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Abstract: High-performance grinding has been converted from traditional manual grinding to
robotic grinding over recent years. Accurate material removal is challenging for workpieces with
complex profiles. Over recent years, digital processing of grinding has shown its great potential in
the optimization of manufacturing processes and operational efficiency. Thus, quantification of the
material removal process is an inevitable trend. This research establishes a three-dimensional model
of the grinding workstation and designs the blade back arc grinding trajectory. A prediction model of
the blade material removal depth (MRD) is established, based on the Adaptive Neuro-Fuzzy Inference
System (ANFIS). Experiments were carried out using the Taguchi method to investigate how certain
elements might affect the outcomes. An Analysis of Variance (ANOVA) was used to study the effect
of abrasive belt grinding characteristics on blade material removal. The mean absolute percent error
(MAPE) of the established ANFIS model, after training and testing, was 3.976%, demonstrating
superior performance to the reported findings, which range from 4.373% to 7.960%. ANFIS exhibited
superior outcomes, when compared to other prediction models, such as random forest (RF), artificial
neural network (ANN), and support vector regression (SVR). This work can provide some sound
guidance for high-precision prediction of material removal amounts from surface grinding of steam
turbine blades.

Keywords: steam turbine blade; abrasive belt grinding; ANFIS; material removal

1. Introduction

As the essential component of steam turbines, steam turbine blades must be con-
structed with extreme precision to withstand demanding working conditions. However,
when traditional processing methods are used by workers to grind the blade, the grinding
precision is solely dependent on the worker’s subjective perception [1,2]. Due to the inade-
quate grinding environment, manual grinding is ineffective, unable to produce accurate
material removal and unhealthy for workers. Instead, robotic grinding has emerged as a
competitive option to hand grinding of workpieces with complex surfaces, because of its
adaptability, intelligence and lower cost [3–5]. Furthermore, the enormous curve of the
blade profile and the intricate microscopic material removal mechanism make it challenging
to quantify the quantity of blade grinding removal under certain grinding conditions [6].
Therefore, it is especially important to develop a model that can predict material removal
correctly. Over the years, there has been considerable interest in the prediction of material
removal depth (MRD) based on complicated profiles. Likewise, numerous approaches
have been tested to address this bottleneck issue [7,8]. However, the majority of material
removal research is primarily modeled by simulating the contact conditions between the
workpiece surface and the abrasive tool. These models are prone to significant mistakes
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because they frequently overlook the state of the abrasive tool itself and base assumptions
on ideal circumstances. In order to study the relationship between material removal depth
and process parameters, Hamann [9] proposed a mathematical model:

r = CAKAkt
Vb

VwLw
FA (1)

where CA is the grinding process constant, KA represents the resistance constant of abrasive
belt grinding ability, kt is the abrasive belt wear coefficient, Vb is the abrasive belt rate, Vw
is the feed rate, Lw is the width of the grinding path, FA is the normal force between the
workpiece and the grinding tool. Since Hamann’s model is only suitable for workpieces
with relatively flat surfaces, it is no longer applicable to workpieces with complex profiles.
A model proposed by Preston [10] for material removal depth versus pressure and relative
velocity between workpiece and grinding tool is widely used in the grinding industry:

dh
dt

= kpP(Vs ±Vw) (2)

where kp is the Preston coefficient, P is the normal force between the workpiece and
the grinding tool, Vs is the grinding tool speed, Vw is the workpiece feed speed, and “±”
indicates the contact direction between workpiece and grinding tool. The grinding equation
has a more comprehensive summary of the grinding process, but the dimensionless constant
kp used in the formula can only be determined through very detailed physical experiments,
which are not universal. In order to solve the problem of free-form surface material removal,
Xiang Zhang et al. [3] proposed a local material removal grinding model for turbine blades.
Zhang’s model is a local process model with force as the main influencing factor of final local
removal, which is convenient in understanding and defining the free-form surface process
model. In order to address the low grinding accuracy of complex blade profiles, Yuanjian
Lv [6] suggested an equal residual height technique, based on the material removal profile
(MRP) model. Lv’s model designs the workpiece’s grinding path, while taking into account
the contact wheel’s elastomeric deformation. Therefore, the accuracy of grinding for some
blades is significantly improved. In the actual grinding process, many factors impact on
the final grinding removal rate, including abrasive belt mesh number, rotational speed,
and grinding force [11–13]. In order to achieve accurate material removal depth, these
key parameters must be taken into account. In addition, the main cause of the significant
discrepancy between the model calculation result and the actual one is, frequently, due to
disregarding the actual grinding scenario. A large amount of experimental data is obtained
from the actual grinding parameters, and this is a more appropriate method in using the
nonlinear regression model over the traditional model.

Over the last few years, the application of machine learning algorithms has attracted
more and more attention in the fields of manufacturing and processing [14,15]. Furthermore,
future development will increasingly favor the use of big data to advance the manufac-
turing and processing industries. Khalick Mohammad et al. [16] proposed a polishing
algorithm utilizing the composition of neural networks (NNWs) and genetic algorithms
(GAs). Mohammad’s algorithm solves the problem of uneven distribution of materials re-
moved from the surface to be polished. More specifically, the effectiveness of the algorithm
is verified by polishing experiments on uneven surfaces. Kaiyuan Gao [17] proposed a
machine learning and acoustic sensing approach for Inconel 718 robot belt abrasive material
removal. The material removal model included a newly trained and improved K-fold-
XGBoost algorithm. Data-driven models have become a hot topic in the engineering world
with the emergence of machine learning and deep learning algorithms. This argument is
satisfactorily made by Pandiyan [18]. This paper’s method, ANFIS, is in line with how
data-driven models are applied in the engineering discipline. While other literature studies
use rigid tools or flexible tools to grind flat workpieces, this study makes a unique addition
by using flexible grinding tools to grind curved workpieces [19].
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Support vector machine (SVM), neural network (NN), and fuzzy logic (FL) have been
the three most popular learning techniques over the past 20 years. SVM, NN, and FL were
the three comparison algorithms used by Kecman [20]. Wahyu Caesarendra [21] used
offline machine learning to deburr vibration data using wavelet decomposition, the Welch
technique, and ANFIS. They also contrasted the ANFIS classifier against the SVM classifier,
neural network classifier, and both. Pandiyan [14] carried out thorough comparisons with
grinding data using methods like ANFIS, Artificial Neural Networks (ANN), Support
Vector Regression (SVR), Random Forest (RF), etc. Based on the research in the above
literature, this paper used the data obtained from the experiments to compare and analyze
the four regression algorithms (ANFIS, ANN, SVR, and RF), and this provided a scientific
basis for the selection of the ANFIS method.

In this study, the three grinding factors, speed, mesh, and force, which were suggested
to have the biggest effects on the material removal depth (MRD) in previous literature,
are modeled. Firstly, orthogonal experiments were designed, using the Taguchi method,
to reduce the number of experiments performed in order to find the optimal solution.
Secondly, three-dimensional modeling of the robot hand-held blade grinding was applied
to the actual grinding process. Finally, the regression model ANFIS was used to model
the experimental results, and the influence of different parameters on material removal
was studied. The reason for choosing ANFIS model will be discussed later. In contrast
with the traditional linear modeling method, the relationship between the grinding tool
and the workpiece was non-linear. The ANFIS method exploited in this paper is more
suitable for practical situations. Therefore, it can predict the material removal depth
without experiments.

The remainder of the paper is organized as follows: Section 2 introduces the theoreti-
cal basis of belt grinding and the basic structure of ANFIS. Section 3 conducts trajectory
planning and orthogonal experimental design for the robot abrasive belt grinding steam
turbine blade experiment. Moreover, the experimental results in Section 3 are analyzed
and discussed in Section 4. Finally, the discussion results are summarized and conclu-
sions drawn.

2. Preliminary
2.1. Belt Grinding

Belt grinding is a kind of elastic grinding processing method, which consists of the
belt abrasive particles being fixed on the ring carrier with a certain elastic material, such as
a cloth base or paper base, through a binder [22,23]. The belt is tightened by using at least
two polymer rubber wheels, as shown in Figure 1. One of the wheels is the driving wheel,
which is responsible for rotating the belt. Another wheel is the contact wheel, which is used
to grind the workpiece with the abrasive belt. Therefore, the belt grinding is a composite
process with a variety of functions, including rough grinding, fine grinding, and polishing.
Since the soft contact wheel can make corresponding adjustments according to the shape of
the workpiece, it can polish the workpiece with a free surface. Additionally, by modifying
the abrasive belt grinding process parameters, we can alter the circumstances in which
the abrasive belt comes into contact with the workpiece. This means that the amount of
material removed during grinding can be controlled by changing the nonlinear behavior of
the contact wheel and workpiece surface [24].

2.2. ANFIS Architecture

In the early 1990s, Jang applied fuzzy systems to adaptive network structures to obtain
ANFIS. ANFIS can be divided into two parts: artificial neural network (ANN) and fuzzy
inference system (FIS) [25]. Specifically, the two methods complement each other. On the
one hand, FIS gives clear physical meaning to the nodes and weights of the neural network,
avoiding the “black box” phenomenon in the traditional neural network processing. On the
other hand, ANN has strong learning ability and can optimize the assumption rules of the
fuzzy system in the process of data training, which solves the problem of unclear rules
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division in FIS operation [26,27]. This is helpful to the development of hybrid intelligent
system network [28,29].

In general, ANFIS is usually divided into five layers. Its structure is shown in Figure 2,
where x and y are inputs and f is an output.

Figure 1. Principle of belt grinding process.

Figure 2. Structure of ANFIS.

Layer 1: In this layer, each square node i corresponds to a node function. As shown in
formula (3):

O1
i = vAi (x), i = 1, 2

or O1
i = vBj(y), j = 1, 2

(3)

where x (or y) are the two initial inputs and Ai, Bj represent the linguistic labels of the
degree of ambiguity. The membership function of A (or B) can be arbitrary. The bell-shaped
function vAi (x)(or vBj(y)) is usually chosen, such as:

vAi(x) =
1

1 + | x−ki
hi
|
2mi

(4)

where {hi, ki, mi} is the set of parameters whose values control the shape of the member-
ship function.

Layer 2: In this layer, each circle node ∏ is used to calculate the product of the signal
passed into the node and then passed into the third layer.

O2
i = ui = vAi (x)× vBi (y), i = 1, 2 (5)
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Layer 3: In layer 3, there are circle nodes marked with N, which are normalized with
the trigger intensity from the previous layer.

O3
i = ui =

ui

∑2
i ui

=
ui

u1 + u2
, i = 1, 2 (6)

Layer 4: This layer receives the normalized trigger intensity ui from the third layer.

O4
i = ui fi = ui(dix + eiy + gi) (7)

where {di, ei, gi} is the parameter set.
Layer 5: This layer has only one circle node labeled ∑. Its function is to accumulate all

the signals from the previous layer and output the result.

O5
i = ∑

i
ui fi =

∑i ui fi

∑i ui
(8)

In this way, a five-layer fuzzy adaptive network structure is constructed. We can also
combine some of the layers to get a network structure with fewer layers. Likewise, we can
perform weight normalization in the last layer of the network. Clearly, the assignment of
node functions and the structure of the network are arbitrary as long as each node and each
layer make sense and perform modular functions.

3. Main Results
3.1. Experimental Procedures
3.1.1. Materials

In this section, the turbine blade was used, which is one of the most delicate and
important parts of the turbine. Particularly, the quality of the blade is directly related to the
overall safety and reliability of the unit. The specific parameters of the blade are shown in
the Computer Aided Design (CAD) drawing and physical drawing in Figure 3. The main
component of the blade is 14Cr11MoV5 and the size is 65× 12.5× 11 mm. The aim of this
experiment mainly addressed the material removal of the blade back arc surface by the
grinding process parameters.

Figure 3. Computer Aided Design (CAD) and physical drawing of the workpiece used for the
grinding experiment.

3.1.2. Experimental Setup

Figure 4 shows the experimental setup for robotic grinding of steam turbine blades.
The six-degree-of-freedom ABB robot model used in the experiment was IRB 4600− 45/2.05.
In Figure 4a shows that the robot places the blade on the belt grinder for grinding through
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the pneumatic gripper. In Figure 4b shows that the turbine blade is fixed on the pneumatic
gripper. In Figure 4c shows coordinate measuring machine with probe used to measure the
depth of cut across the grinded path at three different locations A, B and C. A six-axis sensor
(ATI Omega 160) was installed at the end of the robot actuator to measure the grinding
force in different directions when the robot ground the blade [6]. A pneumatic gripper
was installed on the force sensor and clamped the blade. The grinding tool adopted a belt
grinder, and the contact wheel of the belt grinder was 20 mm in diameter and 10 mm in
width. The core material of the contact wheel was aluminum and the outer layer was elastic
rubber with an average hardness of 13–18 HRC. The abrasive grains on the abrasive belt
were alumina ceramics. Specifically, the parameters of the six-axis sensor are shown in
Table 1. Additionally, it was crucial to confirm that the ground sample’s surface conditions
were uniform and constant before the blade experiment was conducted.

Figure 4. Experimental setup for (a) robotic grinding device, (b) blade, (c) grinding depth measure-
ment device.

Table 1. Parameters of the ATI Omega160 sensor.

Fx /Fy(N) Fz(N) Mx(N·M) My /Mz(N·M)

Measuring range ±1500 ±3750 ±240 ±240
Measurement accuracy 1/16 1/8 1/160 1/160

Uncertainty of measurement 1.50% 1.25% 1.00% 1.25%

3.1.3. Grinding Trajectory

The blade grinding workstation was built by the off-line simulation software Robot-
Studio. Moreover, the 3D model of the blade and grinding equipment was imported into
the workstation. The grinding trajectory of the blade back arc was designed as shown in
Figure 5. During the experiment, the force data between the workpiece and the contact
wheel was sensed by the sensor and transmitted to the computer in real time by the DAQ
(Data Acquisition) device. First, the blade back arc trajectory program to be polished on
the RobotStudio was set. Second, the blade back arc trajectory program to be polished was
transmitted to the actual robot teach pendant. Finally, the actual grinding path was fitted
by manipulating the teaching point of the actual teach pendant.

3.1.4. Taguchi Experimental Design

In cases where the influence of each parameter of sand belt grinding on the sample was
not clear, the Taguchi experimental design method was selected to show only the influence
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of each parameter on the grinding effect. Taguchi’s L25 orthogonal array (3 factors, 5 levels)
was chosen to evaluate the impact of grinding parameters on the blade’s material removal
depth. In this study, mesh number, rotational speed, and grinding force of the belt were
used to analyze the influence of material removal. Table 2 shows the parameters set and
levels used in the Taguchi experiment for specific sand belts. The three grinding parameters
are presented in Table 3, using the L25 orthogonal array. Furthermore, the removal depth of
blade material was quantified according to the linear cutting depth of the blade profile. A
coordinate measuring machine (CMM) was used to measure the removal amount of blade
back arc material before and after grinding. The removal depth of the blade back arc was
obtained as shown in Figure 4.

Figure 5. Off-line trajectory planning of blade polishing.

Table 2. Grinding parameters and the level of abrasive belt.

Parameters Unit
Levels

1 2 3 4 5

Mesh - 120 180 240 320 400
Speed m/min 350 400 450 500 550
Force N 20 25 30 35 40

3.2. Experimental Conditions

The Taguchi experimental design method was used to study the belt grinding device
based on grinding process parameters. Moreover, the following experimental conditions
were kept constant during the grinding experiment to make the experiment controllable.

1. The position of the belt sander was kept unchanged in each experiment, so that the
contact state of the blade and contact wheel was consistent during the experiment.

2. The experiment was carried out during the service life of the sand belt. Every time
the sand belt was replaced with a new sand belt, the discarded blade was used to test the
sand belt to prevent the excessive grinding amount of the new sand belt from affecting the
accuracy of the experimental data.

3. The surface mass of the dorsal camber of the blade was uniform, about 9 µm.
4. The experiment was carried out in dry conditions.
5. Three measuring trajectories were taken from the grinding path in each experiment.

Three measuring points were taken from each measuring line. The material removal
depth before and after grinding was measured by CMM. Nine experimental data points
were obtained.

According to the parameter combination of the Taguchi experiment, 25 tests were
obtained, as shown in Table 3. A total of 225 grinding depth readings were obtained.
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Table 3. Partial Taguchi experiments and corresponding cutting depth and signal-to-noise ratio
(SNR).

Experiment No. Speed (m/min) Force (N) Mesh MRD (µm) SNR (db)

1 350 20 120 94.49 39.45
2 350 25 180 87.30 38.78
3 350 30 240 79.94 38.00
4 350 35 320 67.55 36.62
5 350 40 400 55.57 34.80
6 400 20 180 81.16 38.19
7 400 25 240 73.96 37.34
8 400 30 320 60.98 35.58
9 400 35 400 48.83 33.72
10 400 40 120 132.82 42.44
11 450 20 240 68.20 36.62
12 450 25 320 54.63 34.74
13 450 30 400 42.41 32.97
14 450 35 120 126.78 42.07
15 450 40 180 119.68 41.52
16 500 20 320 51.17 34.16
17 500 25 400 41.44 32.34
18 500 30 120 122.85 41.79
19 500 35 180 115.32 41.19
20 500 40 240 108.56 40.61
21 550 20 400 33.64 30.46
22 550 25 120 116.99 41.34
23 550 30 180 106.89 40.59
24 550 35 240 102.64 40.26
25 550 40 320 90.27 39.14

3.3. Data Acquisition for Grinding Depth

The three axes of the CMM are equipped with an air source brake switch and a
micro-moving device, which can realize precision transmission of a single axis and adopt
a high-performance data acquisition system. In this study, CMM was used to measure
the material removal depth of the blades before and after grinding along the grinding
path. Moreover, a confocal laser scanning microscope was used to scan the three straight
trajectories (A, B and C) across the grinding path, in order to extract 2D contour of the
grinding traces on the leaf surface. The depth of grinding is shown in Figure 6.

Figure 6. 2D contour of the removal depth of blade grinding material.

Blade back arc removal depth is defined as the distance difference between the deepest
grinding point and the surface point. Each experiment was performed three times to
guarantee the validity of the results. In addition, the blade thickness was measured at
the same position before and after each experiment. The data values of 9 measurement



Appl. Sci. 2023, 13, 4248 9 of 16

points were obtained. Table 3 shows the average material removal depth (MRD) and
corresponding SNR. The SNR is defined as follows:

SNR = −10× log10(
1
n

n

∑
i=1

1
y2

i
) (9)

where n is the number of values obtained in each Taguchi experiment and yi is all values
obtained in each experiment. The greater the SNR, the greater the MRD. Therefore, the ideal
level of process parameter values was the most significant level of SNR.

4. Results and Discussion

Figure 7 shows the average SNR plots for MRD for three factors and five levels. It can
be seen from Figure 7 that the maximum removal depth of blade material was obtained
when the speed of the sand belt was 550 m/min (level 5), the grinding force was 40 N
(level 5) and the mesh number of the abrasive belt was 120 (level 1). As shown, the material
removal ratio increased with the speed and grinding force of the belt, but decreased with
the mesh number. In particular, when the belt speed rose, the area of contact between the
abrasive belt and the workpiece expanded, increasing the amount of grinding [30]. As the
grinding force increased, the friction between the contact wheel and the grinding area of
the workpiece also increased. As a result, the workpiece and abrasive particles on the
abrasive belt ground more vigorously, increasing MRD. In addition, the higher the mesh
number, the smaller the abrasive particles in the sand belt and the smaller the grinding
scratches caused to the workpiece during grinding, so the amount of grinding decreased as
the mesh number of the sand belt increased.

Figure 7. Average signal-to-noise ratio (SNR) of MRD.

4.1. Analysis of Variance

In order to understand, in detail, the effects of each parameter on the material removal
depth (MRD) of the leaf back-arc, Analysis of Variance (ANOVA) was used. According to
the ANOVA, the influence of each parameter on the MRD of blade material was compared,
to determine the optimal MRD parameter combination more accurately. Table 4 shows the
variance data of the Taguchi experimental results of the grinding process. There were three
factors in this experiment, each of which had five levels. The results are shown in Table 4.
When the significance level was 5%, the confidence level was 95%. According to Table 4,
F0.05(4, 12) = 3.259 was the distribution value of F. When the variation F was greater than
3.259, the effect was significant. The degree of influence is Mesh > Force > Speed.
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Table 4. Analysis of variance results from MRD.

Machining Parameter Degrees of Freedom Sum of Squares Mean Square F Ratio F0.05(4, 12)

Speed 4 2.998 0.749 3.410 3.259
Force 4 47.303 11.825 53.880 3.259
Mesh 4 231.250 57.812 263.410 3.259
Error 12 2.634 0.219 - 3.259
Total 24 284.185 - - 3.259

In order to reflect the interaction between each factor in the ANOVA process more
intuitively, an interaction diagram was introduced. Figure 8 shows the interaction diagram
of the influence of the three process parameters in the study of blade MRD [2].

Figure 8. Two-way interaction between speed, force and mesh and their influences on MRD at
different initial parameter levels.

4.2. ANFIS in Predicting MRD

Obviously, the prediction model developed in this study contained three input vari-
ables and one output variable, according to the characteristics of the input parameters and
output parameters of the model, making it a standard multiple-input, single-output (MISO)
system. The system structure of ANFIS is shown in Figure 9.

Figure 9. Input and output display of ANFIS model for abrasive belt grinding.
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4.2.1. ANFIS Rules and Membership Function

ANFIS utilizes the neural network’s capacity for learning to implement the three
fundamental processes of fuzzy control, fuzzy reasoning, and defuzzification. The self-
adaptive tuning of the ANFIS system changes the membership function of each parameter
of the model, and the optimal parameters of the membership function can be effectively
calculated through self-learning, so that the designed fuzzy reasoning system can best
simulate the desired input–output relations. Finding the fuzzy controller’s input and
output variables is the first stage in the ANFIS system. Speed, force, and mesh were the
three input parameters for the ANFIS model discussed in this article. The output was
the blade’s material clearance depth (MRD). An ANFIS is a multiple-input single-output
(MISO) system, as explained in this paper.

In this study, the Generalized Bell-shaped membership function was used to de-
sign 125 fuzzy rules for MRD prediction in the topology diagram of ANFIS, as shown
in Figure 10. Three feature sets were used as inputs to build fifteen membership func-
tions. For the purpose of fuzzifying the input features, each feature produced five member
functions. The second level displays the 15 component functions in question. MF 1-1, ...,
and MF 1-5 were the membership functions for the input feature speed. The membership
functions of the input feature Force were MF 2-1, ..., and MF 2-5. The input feature Mesh
had membership functions MF 3-1, ..., and MF 3-5. The 225 data points in the sample used
for this study were split between training and testing, with 70% of the data being used
for training and 30% for testing. The “andMethod” and “orMethod” functions used in
this paper to determine the second layer’s emission intensity were “Prod” and “Max”.
By dividing the incoming signals, this function determined the emission intensity of each
rule. For layers 3-5, “wtaver”, “prod”, and “max” were chosen as the appropriate “defuzz
method”, “imp method”, and “agg method” in this work, respectively. The Generalized
Bell-shaped membership function was chosen as the membership function. It was decided
to use the least squares estimation-gradient descent method for the overall learning rule
algorithm. The ANFIS parameter is shown in Table 5.

Figure 10. Topological structure of ANFIS.
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Table 5. ANFIS parameters.

Parameter Value

Neuron level 3
Size of input data set 225

Training set 70%
Testing set 30%

andMethod Prod
orMethod Max

defuzzification Wtaver
Aggregation Max
Maxepoch 160

Membership function Gbellmf
Clustering Type Grid Partitioning
Learning rules Least square estimation-gradient decent algorithm

Figure 11 shows the membership function images of three grinding input parameters
obtained by training the generalized bell-shaped membership function before and after
training. The membership function is a function used to describe the degree to which a
variable belongs to a fuzzy set, in which the possible value range is (0, 1). The membership
function used in this paper was generalized bell-shaped membership (Gbellmf). The three
membership functions with grinding input parameters obtained by training the Gbellmf
can be observed.

Figure 11. Image of the generalized bell-shaped membership function before and after training for
each input parameter.

It can be seen from Figure 11 that the shape of the membership function of the input
parameters changed significantly before and after training. By analyzing the generalized
bell-shaped membership functions before and after training, it was found that, among
the three process parameters, the most influential factor for material removal was mesh,
followed by force and speed. The results were consistent with the results of variance
analysis in Section 4.1.

4.2.2. Training Network and Prediction Performance

The interdependencies between the input and output parameters of the control surface,
being led by different rules in a specific universe, are shown in Figure 12. Specifically,
fuzzy logic toolbox was utilized in the MATLAB environment to implement these rules. In
Figure 12a the control surface shows the interdependence among MRD, Force and Speed. In
Figure 12b the control surface shows the interdependence among MRD, Force, and Mesh. In
Figure 12c the control surface shows the interdependence among MRD, Mesh, and Speed.
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Figure 12. The control surface of the fuzzy model shows the interdependence between (a) MRD,
Force (N), and Speed (m/min); (b) MRD, Force (N), and Mesh; (c) MRD, Speed (m/min), and Mesh.

The ANFIS model was trained using experimental data, then tested. Figure 13 com-
pares the anticipated and actual values. The prediction results show that the designed AN-
FIS robot abrasive belt grinding material removal prediction model had decent precision.

Figure 13. Comparison between experimental grinding depth and ANFIS prediction.

4.3. ANN, SVR and RF

In order to verify the scientificity of the ANFIS material removal model we developed,
three other regression models (ANN, SVR and RF) were tested with the same data. The
model parameters for ANN, SVR and RF were carefully chosen to obtain the best accuracy,
giving objective and unbiased comparative results.

In this study, the model was trained using 70% of the data set, and tested using the
remaining 30% of the data set. The architecture and training process of an ANN model
affects its accuracy. One neuron is employed in the output layer to represent MRD, whereas
three neurons in the ANN input layer represent the three input parameters. In regard to
ANN, nonlinear structures between input and output are built using back-propagation
neural networks. First, the network’s weights were modified at the output neurons during
the learning phase. Second, the weights were inversely adjusted at the hidden layer
throughout the training process, up till the predicted error was obtained. Finally, the
modeling results were produced using the ANN toolbox in the MATLAB software and the
hyperbolic tangent sigmoid transfer function. The back-propagation method used by ANN
was Bayesian regularization and the remaining data was used for model verification.

For SVR, first it is necessary to define the datasets and predictors. Then, the kernel
function is fitted to be Gaussian and an ideal model chosen to train the predictor and
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response of the input data [31]. Moreover, the Bayesian optimization model was used to
train the model in the MATLAB environment. Finally, the test set was used to validate the
model. The random forest regression algorithm’s fundamental tenet is to construct a data
sample with a sample size of N, having a retrieval of N times, and then to create a sample
set (x1, x2...xn). There are M attributes for the sample xi. When the decision tree needs
to be split at each node, m attributes are chosen at random from the M attributes, where
m� M. The split attribute of the node is then chosen using information obtained from
among m attributes. Each node must be divided until it can no longer be divided as part of
the decision tree construction process. After creating a substantial number of decision trees,
a random forest is created.

Finally, the mean absolute percentage error (MAPE) was used to assess the accuracy of
the ANFIS, ANN, SVR, and RF models in comparison. Table 6 shows the partial prediction
data and error percentage of the four models. MAPE is defined as:

MAPE =
100%

n

n

∑
k=1
| Mk − Pk

Mk
| (10)

where Mk and Pk are the measured and predicted grinding quantities and n is the total
number of samples used [32].

Table 6. Partial measured and predicted values of the four models.

Cutting Depth (µm)
ANFIS ANN SVR RF

Predicted MRD (µm) Error (%) Predicted MRD (µm) Error (%) Predicted MRD (µm) Error (%) Predicted MRD (µm) Error (%)

92.49 93.77 1.38 95.31 3.05 92.35 0.15 81.25 12.15
78.67 78.97 0.38 78.54 0.17 77.64 1.31 67.54 14.15
74.35 72.87 1.99 74.62 0.36 76.27 2.58 68.32 8.11
47.94 48.07 0.27 46.52 2.96 46.21 3.61 55.14 15.02

133.21 132.14 0.80 131.67 1.16 130.26 2.21 117.36 11.90
40.65 41.97 3.25 43.23 6.35 45.28 11.39 47.51 16.88

120.67 118.70 1.63 117.65 2.50 122.34 1.38 105.24 12.79
123.54 122.07 1.19 120.32 2.61 130.48 5.62 132.98 7.64
106.74 105.93 0.76 108.94 2.06 101.36 5.04 99.21 7.05
62.45 60.24 3.54 59.12 5.33 64.82 3.80 53.15 14.89

The MAPE of ANFIS, ANN, SVR, and RF were 3.976%, 5.713%, 12.717%, and 16.635%,
respectively. Notice that ANN was close to the prediction result of ANFIS and that the
RF performance was relatively poor [21]. The absolute percentage error (APE) of the four
models is shown in Figure 14.

Figure 14. Absolute percentage error (APE) of the four models.
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As shown in Figure 14, the absolute percentage error (APE) of the ANFIS model was
the smallest, compared to the other three models. ANN and ANFIS had similar APEs.
The MAPE of the predicted value of the ANFIS model was 3.976% and the minimum APE
was 0.27%. The findings indicate that the suggested ANFIS model is reliable and accurate
for predicting material removal depth during grinding.

5. Conclusions

In this study, a method based on Taguchi experimental design was analyzed and
demonstrated. The influences of various process parameters on material removal of robotic
belt grinding were studied. In the Taguchi experiment, five-level values of force, speed,
and mesh for three factors were applied. According to the analysis and discussion of the
experimental results, the following general conclusions can be drawn:

1. Adaptive Neuro-Fuzzy Inference System (ANFIS) was applied to predict the re-
moval depth of robot belt grinding material. Based on ANFIS, a MISO system with different
grinding parameters affecting MRD was established and verified by practical data. The pre-
diction outcomes demonstrated the high accuracy of the ANFIS robot abrasive belt grinding
material removal prediction model, with a MAPE of only 3.976%.

2. Based on the main effect analysis diagram in Figure 7, it can be concluded that
speed: 550 m/min, force: 40 N, and mesh: 120 were the parameters corresponding to the
maximum MRD.

3. The same data set was applied to three models, ANN, SVR, and RF, and their
MAPE values compared with ANFIS. The MAPE values of ANFIS, ANN, SVR, and RF
were 3.976%, 5.713%, 12.717%, and 16.635%, respectively. As can be observed, ANFIS
significantly outperformed the other models, while RF performed poorly.

4. ANFIS is flexible and can be used as an alternative to traditional modeling tech-
niques after a large amount of data training. After a suitable fuzzy inference model is
established, the depth of material removal can be analyzed without actual experiments.
Therefore, the model may be used for actual grinding, and the quantity of grinding can be
monitored online.
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