
Citation: Mohamed, A.A.; Eltokhy,

A.; Zekry, A.A. Enhanced Multiple

Speakers’ Separation and

Identification for VOIP Applications

Using Deep Learning. Appl. Sci. 2023,

13, 4261. https://doi.org/10.3390/

app13074261

Academic Editors: Yoshinobu

Kajikawa and Cheng-Yuan Chang

Received: 18 February 2023

Revised: 20 March 2023

Accepted: 24 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Enhanced Multiple Speakers’ Separation and Identification for
VOIP Applications Using Deep Learning
Amira A. Mohamed 1,2,* , Amira Eltokhy 3 and Abdelhalim A. Zekry 2

1 Department of Electronics Engineering and Communications, Faculty of Engineering, Badr University in
Cairo (BUC), Cairo 11829, Egypt

2 Department of Electronics and Electrical Communications, Faculty of Engineering, Ain Shams University,
Cairo 11517, Egypt

3 Rapid Bio-Labs, 10412 Tallinn, Estonia
* Correspondence: amira.ahmed@buc.edu.eg

Abstract: Institutions have been adopting work/study-from-home programs since the pandemic
began. They primarily utilise Voice over Internet Protocol (VoIP) software to perform online meetings.
This research introduces a new method to enhance VoIP calls experience using deep learning. In this
paper, integration between two existing techniques, Speaker Separation and Speaker Identification
(SSI), is performed using deep learning methods with effective results as introduced by state-of-the-art
research. This integration is applied to VoIP system application. The voice signal is introduced to
the speaker separation and identification system to be separated; then, the “main speaker voice” is
identified and verified rather than any other human or non-human voices around the main speaker.
Then, only this main speaker voice is sent over IP to continue the call process. Currently, the online
call system depends on noise cancellation and call quality enhancement. However, this does not
address multiple human voices over the call. Filters used in the call process only remove the noise
and the interference (de-noising speech) from the speech signal. The presented system is tested with
up to four mixed human voices. This system separates only the main speaker voice and processes it
prior to the transmission over VoIP call. This paper illustrates the algorithm technologies integration
using DNN, and voice signal processing advantages and challenges, in addition to the importance of
computing power for real-time applications.

Keywords: speaker separation; speaker identification; deep learning; VoIP

1. Introduction

Voice over Internet Protocol (VoIP) is the internet-based delivery of telephony ser-
vices enabled by a combination of communication technologies, methods, protocols, and
transmission techniques [1]. Instead of analogue phone lines, VoIP allows audio calls to
be delivered over IP networks such as the internet. Since the COVID-19 pandemic began,
VoIP applications have become an essential part of our daily lives. As a result of audio calls,
video calls, and conferencing, the user base of VoIP applications has grown. Whether at
work or school, almost everything is done through VoIP applications [2].

Currently, the online call system depends on noise cancellation and call quality en-
hancement. However, this does not address multiple human voices over the call. Filters
used in the call process only remove the noise and the interference from speech signal.
However, by adding the Speaker Separation and Identification (SSI) system, it allows
sending only the main target speaker rather than any human voices that may exist around
the main speaker.

The former studies of Speaker Recognition focus on authentication and security ap-
plications, as there has long been a demand to be able to recognise someone solely based
on their speech [3]. Furthermore, in the context of speech separation, the requirements
of a real-time processing system are even higher and more sensitive. Hearing aids are
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an example of speech separation implementation that requires real-time processing [4,5].
Conversely to these applications used in speaker recognition and speaker separation, this
research uses both speaker recognition and separation in a different application, which
is VoIP.

Figure 1 illustrates that humans can focus on the voice produced by a single speaker in
a crowded and noisy environment where they can perform speech–non-speech separation
(de-noising) and speaker separation (multi-speaker talking separation) simultaneously [6].
This simple task for humans has proven extremely challenging to mimic in speech process-
ing systems. As the demand for a system that can perform real-time processing is growing,
this research focuses on using both speaker recognition and real-time speech separation
models to improve the online call process or (VoIP). Our contributions are: (i) A novel
SSI which is an integration of deep learning audio separation and identification models,
(ii) A separation test up to four speakers at a time, (iii) Involving this model in a VoIP
functional system.
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This paper is organised as follows. Section 2 presents the literature review of speaker
identification and speaker separation methods. In Section 3, the proposed model descrip-
tion and the main block diagram of our study are discussed. In Section 4, the setup for
conducting our experiment is described. Section 5 presents and discusses the results.
Section 6 contains the conclusion.

2. Literature Review

The majority of speaker identification techniques used in the literature before deep
learning models were based on i-vector techniques [7–9].

These techniques look for patterns in audio signals and categorise them using methods
such as the Mel Frequency Cepstral Coefficient (MFCC), which is essential for identifying
speakers. Alternatives to MFCC are provided, including Linear Predictor Coefficient (LPC),
Line Spectral Frequency (LPF), Rhythm, Chroma Factor, Turbulence, Spectrum Sub-band
Centroid (SSC), and other feature lists. The most frequently employed model for training on
our data is the Gaussian Mixture Model (GMM). Other related models, such as the Model
of Hidden Markov Chains, can also be used for training (HMM). Recently, the majority of
the model training phase for a speaker identification project was carried out using Artificial
Neural Networks (ANN).

When compared to many traditional approaches, deep learning algorithms have
significantly improved the state of the speech separation topic in recent years [10–15].
A basic neural network speech separation approach begins by applying the short-time
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Fourier transform (STFT) to the combined sound to obtain a representation of time and
frequency (T-F). After that, inverse STFT is used to synthesise the source waveforms from
the T-F bins associated with each source. This concept raises several concerns. First, it is
debatable whether Fourier decomposition is the best way to convert the signal for speech
separation. Secondly, the signal’s amplitude and phase must be taken into account by the
separation algorithm because STFT converts the signal into a complex domain. Because
altering the phase is difficult, the bulk of proposed approaches merely adjust the STFT’s
magnitude by generating a time-frequency mask for each source and synthesising using
the masked magnitude spectrogram with the mixture’s initial phase. As a result, separation
performance is constrained above. Even though numerous techniques, such the phase-
sensitive mask [16] and complex ratio mask [17], have been developed to leverage phase
information to create the masks, because the reconstruction is inaccurate, the upper bound
remains. Furthermore, for effective speech separation in the STFT domain, high-frequency
resolution is required, resulting in relatively long time windows, which are typically greater
than 32 ms for speech [12–14] and greater than 90 ms for music separation [18]. Such
systems cannot be used in situations where extremely low latency is required, such as in
hearable devices or telecommunication systems because the minimal latency of the system
is constrained by the size of the STFT time window. Directly modelling the signal in the
time-domain is a straightforward technique to get around these challenges. The method
in [19] indicated recent success in tasks including voice recognition, speech synthesis, and
speech improvement [20–24].

The current leading approach [19], which is based on an overcomplete set of linear
filters, divides the filter outputs at each time step using a mask for two speakers or a
multiplexer for more speakers. The audio is then rebuilt using these incomplete representa-
tions. Because the order of the speakers is assumed to be random, one uses a permutation
invariant loss during training so that the permutation that minimizes the loss is taken into
account (it is difficult to sort sounds). This masking-based approach has certain limita-
tions because as the number of speakers increases, the mask must extract and suppress
more information from the representation, making it more difficult to deal with the partial
representations stated before. Thus, a mask-free approach that was introduced in [25] is
used. This technique uses a series of Recurrent Neural Networks (RNNs) to process the
audio and it is advantageous to assess the error following each RNN in order to produce
a compound loss that represents the quality of the reconstruction after each layer. RNNs
have two directions. A particular kind of residual connection, in which two RNNs operate
simultaneously, is used to build each RNN block. The bypass-connected layer input and
the element-wise multiplication of the two RNNs are combined to create the output of each
layer. Unlike isolating known sources [26], the outputs in this scenario are permutation
invariant; thus, voices can transition across output channels, particularly during transitory
silent periods. So, this series RNN-based audio separation model is employed.

3. Model Description

Instead of introducing the mixed audio signal (main speaker and other speakers
around him) directly to the VoIP system, a system called Speaker Separation and Identifi-
cation (SSI) is inserted between the microphone and the VoIP system. Figure 2 illustrates
the main process of SSI block. The first steps of processing are converting real-time mixed
audio signal into a recording one in format of WAV to be processed in speaker separation
system. Then, all separated speakers are fed to the speaker identification system to identify
the target speaker. During that time, the main speaker is ready to send over IP to start the
call process without any other human voices or noise around him. The proposed model
integrated with VoIP system is depicted in Figure 3.
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3.1. Real-Time Audio Pre-Processing

In this part, authors recorded their mixed audios from their microphone and saved it
in a NumPy array using the python-sound device module.

This module, combined with the wavio and scipy modules, converts this useful data
type for sound processing into WAV format for storage.

The recorded audio files will be used as an input to the separation process module
as shown in the next section. The time for these audio files is 7 s for each mix file, with
sampling frequency 8 kHz.

3.2. Voice Separation for Multiple Speakers

Real-world voice communication frequently occurs in congested, multi-talker settings.
A speech processing system intended to work under such settings must be able to differen-
tiate the speech of distinct talkers. Given a dataset of the main speaker voice and mixed
versions of this main voice with other speakers, the system is trained to recognise the
speaker voice features using deep learning algorithm. So, at this stage, the system allows
the main speaker voice to be separated and identified from other mixed voices.

3.2.1. Speaker Separation Model

Estimating C separate input sources si ε RT , where i ε [1, . . . , C] is the goal of the single-

channel source separation problem, given a mixture x(t) =
C
∑

i=1
si(t). Since the durations of

the input utterances might vary, T, the input length, is not a constant value.
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This paper focuses on the supervised setting, where the training set is S = {xi, (si,1 . . .
si,c)}n

i=1, and the goal is to learn the model to output C estimated channels ŝ = (ŝ1, . . . , ŝc)
in which the scale invariant source-to-noise ratio (SI-SNR) between the estimated and
the target utterances is maximized where an unseen mixture x is given. This model was
presented in [27] and had the advantage of a lower minimum latency and smaller model
size, making it a good choice for both offline and real-time speech separation applications.

3.2.2. Separation Training Objective

We can directly use the source-to-distortion ratio (SDR) as our training objective
because the network’s output is the waveform of the predicted clean signals. As the
training objective, we employ the scale invariant source-to-noise ratio (SI-SNR), which
is used as the assessment measure in [12,14], instead of the usual SDR. Following is a
definition of the SI-SNR:

starget =
〈ŝ, s〉s
‖s‖2 (1)

enoise = ŝ− starget (2)

SI − SNR = 10 log10
‖starget‖2

‖enoise‖2 (3)

where ŝ ε R1×t is the estimated source and s ε R1×t is the target clean source.
The length of the signals is denoted by t. To ensure scale-invariance, ŝ and s are

both normalized to have zero-mean. The source permutation problem [12–14] is solved
using permutation invariant training (PIT) [13], which is used during training. Speaker
Identification Model.

3.3. Speaker Identification Process
3.3.1. Speaker Identification Model

The employed methodology first involves model training by GMM, followed by fea-
ture extraction through MFCC. Figure 4 provides a visual explanation of this methodology.
It is calculated using 20 MFCCs and 20 Delta-MFCCs. There are thus 40 features available
in total. Under the feature extraction module, a specially defined function calculated the
delta MFCC. One crucial feature extraction method for speaker identification is the MFCC.
Finding a set of utterance characteristics that are acoustically correlated to the speech signal,
i.e., parameters that can be calculated or roughly estimated is the aim of feature extraction.
These variables are referred to as features [28].
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Using a specific feature vector that was extracted from each speaker, the modelling
technique aims to produce models for each speaker. By simulating the distributions of the
feature vectors, it reduces the amount of feature data. The dependent and independent
speakers constitute the two parts of the speaker reorganisation.

The computer should ignore the speaker-specific characteristics of the speech signal
when using the speech reorganisation technique in speaker independent mode, and instead,
it extracts the desired message. Alternatively, if the speech reorganisation machine is
operating in speaker-dependent mode, it should extract speaker characteristics from the
acoustic signal.

The primary goal of speaker identification is speech comparison. During the model
training phase, the log-likelihood for each gmm model of each speaker was calculated. It
was saved in a separate folder as a database. This data dictionary is used to match the gmm
file of a 1: N speaker. The speaker with the highest score is chosen and identified.

3.3.2. Identification Training Objective

False Rejection Rate (FRR) and False Acceptancy Rate (FAR) are two factors that
heavily influence how well a speaker identification system performs [29]. FRR occurs when
the target speaker is mistakenly identified as a non-target speaker. FAR refers to an error
made when identifying a non-target speaker as the intended speaker. In a closed set speaker
identification system, however, the top-N correctness [30] and accurate recognition rate
(accuracy rate) are often employed to assess the system’s effectiveness. The speech could
be identified accurately after being matched with the appropriate speaker from the target
set and is called the recognition rate. The speech that must be recognised is often identified
as coming from the speaker who sounds the most like the target speaker set; the top-1
recognition accuracy rate is another name for this recognition accuracy ratio. The top-N
recognition accuracy rate is another evaluation technique: if the right speaker is among the
N recognition speakers with the highest degree of similarity. Thus, it is determined that the
recognition result is accurate [31].

4. Experiments
4.1. Dataset
4.1.1. For Separation

The used separation model’s functioning and accuracy are tested on samples of the
downloaded dataset, the WSJ0-2mix dataset. However, to check its reliability, correctness,
and the ability to integrate the real-time voice recordings with the separation module, we
prepared a dataset ourselves. It was a voice recording of multiple speakers. Some of the
speakers were chosen to be relatives such as family members who shared nearly similar
genetics and features which make them harder to separate. The rest are random speakers
such as friends. The combination between relative and non-relative is done to avoid data
bias results.

The system is tested on the two-speaker speech separation issue with a custom dataset
which has been prepared by the authors. This dataset consisted of four speakers, two males
and two females. The dataset includes about four hours of speech divided into 1800 samples
for each speaker, with 53.9 h of training data and 200 samples for validation and 200 samples
for testing data. The mixtures are created by randomly mixing the two speakers’ utterances.
The original waveforms generated with 44.1 kHz. Then, to reduce the computational cost,
these waveforms are downsampled to 8 kHz. We further expand our dataset to three and
four speakers with 55.2 h and 58.8 h of training, respectively.

4.1.2. For Identification

We performed this identification on the separated speaker’s dataset output from
the previous separation block. We achieved an accuracy of 96% regarding the speaker’s
identification on this dataset. For training data, four speakers each accompanied 1800 voice
samples. In addition, 200 voice samples were collected for testing purposes. As a result,
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there were a total of 2000 voice sample datasets. Each voice sample lasted about 7 s. So, we
had to tune parameters in mfcc. We adjusted nfft values from 512 to 2000 to 1800 to finally,
1500. Figure 5 indicates the state transition diagram for speaker identification.
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Figure 5. State transition diagram [28].

4.2. Network Configuration
4.2.1. For Separation

Based on the validation set, we choose hyper parameters. The input kernel size L was
8 and the preliminary convolutional layer had 128 filters. A seven-second audio fragment
sampled at 8 kHz is used. The design used of b = 6 MULCAT blocks, with 128 neurons
in each LSTM layer. We extract the STFT for the speaker model using a 20 ms window, a
stride of 10 ms, and a Hamming window.

4.2.2. For Identification

The focus here is on implementing MFCC and GMM concurrently. The main feature
was MFCC with tuned parameters with delta-MFCC as a secondary function. In addition, to
train our model, we employed GMM with extra fine-tuned parameters. We performed this
identification on the separated speaker’s output dataset from the previous separation block.
We achieved an excellent result on these datasets, with 96% accuracy on the self-prepared
dataset. Combining MFCC and GMM in tandem showed great accuracy in identification
results in performing speaker recognition tasks.

4.3. Evaluation Metrics
4.3.1. For Separation

The scale invariant signal-to-noise ratio improvement (SI-SNRi) score [25] is applied
on the test set to evaluate the employed model. This score is calculated as follows:

SI_SNRi(s, ŝ, x) =
1
C

c

∑
i=1

SI_SNR(s_i, ŝi)− SI_SNR(si, x) (4)

We defined si, ŝi, x as the ground truth (clean) signal, the estimated audio signal, and
the mixed audio signal, respectively. C is the number of speakers. The SI-SNR (si, ŝi) is
defined as the estimated scale invariant signal-to-noise ratio while the SI-SNR (si, x) belongs
to the clean signal.
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4.3.2. For Identification

The evaluation of the used identification model is applied on the test set by dividing
the total number of voices that have been successfully recognised (TNSV) by the total
number of voices that have been tested (TNTV), which represents the accuracy as follows:

Accuracy =
TNSV
TNTV

(5)

5. Results and Discussion

According to different evaluation metrics for both separation and identification as
illustrated in Section 3.3, the proposed system successfully separated and identified the
main speaker using deep learning. The results showed SNR training curves for various
numbers of speakers N = 2, 3, 4, as shown in Figure 6. The used model trained faster for a
smaller number of speakers, as reported in Table 1. It demonstrated the performance of
the used separation model as a function of the number of mixed speakers compared to the
WSJ0-2mix, WSJ0-3mix and WSJ0-3mix dataset. In [25], all reported numbers are the scale
invariant signal-to-noise-ratio improvement (SI-SNRi) over the input mixture. It is noted
that the SI-SNRi of our self-made experiment for two speakers is less than that of WSJ0-2mix
data. One possible explanation for this can be considered, as the relative speakers had
more common features which made it harder to be separated than random speakers in
the WSJ0-2mix dataset. While the other SI-SNRi, in case of three or four speakers, gave us
better results. Figure 7 depicts the SI-SNRi curves for various mixed numbers of speakers.
The SI-SNRi increased in parallel with the increasing number of epochs in training, which
indicated a better performance of the used model.
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Table 1. SI-SNRi for different numbers of mixed speakers.

2 spk 3 spk 4 spk

Self-Made 18.4168 17.5052 15.6260
WSJ0-mix 20.12 16.85 12.88

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 11 
 

 

Figure 7. SI-SNRi curves for various mixed numbers of speakers. 

The processing time for each block is calculated as it is considered a critical factor for 

real-time applications. Table 2 shows the process time (testing time) for separation and 

identification processes separately, then the overall time needed before sending the target 

speaker’s voice over the call. 

It is noted that, while increasing the number of mixed speakers, the time needed for 

separation is increased and so is the overall time. These results of processing time are 

depicted using only one GPU. Evidently, the processing time can be reduced significantly 

when using multi-GPU support systems which are suitable for speeding up signal-pro-

cessing and real-time applications, as explained in [32,33]. The geometric mean of all 

speedups tested across all datasets for that configuration is the acceleration of a given 

primitive using a specified number of GPUs. The majority of primitives scale well from 

one to six GPUs, with various datasets for breadth-first search (BFS), single-source short-

est path (SSSP), connected components (CC), betweenness centrality (BC), and PageRank 

(PR) being 2.63, 2.57, 2.00, 1.96, and 3.86 times faster using six (K40) GPUs as illustrated 

in detail in [32]. 

Table 2. Process time for different numbers of mixed speakers. 

 Separation Time Identification Time 
Total Processing 

Time 

Estimated Pro-

cessing Time 

after GPU 

2 Spk 6.60 s 1.03 s 6.63 s 1.71 s 

3 Spk 6.53 s 1.04 s 7.57 s 1.96 s 

4 Spk 6.782 s 1.06 s 7.743 s 2.00 s 

6. Conclusions 

In this paper, we presented a speaker separation and identification system using deep 

learning that is integrated on the VoIP call process system to enhance call experiences and 

reduce the multiple speaker noise. The main aim is to send only the targeted speaker 

speech over the VoIP calls, unlike previous work, in which enhancing VoIP calls concen-

trates on reducing, cancelling, or reducing noise. This system provides a practical solution 

to a new-reality problem using the proposed SSI block which separates and then identifies 

the main speaker speech. The system integrated multiple technologies such as deep neural 

network, STFT, and MFCC-GMM. It was capable of separating up to four speakers with 

satisfactory signal-to-noise ratio. The paper also presented the main challenges such as 

processing time and how it can be adjusted based on the used VOIP system. Further stud-

ies are recommended to enhance and support this suggested study. 

Figure 7. SI-SNRi curves for various mixed numbers of speakers.

On our self-made datasets, speaker identification was carried out successfully and
with excellent results, where the accuracy was 96%. Thus, the MFCC-GMM model achieves
satisfying performance. Hence, the separated and identified target speaker is ready to be
sent alone over a VoIP system without any noise or other speakers attached to it.

The processing time for each block is calculated as it is considered a critical factor for
real-time applications. Table 2 shows the process time (testing time) for separation and
identification processes separately, then the overall time needed before sending the target
speaker’s voice over the call.

Table 2. Process time for different numbers of mixed speakers.

Separation
Time

Identification
Time

Total Processing
Time

Estimated Processing
Time after GPU

2 Spk 6.60 s 1.03 s 6.63 s 1.71 s

3 Spk 6.53 s 1.04 s 7.57 s 1.96 s

4 Spk 6.782 s 1.06 s 7.743 s 2.00 s

It is noted that, while increasing the number of mixed speakers, the time needed
for separation is increased and so is the overall time. These results of processing time
are depicted using only one GPU. Evidently, the processing time can be reduced sig-
nificantly when using multi-GPU support systems which are suitable for speeding up
signal-processing and real-time applications, as explained in [32,33]. The geometric mean
of all speedups tested across all datasets for that configuration is the acceleration of a given
primitive using a specified number of GPUs. The majority of primitives scale well from
one to six GPUs, with various datasets for breadth-first search (BFS), single-source shortest
path (SSSP), connected components (CC), betweenness centrality (BC), and PageRank (PR)
being 2.63, 2.57, 2.00, 1.96, and 3.86 times faster using six (K40) GPUs as illustrated in detail
in [32].



Appl. Sci. 2023, 13, 4261 10 of 11

6. Conclusions

In this paper, we presented a speaker separation and identification system using deep
learning that is integrated on the VoIP call process system to enhance call experiences and
reduce the multiple speaker noise. The main aim is to send only the targeted speaker speech
over the VoIP calls, unlike previous work, in which enhancing VoIP calls concentrates on
reducing, cancelling, or reducing noise. This system provides a practical solution to a
new-reality problem using the proposed SSI block which separates and then identifies the
main speaker speech. The system integrated multiple technologies such as deep neural
network, STFT, and MFCC-GMM. It was capable of separating up to four speakers with
satisfactory signal-to-noise ratio. The paper also presented the main challenges such as
processing time and how it can be adjusted based on the used VOIP system. Further studies
are recommended to enhance and support this suggested study.
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