,8,9,22,26]. Future research is needed because factors related
to prescription dose, fractionation, and the radiation treatment plan (beam delivery method
and radio-biological effect) are influential factors for radiosurgery. Furthermore, Potts
et al. have examined the relationship between low marginal dose and the likelihood of
AVM obliteration, as well as hemorrhage incidence, while also exploring the potential
of minimizing radiosurgery-related neurological complications. These findings suggest
that marginal dose could serve as a prognostic factor, warranting consideration in future
research endeavors [27]. It was also found that a larger nidus volume was associated with
a longer time to nidus obliteration with those probability decreased (Figure 5). This finding
was consistent with the results of previous clinical studies using this partial dependence
analysis for the nidus obliteration [8,9].

The major prognostic factors including the size, anatomical location, and SM grade of
the lesion used by the authors are important to considered when planning radiosurgery in
this study.

First, the AVM location of the lesion was 50.42% and 49.58% for lobar/deep area in
Table 1; there was no significant difference in the location. That is, the location of these
lesions is more related to the patient’s clinical deficit, such as changes in neurological
disorders, symptoms due to neurologic changes, and the risk of bleeding during the latent
period, than how quickly the lesions are obliterated radiographically.

Second, it was observed that the probability of nidus obliteration of the lesion increased
as the size of the nidus size decreased (Figure 5) in this study. If the size of a lesion other
than AVM is considered during radiation treatment or radiosurgery, the radiation dose (Gy)
to the target must be reduced in order to reduce the possibility of complications; thus, the
obliteration probability is thought to decrease. Here, the determination of prescription dose
for AVM treatment, which takes into account the volume and size of AVM, is contingent
upon the guidelines employed by each medical institution. When the size of the AVM lesion
is very large, surgical removal is often difficult. In this case, radiosurgery is the promising
treatment method. However, the outcomes of radiosurgery for AVM are also decreased,
and the possibility of complications (e.g., radiation toxicity) is relatively increased with
increasing size. The complications after radiosurgery are known to be a major cause of
brain edema, caused by radiation toxicity, and may include an increase in intracranial
pressure or aggravation of neurological symptoms due to the lesion being treated. In
addition, the possibility of bleeding is high as the amount of radiation is relatively small
at the edge of the target lesion as age increases, accompanied by aneurysms in arteries or
veins, or as the size of AVM increases [28]. In their international multicenter study, Ding
et al. demonstrated that a better prognosis was observed after radiosurgery (Gamma knife)
in cases with smaller-sized nidus [29]. Specifically, they found that stereotactic radiosurgery
was associated with improved outcomes in patients with small, unruptured SM grade III
AVM compared to those with larger or ruptured SM grade III nidus. These results are
consistent with our own study’s findings, which showed that smaller nidus sizes were
associated with higher rates of nidus obliteration; although, the specific size of the nidus
varied among the patient population (Figure 5).
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4.2. Need for Explainable AI Methodology

In the field of data science, machine learning has been used as a data analysis method
to overcome the limitations of big data analysis, interpretation, and statistical methods. The
accuracy of a predictive model has also become a major evaluation metric that measures
the prediction success or failure of research projects because various optimization models,
including deep learning, are used in AI models [18,30,31]. However, since they are black
boxes in which the inference results are unknown, the basis for which the prediction results
were derived is unknown [32–34]. For this reason, the explainable AI (XAI) technique
provides an explanatory basis for determining why a prediction result was obtained.
The technique has the benefit of reducing errors that may cause future researchers to
misrecognize the importance of key factors required to interpret basic statistical data. In
other words, the random forest model used in this study calculated the order of importance
of prognostic factors that significantly influence nidus obliteration (Figure 2). For example,
the model user can see the importance of the factors affecting nidus obliteration, and it
was possible to explain the differences in each important factor even for a specific patient
condition (Figures 3 and 4). In addition, the authors judged that the observed trend in
which nidus sizes greater than 3 cm were associated with a decreased nidus obliteration
predictive value (Figure 5) was a clinically acceptable result.

However, the degree and level of acceptance for the prediction results may differ
depending on the users of each institution, how they select prognostic factors contributing
to obliteration, and rank their contributions. Thus, interpretation of these results may
remain controversial. However, we performed several analyses attempting to solve this
problem more descriptively (Figures 3–5). Through the integration of an explainer with the
model employed in this study, XAI has yielded novel insights that eluded previous black
box models, notably by enabling patient-specific predictions [23,35–38].

4.3. Limitation of input Data for Machine Learning Model

The characteristic of the relatively small sample size (n = 119) and the homogeneous
patient population (patients of a single nationality with no racial diversity) should be
addressed in the analysis outcomes. However, a cross-validation was applied for the
performance validation to recognize this limitation (Figure 6). We computed and examined
the significance of different features that influence the obliteration of AVM nidus using
predictive modeling techniques. In addition, features with many clinical characteristics
were selected as inputs such as modified AVM score and SM grade using XAI techniques;
data affecting prognosis could be analyzed as an institution-specific dataset. However,
as in general statistical analysis, when there is bias in the data for patients with nidus
obliteration, the importance of features based on biased prediction results, such as young
patients or small nidus sizes, may be distorted. For example, the idea that younger patients
are more likely to experience nidus obliteration is controversial [11,39–41]. The follow-up
examination of the patient’s nidus obliteration involved the utilization of multiple imaging
modalities, including TFCA, MRA, and CTA. This approach diverges from the use of a
single uniform imaging modality and may introduce discrepancies in the interpretation
of the results among readers. Additionally, the imaging data were evaluated by a team of
certified neurosurgeons, potentially yielding data on both intraobserver performance and
interobserver variability. Such data can be valuable in further validating the reliability and
reproducibility of the results obtained. Therefore, the bias can be eliminated by using data
from more cases. Furthermore, the homogeneity and conformity indexes are important
factors in evaluating the characteristics of radiation irradiated to the nidus, through the
evaluation of radiosurgery planning [42,43]. Therefore, these are important factors to
evaluate as prognostic factors, and additional studies considering them are needed.

4.4. Expansion of Model Selection for the Outcome Analysis

In this study, an ensemble model and a tree explainer were used. However, vari-
ous interpretation techniques, such as surrogate analysis, local explanation, and explain-
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able models, can also be used [18]. Regarding deep learning applications for radiother-
apy/radiosurgery, prediction of clinical outcomes is an emerging field [44].

The clinical outcome prediction was performed using the results from tracking nidus
obliteration after radiosurgery in this study. Since the number of data points associated
with some predictors and nidus obliteration was small, their association was not strong
(Figure 2). It is feasible to make predictions using deep neural networks about the duration
of obliteration for nidus size, as well as the prognosis for potential side effects such as
the development of neurologic deficits, based on the location of the AVMs subsequent
to radiosurgery.

5. Conclusions

The prognostic factors associated with nidus obliteration in patients with cerebral
arteriovenous malformations treated with LINAC-based stereotactic radiosurgery were
evaluated; their importance was assessed through predictive modeling. The analysis
revealed that nidus size, volume, and total dose, along with other clinical factors, were
significant predictors of obliteration. For patients with a nidus size ranging from 1.4
to 1.8 cm, the predictive model yielded a high obliteration probability of 76.5%. While
the results indicate that the model can be a useful guide for patient treatment, it should
be noted that more clinical factors including dosimetric factors such as marginal dose,
homogeneity, and conformity indexes and a larger dataset need to be considered to improve
its predictive accuracy.
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