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Abstract: The configuration of the hyperparameters in convolutional neural networks (CNN) is
crucial for determining their performance. However, traditional methods for hyperparameter config-
uration, such as grid searches and random searches, are time consuming and labor intensive. The
optimization of CNN hyperparameters is a complex problem involving multiple local optima that
poses a challenge for traditional particle swarm optimization (PSO) algorithms, which are prone
to getting stuck in the local optima and achieving suboptimal results. To address the above issues,
we proposed an adaptive dimensional Gaussian mutation PSO (ADGMPSO) to efficiently select the
optimal hyperparameter configurations. The ADGMPSO algorithm utilized a cat chaos initializa-
tion strategy to generate an initial population with a more uniform distribution. It combined the
sine-based inertia weights and an asynchronous change learning factor strategy to balance the global
exploration and local exploitation capabilities. Finally, an elite particle adaptive dimensional Gaussian
mutation strategy was proposed to improve the population diversity and convergence accuracy at
the different stages of evolution. The performance of the proposed algorithm was compared to five
other evolutionary algorithms, including PSO, BOA, WOA, SSA, and GWO, on ten benchmark test
functions, and the results demonstrated the superiority of the proposed algorithm in terms of the
optimal value, mean value, and standard deviation. The ADGMPSO algorithm was then applied to
the hyperparameter optimization for the LeNet-5 and ResNet-18 network models. The results on the
MNIST and CIFAR10 datasets showed that the proposed algorithm achieved a higher accuracy and
generalization ability than the other optimization algorithms, such as PSO-CNN, LDWPSO-CNN,
and GA-CNN.

Keywords: adaptive; convolutional neural networks; Gaussian mutation; hyperparameter optimization;
particle swarm optimization algorithm

1. Introduction

Convolutional neural networks (CNNs) are essential types of deep learning models
that have found wide applications in artificial intelligence. CNNs have achieved remarkable
success in various fields, including image recognition [1–3], speech recognition [4–6], and
natural language processing [7–9]. However, the performance of a CNN is heavily reliant
on the selection of its hyperparameters. During the CNN training process, a range of
hyperparameters needs to be predetermined, such as the size of the convolution kernel, the
type of pooling layer, and the activation function. Different choices of hyperparameters can
significantly impact the model’s performance. The size of the convolution kernel determines
the size of the features extracted by the model, the type of pooling layer determines the
way the model reduces the size of the feature map, and the kind of activation function
affects the expressiveness of the network. Since the CNN hyperparameter settings are
specific to the problem, the optimal hyperparameters for the different situations will likely
differ. Therefore, efficiently selecting the optimal CNN hyperparameters is currently a hot
research topic.
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Early in the research, Bergstra et al. [10] proposed the grid and random search methods
for hyperparameter optimization. The grid search method is an exhaustive trial-and-error
approach that requires the appropriate expertise. This method can be effective when
the number of hyperparameters is small. However, as the hyperparameter search space
increases, the time consumed by the grid search method increases exponentially. The
random search method uses sampled parameters for randomly selecting the optimal
hyperparameters. The search results have some level of uncertainty, and each sampling
point does not consider the previous effects, which may result in the problem of repeated
searches.

In order to overcome the time-consuming and laborious task of the manual selec-
tion of the hyperparameters, researchers have recently achieved promising results using
metaheuristic algorithms for hyperparameter optimization. Metaheuristic algorithms have
become a research trend in CNN hyperparameter optimization due to their evolutionary
features. These algorithms are usually classified into nine different categories, including
swarm-based algorithms, chemical-based algorithms, biology-based algorithms, physics-
based algorithms, sport-based algorithms, music-based algorithms, social-based algo-
rithms, mathematics-based algorithms, and hybrid methods [11]. Among these categories,
swarm-based algorithms are the most widely used in the field of CNN hyperparameter
optimization.

Yamasaki et al. [12] were the first to apply PSO to the field of CNN hyperparameter
tuning and proposed the PSO-CNN algorithm. Their experiments on five different image
datasets showed that the proposed algorithm significantly improved the model’s accuracy
compared to the original AlexNet model. To improve the algorithm’s global and local
search capabilities, Serizawa et al. [13] introduced a linear decreasing inertia weighting
strategy. They proposed the LDWPSO-CNN algorithm, which obtained a better LeNet-5 im-
age classification accuracy on the MNIST and CIFAR-10 datasets. Guo et al. [14] proposed
the DPSO-CNN model, which combines distributed techniques with PSO-CNN to reduce
the time required for algorithm operation. Singh et al. [15] addressed the problem of the
algorithm runtime by proposing a multi-level particle swarm optimization (MPSO-CNN)
algorithm, which combined the hierarchical ideas with the hyperparameter optimization
problems by simultaneously searching for the structure and hyperparameters of the CNN
using multiple levels of particle swarms. Lee et al. [16] applied a genetic algorithm to the
hyperparameter optimization problem of convolutional neural networks and achieved
superior results in their experiments on an amyloid brain dataset for Alzheimer’s diagnosis
by searching for an excellent CNN network structure and hyperparameters. Rasmiranjan
et al. [17] used the gray wolf optimization algorithm to select the suitable CNN hyper-
parameters by searching for them in a skin lesion multiclass dataset. They conducted
experiments with GA-CNN model, which showed an excellent competitiveness for the
proposed algorithm.

The cited studies in the references [12–17] demonstrated the effective outcomes in
hyperparameter optimization of convolutional neural networks by applying evolutionary
algorithms. Nonetheless, CNN hyperparameter optimization is a complex optimization
problem with multiple locally optimal solutions, and these studies have disregarded
the limitations of evolutionary algorithms in solving intricate optimization problems.
Specifically, evolutionary algorithms converge on locally optimal solutions and have a
limited solution accuracy when confronted with complex issues. The advantages and
disadvantages of the mentioned hyperparametric optimization methods are shown in
Table 1.
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Table 1. Advantages and disadvantages of the hyperparametric optimization algorithms.

Algorithm Advantages Disadvantages

Grid search method
Simple and easy to implement, suitable for

the case of a small number of
hyperparameters.

Non-automatic tuning, requires knowledge,
not suitable for a large hyperparameter search.

Random search method Simple and easy to implement, can avoid
getting trapped in a local optimal solution.

Non-automatic tuning, requires relevant
knowledge, effect depends on the distribution
of samples, there is a duplicate search problem.

PSO-CNN Automatic tuning, the first introduction of
PSO for a hyperparameter search.

Hyperparameter optimization is a complex
problem in optimization with multiple local
optima. It is essential to note the challenges

that metaheuristic algorithms face in dealing
with complex optimization problems.

Metaheuristic algorithms are prone to falling
into local optima, which can lead to a low

solution accuracy.

LDWPSO-CNN

Automatic tuning, introducing a linear
decreasing inertia weighting strategy,

balancing the global and local search ability
of the algorithm.

DPSO-CNN Auto-tuning, incorporating distributed
technology, reduces the algorithm runtime.

MPSO-CNN Auto-tuning, combined with the idea of
hierarchy.

GA-CNN Automatic optimization, incorporating GA
for hyperparameter tuning.

GWO-CNN
Automatic optimization search,
incorporating GWO for CNN

hyperparameter tuning, better than GA.

To address the challenges mentioned above and improve the automatic discovery of
the optimal hyperparameter configurations, this paper presents a particle swarm algorithm
with an adaptive dimensional Gaussian mutation. Compared to the original PSO, this
method offers three key advantages: (1) the initialization of the population using cat chaos
mapping, which enhances the uniformity of the initial population; (2) the introduction of a
sine-based nonlinear decreasing inertia weight and a heterogeneous learning factor strategy
that balances the pre-exploration and post-exploitation capabilities; and (3) the proposal of
a strategy for an adaptive dimensional Gaussian mutation for the elite particles to increase
the optimal global particle, which enhances the search range and facilitates the escape
from local optimal solutions. The elite particles’ dimensionality is adaptively reduced later
to preserve most of their information and improve the algorithmic convergence accuracy.
The experimental results demonstrate the superiority of the proposed algorithm over the
standard CNN models and the PSO-CNN, LDWPSO-CNN, and GA-CNN methods.

The main contributions of this paper are as follows:

1. This paper proposes an adaptive dimensional Gaussian mutation particle swarm
algorithm to enhance the algorithm’s performance by addressing the limitations of
the standard PSO method. The proposed approach leverages a cat chaotic initial pop-
ulation, a sine-based nonlinear decreasing inertia weight, an asynchronous learning
factor strategy, and an elite particle adaptive dimensional Gaussian mutation strategy.

2. The performance of the proposed algorithm is evaluated through benchmark function
comparisons with the mainstream evolutionary algorithms. Additionally, a single pol-
icy ablation experiment is conducted to demonstrate the effectiveness of the proposed
improvements.

3. The proposed algorithm is applied to the hyperparameter optimization for the clas-
sical CNN models LeNet-5 and ResNet-18 on the MNIST and CIFAR10 datasets,
respectively. The experimental results demonstrate that the optimized network model
achieved a 99.11% accuracy after only five epochs on the MNIST dataset and 81.23%
after ten epochs on the CIFAR10 dataset. The accuracy achieved on the CIFAR10
dataset after ten epochs, 81.23%, was significantly higher than that of the standard
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CNN model and the related hyperparameter optimization algorithms, such as the
PSO-CNN, LDWPSO-CNN, and GA-CNN.

The essay is organized as follows. The convolutional neural network-related theories
and demonstrative CNN models are introduced in Section 2 of this paper as well as the
underlying theory and equations of the PSO algorithm. Section 3 details the improvement
strategies related to the proposed improved algorithm ADGMPSO. Section 4 tests the
proposed algorithm against five mainstream evolutionary algorithms using benchmark
test functions and examines the effectiveness of the improved strategy. Section 5 combines
the ADGMPSO with two typical CNN models, LeNet-5 and ResNet-18, to perform hyper-
parameter tuning experiments on the MNIST and CIFAR-10 datasets. Finally, Section 6
provides a summary of the main findings and the conclusions of the study while also
identifying the potential avenues for future research.

2. Related Theory
2.1. Convolutional Neural Networks

CNNs consist of three main components: a convolutional layer, a pooling layer,
and a fully connected layer. The convolutional layer plays a crucial role in the feature
extraction of the input features. By utilizing convolutional kernels, it captures valuable
feature information from the input data, and the size and number of the convolutional
kernels significantly influence the network’s overall performance. The pooling layer is
utilized to decrease the computational complexity by reducing the size of feature maps [18]
while preserving the vital features. The two common forms of pooling layers are average
pooling and maximal pooling. After the convolutional and pooling layers, towards the
end of the CNN, one or more fully connected layers are often added to create global
semantic information. The number of neurons and the selection of the activation function
in the fully connected layers are some of the most critical hyperparameters influencing
the network performance. Some of the more representative CNN models are LeNet-5 [19]
and ResNet [20]. LeNet-5 is a classic CNN model with a straightforward architecture, as
illustrated in Figure 1. It is widely used for recognizing handwritten digits in MNIST
datasets.
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ResNet is a prominent CNN model that addresses the degradation problem of the
network at deeper layers by introducing the residual structure and utilizing the jump
connection feature. Owing to its high performance, ResNet is widely used in various
research fields. ResNet-18, the simplest ResNet model, is depicted in Figure 2. ResNet-18
exhibits a remarkable performance in the tasks involving relatively simple data scenarios.
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2.2. Particle Swarm Optimization Algorithm

PSO is a widespread metaheuristic algorithm that aims to find an optimal or near-
optimal solution within a given solution space by simulating the foraging behavior of a bird
flock [21]. Each individual is continuously updated based on their position and velocity
information about the optimal position. In each evolutionary process, each particle updates
the velocity and position information at the next moment using Equations (1) and (2) to
approximate the optimal or suboptimal solution in the solution space.

vt+1
id = ωvt

id + c1r1
(

pbestid − xt
id
)
+ c2r2

(
gbestd − xt

id
)

(1)

xt+1
id = xt

id + vt+1
id (2)

In PSO, vt
id and xt

id represent the d-dimensional velocity and the position components
of the particle at moment t, respectively. The particle’s d-dimensional individual optimal
component of the ith particle is denoted by pbestid, while gbestd represents the d-th dimen-
sional component of the population optimum. The learning factors c1 and c2 usually take a
fixed value of 2, while the inertia weight ω controls the particle’s momentum. To increase
the algorithm’s randomness, r1 and r2 are set to random numbers between 0 and 1.

In addition, when the velocity evolved by the particle swarm optimization algorithm
exceeds Vmax or falls below Vmin, it is often necessary to limit the velocity by clamping it to
the maximum or minimum velocity. It is commonly used in PSO algorithms, as shown in
Equation (3).

vt+1
id =

{
Vmax, i f vt+1

id > Vmax
Vmin, i f vt+1

id < Vmin
. (3)

3. ADGMPSO Algorithm

ADGMPSO improves the traditional PSO algorithm in three key aspects: (1) initializing
populations based on the cat chaos strategy. (2) Combining the sine-based nonlinear
decreasing inertia weights and asynchronous change learning factor strategy. (3) the elite
particle adaptive dimensional Gaussian mutation strategy.

3.1. Cat Chaos Initialization Population

In evolutionary algorithms, whether the initial population distribution is uniform
significantly affects the algorithm’s solution accuracy and convergence speed [22]. Stan-
dard PSO initializes the population by generating random variables, which have a poor
ergodicity and an uneven distribution of the initial individuals [23].

Chaotic mappings are often incorporated into the metaheuristic algorithms due to their
advantages, such as a high ergodicity and randomness. Bingol and Alatas [24] were the
first to apply chaotic systems to optics inspired optimization (OIO) algorithms to improve
OIO’s global convergence speed and accuracy. They proposed three methods for improving
chaotic OIO by incorporating five chaotic mappings into the two components of OIO.
Similarly, the bird swarm algorithm (BSA) is prone to premature convergence and can fall
into local optimal solutions. Therefore, the literature [25] integrates chaotic mappings into
the BSA to address these limitations. However, logistic chaotic mappings, widely used in
metaheuristic algorithms, have certain drawbacks, such as a sensitivity to the initial values
and a high probability of mapping point edges, resulting in a relatively uneven traversal.
To overcome these limitations, Yu et al. [26] proved that cat chaotic mappings have better
chaotic properties and ergodicity than logistic mappings, making them a promising option
for enhancing the optimization algorithms’ exploration and exploitation capabilities. This
study introduces the sat chaotic mapping in this context to enhance the diversity and
uniformity of the initial population in the evolutionary algorithms. By leveraging the
superior properties of the cat chaotic mapping, we can generate initial populations with
a greater diversity and a more uniform distribution of individuals, thus enhancing the
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algorithm’s global search capabilities and improving its performance. Its chaotic sequence
generation function is defined in Equation (4).[

xn+1
yn+1

]
=

[
1
1

1
2

][
xn
yn

]
mod 1 (4)

To initialize the particle swarm population, a chaotic sequence matrix of the dimen-
sions N×D is generated using Equation (4), where N denotes the size of the population
and D denotes the dimensionality of an individual. Following this, the chaotic sequences
are mapped to the initial population of individuals using Equation (5).

Xij = lbj +
(
ubj − lbj

)
× yij (5)

In this context, lbj denotes the minimum value of the jth dimensional search range,
while the symbol ubj indicates the j-dimensional search space’s maximum value.

3.2. Sine-Based Nonlinear Decreasing Inertia Weights and the Asynchronous Change Learning
Factor Strategy

The inertia weight, denoted by the symbol ‘ω’, is a crucial PSO parameter that improves
the algorithm’s accuracy and speed of convergence. Standard PSO utilizes a linear decreasing
inertia weighting strategy. However, the solution search process for real-world problems is
typically nonlinear [27]. Therefore, this paper uses a sine-based nonlinear decreasing inertia
weights strategy to improve the inertia weights, as shown in Equation (6).

ω = ωmax −
t× (ωmax −ωmin)

T
× sin

(t× π)

2T
(6)

The variable T represents the maximum number of iterations for the evolutionary
process, while t indicates the current iteration number. Figure 3 shows the improved inertia
weight map, where ω is large at the beginning of the iterative evolution, which facilitates a
global search in the solution space. Then, it decays rapidly. In the late iteration, the exact
search is performed with a small ω.
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In addition to the inertia weights, the learning factors c1 and c2 are vital parameters
that affect the performance of PSO. c1 and c2 represent the weights of an individual and
the social cognition of the particles, respectively, and play a vital factor in changing the
convergence speed and search direction. Usually, c1 and c2 are set to a constant value of 2.
However, given that the search process is stochastic, it takes work to perform an accurate
quantitative analysis of the learning factors [28]. Exploitation and exploration are two
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crucial stages in the evolutionary process of PSO. It is essential to enrich the diversity of
the population in the early stage of evolution and enhance the exploration ability of the
particles in the late stage. Hence, in this paper, we propose an improved learning factor
strategy. As shown in Equations (7) and (8), During evolutionary iterations, the individual
learning factor is decreased, and the social learning factor is increased to achieve a balance
between the ability to develop and qualitatively explore these iterations. Additionally,
the sum of the two factors is kept constant as the PSO algorithm progresses. This paper
implemented this strategy to enhance the particles’ exploration ability in the later stages of
evolution while enriching the population diversity in the early stages.

c1 = cmax −
(cmax − cmin)t

T
(7)

c2 = cmin +
(cmax − cmin)t

T
(8)

where cmax and cmin mean the maximum and minimum learning factors, respectively.

3.3. Elite Particle Adaptive Dimensional Gaussian Mutation Strategy

Sarangi et al. [29] verified that Gaussian mutations improve the convergence of PSO,
and thus approach a better solution. To address the limitations of PSO in solving complex
problems, such as low accuracy, a susceptibility to local optima, and slow convergence, this
paper proposes an adaptive dimensional Gaussian mutation strategy for the current elite
particle, i.e., the optimal global position, to improve the algorithm’s performance. Add a
perturbation of the standard Gaussian distribution variation term to the optimal global
position to produce a mutated position. The Gaussian function is shown in Equation (9).

Gussi(α) =
1√

2πσ2
e−

α2

2σ2 (9)

where α is a random number from 0 to 1 and σ is 1.
To enhance the performance of the PSO algorithm, the global search range is improved

early to increase the convergence speed, and the convergence accuracy is later enhanced.
This work suggests an adaptive dimensional Gaussian mutation approach. Early in the
evolution, a more significant number of dimensions of the elite particles, i.e., the optimal
global particles, are selected for Gaussian mutation to improve the search range and
avoid being trapped in the local optima. This is achieved by adaptively determining the
dimension ratio γ, where γmax and γmin represent the maximum and minimum mutation
dimension ratios for each round of iterations using Equation (10). In the later stage, the
dimension ratio of the Gaussian mutation is adaptively decayed to enhance the search
of the local regions near the elite particles and boost the convergence of the algorithm’s
performance.

γ = γmax − (γmax − γmin)×
t
T

(10)

As presented in Equation (11), the global optimal particle gbest is subjected to Gaussian
mutation to generate a new position gbest∗. However, the new position produced by
perturbation may not necessarily be superior to the original position of the elite particle.
In order to prevent a degradation of the evolutionary effect, a greedy selection strategy is
employed for the mutated elite particle. Specifically, the fitness of the individual generated
after each mutation iteration is compared with that of the global optimal particle. If the
fitness of the mutated particle is superior, it is updated as the new global optimal particle.
On the other hand, if the fitness is inferior, the elite particle remains unchanged.

gbest∗ = gbest + gbest× Gussi(α) (11)
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3.4. Procedure of ADGMPSO

Based on the improvement of the PSO algorithm in Sections 4.1–4.3, Figure 4 illustrates
the detailed implementation process of the ADGMPSO algorithm.
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4. Benchmark Function Testing and Analysis
4.1. Introduction to Benchmark Functions and the Experimental Environment

To evaluate the optimization performance of ADGMPSO, we conducted experiments
using ten standard benchmark test functions listed in Table 2. The functions f1 to f6 were
single-peak test functions, used to measure the algorithm’s convergence speed. Functions f7
to f10 were multi-peak test functions that evaluated the algorithm’s convergence accuracy. All
of the test functions used in this study had a dimension of 30, with an optimal value of 0.
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Table 2. Benchmark test functions.

Func. Name Search Range Optimal Value Dim.

f1 Sphere [−100, 100] 0 30
f2 Schwefel 2.22 [−10, 10] 0 30
f3 Schwefel 1.2 [−100, 100] 0 30
f4 Step [−100, 100] 0 30
f5 Schwefel 2.21 [−100, 100] 0 30
f6 Quartic [−1.28, 1.28] 0 30
f7 Rastrigin [−5.12, 5.12] 0 30
f8 Ackley [−32, 32] 0 30
f9 Griewank [−600, 600] 0 30
f10 Penalized [−50, 50] 0 30

The runtime environment of the benchmark test function is shown in Table 3.

Table 3. Benchmark function running environment table.

Running Environment Details

Operating System Windows 10
CPU I5 9300H CPU@2.40 GHz
RAM 16 GB DDR4 RAM

Software MATLAB2016a

4.2. Comparison of ADGMPSO to Other Mainstream Evolutionary Algorithms

For the comparison experiments with the proposed ADGMPSO, we selected five exist-
ing algorithms: the particle swarm optimization algorithm (PSO), butterfly optimization
algorithm (BOA) [30], whale optimization algorithm (WOA) [31], squirrel search algo-
rithm (SSA) [32], and gray wolf optimization algorithm (GWO) [33]. We analyzed the
performance of the algorithms based on the obtained optimal values, mean values, and
standard deviations. The population size of each algorithm was set to 40, and the maximum
number of iterations was set to 2000. All the algorithms were randomly initialized, with
the exception of ADGMPSO, which utilized the cat chaos initialization population. The
termination condition for all the algorithms was that the current iteration count reached
the maximum number of iterations. The essential parameters for each algorithm were set,
as shown in Table 4.

Table 4. Parameter settings for the different algorithms.

Algorithm Parameter

PSO ω = 0.9, c1 = c2 = 2
BOA C = 0.01, P = 0.8, α increases linearly from 0.1 to 0.3
WOA r1, r2 ∈ [0, 1], α decreases linearly from 2 to 0
SSA Pdp = 0.1, Gc = 1.9, sf = 18

GWO r1, r2 ∈ [0, 1], α decreases linearly from 2 to 0

ADGMPSO ωmax = 0.9, ωmin = 0.2, cmax = 2, cmin = 1, γmin = 0.2, γmax = 1, γ
decreases linearly from 1 to 0.2

To minimize the experimental error caused by the randomness, 20 comparative experi-
ments were conducted on 10 benchmark functions for each of the six algorithms, including
the proposed ADGMPSO, using the same simulation equipment and operating environ-
ment specified in Table 4. Table 5 displays the best results, average results, and standard
deviations of the various methods on the ten benchmark functions.
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Table 5. Test function experiment results.

Func. Measure PSO BOA WOA SSA GWO ADGMPSO

f1

Best 2.42 × 10−1 4.12 × 10−13 0 2.67 × 10−10 3.60 × 10−140 0
Average 4.34 × 10−1 7.02 × 10−13 0 1.78 × 10−6 1.95 × 10−137 0

STD 1.41 × 10−1 1.73 × 10−13 0 3.41 × 10−6 4.31 × 10−137 0

f2

Best 2.94 × 10−1 4.49 × 10−39 8.31 × 10−232 8.69 × 10−6 8.76 × 10−80 0
Average 4.71 × 10−1 2.24 × 10−13 4.50 × 10−220 7.12 × 10−4 1.41 × 10−78 0

STD 1.47 × 10−1 9.96 × 10−13 0 6.59 × 10−4 1.57 × 10−78 0

f3

Best 2.25 × 101 4.97 × 10−13 1.08 × 102 1.03 × 10−6 2.01 × 10−46 0
Average 4.93 × 101 7.61 × 10−13 2.11 × 103 9.00 × 10−4 3.30 × 10−38 0

STD 1.70 × 101 1.53 × 10−13 1.72 × 103 2.07 × 10−3 1.51 × 10−37 0

f4

Best 2.02 × 10−1 3.59 3.63 × 10−4 3.93 × 10−9 1.01 × 10−9 9.24 × 10−32

Average 5.92 × 10−1 4.67 6.96 × 10−4 4.34 × 10−6 3.22 × 10−1 4.01 × 10−27

STD 1.89 × 10−1 6.28 × 10−1 2.96 × 10−4 6.39 × 10−6 2.77 × 10−1 1.31 × 10−26

f5

Best 7.57 × 10−1 1.19 × 10−9 1.63 × 10−7 2.04 × 10−5 1.49 × 10−37 9.97 × 10−290

Average 1.67 1.40 × 10−9 1.48 × 101 1.75 × 10−4 1.90 × 10−35 1.35 × 10−247

STD 6.85 × 10−1 1.56 × 10−10 1.89 × 101 1.12 × 10−4 3.07 × 10−35 0

f6

Best 7.10 × 10−3 1.44 × 10−4 2.09 × 10−5 7.98 × 10−5 5.42 × 10−5 3.19 × 10−6

Average 1.54 × 10−1 4.44 × 10−4 8.19 × 10−4 3.49 × 10−4 3.04 × 10−4 1.76 × 10−4

STD 5.96 × 10−3 2.50 × 10−4 1.04 × 10−3 2.75 × 10−4 1.81 × 10−4 2.35 × 10−4

f7

Best 1.61 × 101 0 0 1.53 × 10−12 0 0
Average 2.57 × 101 0 0 6.09 × 10−7 0 0

STD 8.33 0 0 1.26 × 10−6 0 0

f8

Best 1.36 × 10−1 4.37 × 10−15 8.88 × 10−16 1.75 × 10−6 4.44 × 10−15 8.88 × 10−16

Average 1.67 5.07 × 10−10 3.93 × 10−15 3.43 × 10−4 7.99 × 10−15 8.88 × 10−16

STD 7.36 × 10−1 1.58 × 10−10 2.72 × 10−15 3.21 × 10−4 1.76 × 10−15 0

f9

Best 4.13 × 10−1 0 0 1.41 × 10−13 0 0
Average 5.58 × 10−1 0 0 3.23 × 10−6 0 0

STD 1.05 × 10−1 0 0 5.21 × 10−6 0 0

f10

Best 2.16 × 10−1 1.37 × 10−1 4.92 × 10−5 7.29 × 10−12 1.98 × 10−3 1.29 × 10−32

Average 2.24 4.30 × 10−1 4.44 × 10−4 8.54 × 10−9 2.49 × 10−2 8.48 × 10−32

STD 1.51 1.30 × 10−1 1.36 × 10−3 1.04 × 10−8 1.00 × 10−2 2.67 × 10−29

It can be inferred from the experimental findings of the benchmark test functions
reported in Table 5 that ADGMPSO identified the theoretical optimal solution in terms of
the optimal values for solving the single-peak functions f1, f2, f3, as well as the multi-peak
functions f7 and f9. Even though ADGMPSO failed to reach the theoretically ideal value
for the test functions f4, f5, f6, and f10 when determining the ideal value, it significantly
outperformed the other five algorithms by orders of magnitude.

The optimal value alone did not reflect the overall algorithm performance. How-
ever, upon analyzing the average results presented in Table 5, it became apparent that
ADGMPSO consistently achieved the lowest mean value across all ten benchmark test
functions compared to the other five algorithms. Therefore, ADGMPSO exhibited the
highest convergence capability and overall optimization performance.

The standard deviation reflects the robustness of an algorithm, with a minor standard
deviation indicating more excellent stability and robustness. In contrast, a more significant
standard deviation indicates greater volatility and less robustness. The experimental results
indicated that ADGMPSO achieved the theoretical optimum for the standard deviation in
test functions f1, f2, f3, f5, f7, f8, and f9, demonstrating the best robustness among the six
algorithms. While it did not reach the theoretical optimum in the test functions f4 and f10,
it still outperformed the other algorithms by several orders of magnitude.
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To make it easier to compare how fast the algorithms converged and how accurate
they were, the convergence curves were generated for the ten benchmark test functions.
The convergence accuracy was represented by the vertical axis, while the number of
iterations was represented by the horizontal axis. Figure 5 shows that the ADGMPSO
algorithm achieved convergence to the desired accuracy in fewer iterations than the other
algorithms for all the test functions. Although BOA, WOA, and GWO also reached the
theoretical optimum on the multi-peaked functions f7 and f9, they required significantly
more iterations than ADGMPSO.
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4.3. Wilcoxon Rank Sum Test

To further compare whether the ADGMPSO algorithm was significantly different from
other algorithms, a Wilcoxon rank sum test was performed between the 20 iterations of
ADGMPSO and the other algorithms at a significance level of p = 5%. The null hypothesis
(H0) was rejected if the value was less than p = 5% since there was a substantial difference
between the two algorithms. If NaN was obtained, it indicated that the overall performance
of the two algorithms was the same, and the significance could not be determined [34].
The findings of the R denoted by the symbols “+”, “−” and “=” denoted that the perfor-
mance of ADGMPSO was, respectively, superior to, inferior to, and equal to the compared
algorithms. The results, shown in Table 6, indicate that ADGMPSO outperformed PSO
and SSA significantly in all the tested functions. Eight test functions showed significantly
better results than BOA and GWO, and two test functions showed approximately equal
performance. Performance-wise, ADGMPSO generally outperformed the other algorithms
by a wide margin.

4.4. Improvement Strategy Validity Test

The previous experiments mainly compared the improved PSO with the other main-
stream evolutionary algorithms and showed the excellence of the proposed ADGMPSO
algorithm. To further confirm the extent of the influence and effectiveness of the improved
strategy on ADGMPSO, it was compared experimentally to the standard PSO. PSO1 im-
proved based on the cat initialization strategy, PSO2 improved based on the sine-based
nonlinear decreasing inertia weights and asynchronous change learning factors, and PSO3
improved based on the adaptive dimensional Gaussian mutation. The experimental param-
eters were set consistently for 20 experiments and the results are presented in Table 7.
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Table 6. Wilcoxon rank sum test results.

Func.
ADGMPSO-PSO ADGMPSO-BOA ADGMPSO-WOA ADGMPSO-GWO ADGMPSO-SSA

P R P R P R P R P R

f1 8.01 × 10−9 + 8.01 × 10−9 + NaN = 1.37 × 10−8 + 8.01 × 10−9 +
f2 8.01 × 10−9 + 1.04 × 10−8 + 8.01 × 10−9 + 8.01 × 10−9 + 8.01 × 10−9 +
f3 8.01 × 10−9 + 8.01 × 10−9 + 8.01 × 10−9 + 8.01 × 10−9 + 7.99 × 10−9 +
f4 6.79 × 10−8 + 6.79 × 10−8 + 6.75 × 10−8 + 6.77 × 10−8 + 6.78 × 10−8 +
f5 6.80 × 10−8 + 6.80 × 10−8 + 6.80 × 10−8 + 6.80 × 10−8 + 6.79 × 10−8 +
f6 6.79 × 10−8 + 1.61 × 10−4 + 7.58 × 10−4 + 2.6 × 10−3 + 3.6 × 10−3 +
f7 8.01 × 10−9 + NaN = NaN = NaN = 8.01 × 10−9 +
f8 8.01 × 10−9 + 7.95 × 10−9 + 2.32 × 10−5 + 1.56 × 10−9 + 7.99 × 10−9 +
f9 8.01 × 10−9 + NaN = 3.42 × 10−1 - NaN = 7.83 × 10−9 +
f10 6.80 × 10−8 + 6.80 × 10−8 + 6.80 × 10−8 + 6.79 × 10−8 + 6.76 × 10−8 +

+/=/− 10/0/0 8/2/0 7/2/1 8/2/0 10/0/0

Table 7. Experimental comparison of the different improvement strategies.

Func. Measure PSO PSO1 PSO2 PSO3 ADGMPSO

f1

Best 2.72 × 10−1 1.83 × 10−1 8.76 × 10−57 0 0
Average 3.51 × 10−1 2.12 × 10−1 3.80 × 10−39 0 0

STD 2.71 × 10−1 1.33 × 10−1 1.66 × 10−38 0 0

f2

Best 3.11 × 10−1 2.98 × 10−1 1.08 × 10−7 1.89 × 10−230 0
Average 4.36 × 10−1 3.44 × 10−1 5.81 × 10−4 3.42 × 10−221 0

STD 5.51 × 10−1 7.12 × 10−1 1.93 × 10−3 4.21 × 10−250 0

f3

Best 1.92 × 101 2.01 × 101 3.53 × 10−3 2.33 × 10−315 0
Average 5.01 × 101 3.22 × 101 2.66 × 10−1 4.02 × 10−271 0

STD 2.11 × 101 7.44 6.43 × 10−1 3.06 × 10−281 0

f4

Best 1.92 × 10−1 8.59 × 10−2 1.65 × 10−30 3.23 7.72 × 10−33

Average 2.89 × 10−1 1.03 × 10−1 8.94 × 10−25 5.24 3.42 × 10−27

STD 1.68 × 10−1 5.21 × 10−2 2.78 × 10−26 4.31 1.41 × 10−28

f5

Best 6.29 × 10−1 1.33 × 10−1 1.46 × 10−4 1.74 × 10−159 3.51 × 10−293

Average 1.51 3.71 × 10−1 3.66 × 10−3 1.71 × 10−136 8.92 × 10−246

STD 2.81 × 10−1 1.39 × 10−1 6.24 × 10−3 1.99 × 10−146 0

f6

Best 6.21 × 10−3 2.24 × 10−3 1.99 × 10−3 1.63 × 10−3 4.22 × 10−6

Average 5.21 × 10−1 2.41 × 10−2 4.89 × 10−3 1.49 × 10−2 1.63 × 10−4

STD 5.36 × 10−3 9.51 × 10−4 1.51 × 10−3 2.65 × 10−2 2.44 × 10−4

f7

Best 2.31 × 101 8.33 1.30 × 101 0 0
Average 3.01 × 101 1.21 × 101 2.19 × 101 0 0

STD 8.66 6.21 × 10−1 4.77 0 0

f8

Best 1.44 × 10−1 2.82 × 10−1 8.61 × 10−14 8.88 × 10−16 8.88 × 10−16

Average 1.31 6.36 × 10−1 1.14 × 10−12 8.88 × 10−16 8.88 × 10−16

STD 6.12 × 10−1 3.28 × 10−1 2.93 × 10−12 0 0

f9

Best 3.86 × 10−1 8.10 × 10−1 1.11 × 10−16 0 0
Average 6.12 × 10−1 1.59 6.76 × 10−3 0 0

STD 1.45 × 10−1 5.30 × 10−1 1.01 × 10−2 0 0

f10

Best 2.71 × 10−1 1.25 × 10−1 9.56 × 10−5 2.79 × 10−30 1.56 × 10−32

Average 1.92 4.29 × 10−1 7.22 × 10−4 8.33 × 10−27 6.09 × 10−32

STD 1.35 6.24 × 10−1 6.32 × 10−4 8.14 × 10−29 1.22 × 10−30

As can be seen from Table 7, PSO1 improved using the cat chaos initialization and had
a performance that was several times better compared to the PSO algorithm for all three
metrics due to its more uniformly distributed initial population. PSO2 had performances
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that were several or even tens of orders of magnitude better than the PSO for each function.
This was due to the sine-based nonlinear decreasing inertia weights and the asynchronous
change learning factor strategy, which enabled the algorithm to conduct a more extensive
search of the solution space range in the initial phase and a detailed local exploration in
the later stage. PSO3 used the adaptive dimensional Gaussian mutation strategy of the
elite particles to perturb the optimal global solution with mutation, which enabled the
algorithm to perform a more significant perturbation to explore a more comprehensive
search space in the early stage, and smaller perturbations to facilitate local exploitation
and to improve the algorithm’s ability to overcome local optima. Since the multi-peaked
function had multiple locally optimal solutions, the PSO3 algorithm showed a significant
performance improvement compared to the PSO, as it converged to more accurate values
by evading of the local optimum via mutation.

The three proposed improvement strategies based on the original PSO algorithm
demonstrated performance improvements in the benchmark function’s optimal value,
mean, and standard deviation. ADGMPSO combined the advantages of all three strategies
and exhibited an optimal performance in finding the optimal value in the benchmark
function test.

5. Hyperparameter Optimization of the CNN
5.1. Experimental Settings

To show the effectiveness of ADGMPSO in optimizing the hyperparameters of the
convolutional neural networks, this study applied the improved algorithm to the classic
LeNet-5 CNN model and the more popular ResNet-18 CNN network model. The MNIST
handwritten digit dataset [18] and the CIFAR-10 dataset [35] were the benchmark datasets.
The MNIST dataset contained 10,000 test images and 60,000 training images, all of which
were 28× 28 single-channel grayscale images of the numbers zero to nine. This study
used MNIST as the benchmark dataset for optimizing the hyperparameters of LeNet-5.
Each hyperparameter of LeNet-5 that needed optimization was used as a dimension of
the individual ADGMPSO particle, and the hyperparameter information encoded by the
different particle dimensions is shown in Table 8.

Table 8. LeNet-5 to be optimized for the hyperparameters.

Dimension Hyperparameters Search Range

x1 Number of first layer convolution kernels [1–128]
x2 Size of first layer convolution kernels [3 × 3, 5 × 5, 7 × 7]
x3 Type of first layer activation function [Sigmod, ReLu, Tanh]
x4 Type of second pooling layer [max. pooling, avg. pooling]
x5 Number of third layer convolution kernels [1–128]
x6 Size of third layer convolution kernels [3 × 3, 5 × 5, 7 × 7]
x7 Type of third layer activation function [Sigmod, ReLu, Tanh]
x8 Type of fourth pooling layer [max. pooling, avg. pooling]
x9 Number of neurons in the fifth layer [1–128]
x10 Type of fifth layer activation function [Sigmod, ReLu, Tanh]
x11 Number of neurons in the sixth layer [1–128]
x12 Type of sixth layer activation function [Sigmod, ReLu, Tanh]

The CIFAR-10 dataset is a multi-channel RGB image dataset of ten different types
of images. It has 10,000 test images and 50,000 training images, all of which are 32× 32
pixels in size. It was used as the benchmark dataset for the hyperparameter optimization
experiments of ResNet-18. This paper used hyperparameter tuning for the first convo-
lutional layer and pooling layer of the ResNet-18 network since they were responsible
for the feature extraction and the dimensionality reduction from the original data, respec-
tively [36]. Considering the computational cost, the tuning was limited to these two layers.
The information on the hyperparameters that were to be optimized is shown in Table 9.
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Table 9. ResNet-18 to be optimized for the hyperparameters.

Dimension Hyperparameters Search Range

x1 Number of first layer convolution kernels [1–128]
x2 Size of first layer convolution kernels [3 × 3, 5 × 5, 7 × 7]
x3 First layer convolution kernel step [1–2]
x4 First layer convolutional layer filling type [valid, same]
x5 Type of second pooling layer [max. pooling, avg. pooling]
x6 Size of third layer convolution kernels [3 × 3, 5 × 5, 7 × 7]
x7 Second pooling layer step [1–2]
x8 Second layer filling type [valid, same]

To compare the performance of the base CNN model, PSO-CNN, LDWPSO-CNN,
GA-CNN, and the model optimized by the proposed algorithm with the hyperparameters,
five experiments were conducted on the same device to reduce the experimental error, and
the results were averaged. Given that the hyperparameters to be optimized were entirely
integers, all the algorithms in this paper were encoded using integers. To represent the
discrete hyperparameters, such as the pooling layer types, integer one corresponded to
the max. pooling, and integer two corresponded to the avg. pooling. Additionally, the
rounding operation was applied to each dimension of the evolving individual to ensure
the correctness of the network structure. Furthermore, every optimization algorithm in this
study employed the classification accuracy of the dataset images as the fitness function.
The population size for all the selected optimization algorithms was 10, and the maximum
number of evolutions was 30. Details of the relevant parameters for all the algorithms are
listed in Table 10.

Table 10. Algorithm parameter settings.

Algorithm Parameter

PSO-CNN ω = 0.9, c1 = c2 = 2
LDWPSO-CNN ω decreases linearly from 0.9 to 0.4, c1 = c2 = 2

GA-CNN Mutation possibility rate = 0.1, crossover probability = 0.9

ADGMPSO-CNN ωmax = 0.9, ωmin = 0.2, cmax = 2, cmin = 1, γmin = 0.2, γmax = 1, γ
Decreases linearly from 1 to 0.2

All the algorithms used random initialization except ADGMPSO-CNN, which used
cat-based chaos to initialize the population. All the algorithms were terminated by reaching
the maximum number of iterations. The operating environment of the hyperparameter
optimization experiment is shown in Table 11.

Table 11. Hyperparameter optimization experiment running environment.

Running Environment Details

Operating System Ubuntu 18.04.5
CPU Intel(R) Xeon(R) Gold 5218 CPU@2.30 GHz
RAM 32 GB DDR4 RAM

Software Python 3.8.5, Pytorch 1.12
GPU NVIDIA Tesla T4

5.2. LeNet-5 Hyperparameter Optimization Experiments

The MNIST handwritten digit dataset was used as the benchmark dataset for this
experiment. The hyperparameters were optimized every five epochs, and the network was
trained based on the optimized hyperparameters. The LeNet-5 hyperparameters obtained
after optimization using ADGMPSO-CNN are shown in Figure 6.
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Figure 6. The optimized hyperparameters of LeNet-5.

Compared to the standard LeNet-5, the optimized hyperparameters had a larger
number of convolution kernels for extracting more feature information. The ReLU activa-
tion function was more effective in addressing the vanishing gradients problem than the
original Sigmoid activation function used in the neural networks. The mixture of the max.
pooling and avg. pooling enhanced the model’s generalization performance by preserving
the image texture and background information while also reducing the dimensionality.
The optimized number of neurons in the fully connected layer was selected to prevent
overfitting issues.

As can be seen from Figure 7, The hyperparameter optimization algorithms based on
evolutionary algorithms showed promising results compared to the base CNN. Among
them, PSO-CNN and GA-CNN achieved similar results in optimizing the hyperparameters.
However, the performance of LDWPSO-CNN was slightly better due to its linear decreasing
inertia weighting strategy. The algorithm ADGMPSO-CNN proposed in this paper achieved
a significantly better performance in the search for optimization than PSO-CNN, LDWPSO-
CNN, and GA-CNN through three improvement strategies. The optimized standard
LeNet-5 model achieved a high accuracy from the first iteration and finally reached 99.11%
accuracy after the five training iterations, showing a significant improvement.
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Figure 7. Accuracy comparison of the MNIST datasets.

Figure 8 illustrates the average loss curve of the LeNet-5 model optimized by ADGMPSO-
CNN on the MNIST dataset, indicating a well-fitted model.

5.3. ResNet-18 Hyperparameter Optimization Experiments

The ResNet-18 model was trained on the CIFAR-10 image dataset and was evaluated
based on its accuracy after ten epochs. The model’s hyperparameters were optimized using
ADGMPSO-CNN, and the results are presented in Figure 9.

Given the small size of the images in the CIFAR-10 dataset compared to the original
ResNet-18 model, the hyperparameters optimized by ADGMPSO-CNN for ResNet-18
included a smaller convolutional kernel size and stride size. This was to preserve the
original image information as much as possible while still extracting helpful features.
Additionally, using avg. pooling helped reduce the dimensionality and passed information
to the next module for the feature selection.
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Based on the findings presented in Figure 10, it was evident that the PSO-CNN, GA-
CNN, and LDWPSO-CNN models were well-optimized, surpassing the performance of
the base CNN model. At each epoch, the accuracy of the ResNet-18 model optimized by
the ADGMPSO-CNN method was much higher than that of the standard ResNet-18 model
and the other hyperparameter optimization algorithms. After ten epochs of learning, the
accuracy rate of the ADGMPSO-CNN algorithm reached 81.23%, further indicating the
effectiveness of ADGMPSO-CNN.
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The average loss curve of the ResNet-18 model, which was optimized by ADGMPSO-
CNN on the CIFAR-10 dataset, is depicted in Figure 11. The curve demonstrates that the
model was well-fitted to the dataset.
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Comparing the two experiments demonstrated that the ADGMPSO-CNN algorithm
significantly improved the hyperparameter optimization of convolutional neural networks.
The tuning performance of the ADGMPSO-CNN algorithm outperformed the compared
optimization algorithms on various neural network models and datasets. These results
show that the proposed ADGMPSO-CNN algorithm exhibited a significant superiority in
the generalization capability.

6. Conclusions and Future Work

In this paper, we proposed an adaptive dimensional Gaussian mutation PSO (ADGMPSO)
algorithm that incorporated three improvement strategies to enhance the performance of PSO
in identifying optimal solutions. The experimental results comparing the proposed algorithm
with mainstream evolutionary algorithms using ten benchmark functions demonstrated its
advantages in the convergence speed, evading locally optimal solutions, and the convergence
accuracy. The hyperparameter tuning experiments on the LeNet-5 and ResNet-18 models for
the MNIST and CIFAR10 datasets further showed the superiority and generalization ability of
the proposed algorithm.

Despite the positive impact of our study, its limitations must be acknowledged. Firstly,
since ADGMPSO aimed to improve the PSO algorithm’s ability to avoid locally optimal
solutions and convergence accuracy, it did not optimize the algorithm’s running time
and, therefore, did not reduce the algorithm’s running time compared to the original
algorithm. Secondly, when conducting the hyperparameters optimization experiments for
more complex convolutional neural networks, this paper optimized the hyperparameters
of only the first few layers, given the computational resources and time constraints, without
optimizing the whole network structure.

To overcome these limitations, our future research will first focus on considering
both the algorithm’s performance improvement and time complexity, propose a new
multi-objective hyperparameter optimization improvement algorithm, conduct a more
comprehensive hyperparameter optimization for more complex network structures to
demonstrate the algorithm’s superiority, and finally, carry out more extensive hyperpa-
rameter tuning of CNNs for other fields, such as speech recognition and natural language
processing to demonstrate the algorithm’s generalization capability.
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