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Abstract: The time-delay neural network (TDNN) can consider multiple frames of information
simultaneously, making it particularly suitable for dialect identification. However, previous TDNN
architectures have focused on only one aspect of either the temporal or channel information, lacking a
unified optimization for both domains. We believe that extracting appropriate contextual information
and enhancing channels are critical for dialect identification. Therefore, in this paper, we propose a
novel approach that uses the ECAPA-TDNN from the speaker recognition domain as the backbone
network and introduce a new multi-scale channel adaptive module (MSCA-Res2Block) to construct a
multi-scale channel adaptive time-delay neural network (MSCA-TDNN). The MSCA-Res2Block is
capable of extracting multi-scale features, thus further enlarging the receptive field of convolutional
operations. We evaluated our proposed method on the ADI17 Arabic dialect dataset and employed
a balanced fine-tuning strategy to address the issue of imbalanced dialect datasets, as well as Z-
Score normalization to eliminate score distribution differences among different dialects. After
experimental validation, our system achieved an average cost performance (Cavg) of 4.19% and a
94.28% accuracy rate. Compared to ECAPA-TDNN, our model showed a 22% relative improvement
in Cavg. Furthermore, our model outperformed the state-of-the-art single-network model reported in
the ADI17 competition. In comparison to the best-performing multi-network model hybrid system in
the competition, our Cavg also exhibited an advantage.

Keywords: Arabic dialect identification; multi-scale learning; channel adaptation; balanced
fine-tuning; Z-Score normalization

1. Introduction

Dialect identification (DID) refers to the task of identifying the dialect category, which
generally belongs to the same language family and can be considered as a special case
of language identification. With the development of i-vector, x-vector, and neural net-
works, language identification has achieved significant success [1–3]. In recent years, accent
and dialect identification have received increasing attention from speech researchers [4–9].
However, DID is often more challenging than the language identification task, as similar
dialects often share similar feature spaces [10]. Dialect identification technology is com-
monly applied to the front-end of speech processing systems, such as automatic speech
recognition (ASR) and multilingual translation systems. Therefore, the development of
DID technology is essential in the era of speech interaction intelligence.

Currently, the x-vector-based architecture remains the most widely used method for
DID [11]. The X-vector is a method that utilizes deep neural networks to extract features
from speech signals, enabling the mapping of high-dimensional speech features to a fixed-
length vector to represent speech information. Unlike traditional speech feature extraction
methods, the X-vector is trained through a deep learning model and can better express
the nonlinear characteristics of speech signals. With the continuous development of deep
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learning, numerous excellent x-vector architectures have been proposed for speech, in-
cluding the time-delay neural network (TDNN) [12], extended time-delay neural network
(E-TDNN) [13], and factorized time-delay neural network (F-TDNN) [14]. TDNN is a
suitable approach for speech and time-series signal processing as it considers multiple
consecutive frames of information during network input. E-TDNN utilizes a deeper net-
work structure than TDNN to establish gradual context connections. F-TDNN decomposes
the parameter matrix into smaller matrices, effectively reducing the layer parameters, and
leveraging the advantages of network depth when overall parameters are comparable.
Additionally, some researchers have proposed the ECAPA-TDNN architecture [15], which
emphasizes channel attention, propagation, and aggregation, and has made significant
progress in speaker recognition.

Arabic dialect identification (ADI) is one of the two tasks in the latest MGB-5 chal-
lenge [16]. The task involves identifying audio categories from 17 Arabic dialect audios
collected from YouTube. Arabic dialects belong to various dialects within the same lan-
guage family, making their distinction challenging and more difficult than other easy-to-
understand dialects.

To enhance the performance of recognizing similar-sounding Arabic dialects, we
propose a new network module named the multi-scale channel adaptive module (MSCA-
Res2Block). The MSCA-Res2Block is designed to address issues in the ECAPA-TDNN,
such as an insufficient receptive field, inflexible context information extraction, and inade-
quate local channel attention. It consists of two components, namely, multi-scale dilated
convolutions and multi-scale channel attention. The former allows the network to capture
receptive fields of different sizes to adapt to the varying speaking rates in different dialects,
while the latter can dynamically calibrate channel attention features extracted at different
scales. The unique aspect of the MSCA-Res2Block design is that it combines both global
and local attention mechanisms, which selectively amplify informative features and sup-
press irrelevant features, thus achieving more effective feature representation. Such feature
representation is particularly critical for dialect identification tasks, as the network needs to
capture subtle pronunciation and intonation differences. The MSCA-Res2Block module can
adapt to these changes and extract the most prominent features to improve the accuracy of
recognition tasks. We use this module to improve the ECAPA-TDNN, which we call the
MSCA-TDNN network.

In our experiment we proposed a balanced fine-tuning method aimed at addressing
the issue of significant data imbalance in Arabic dialect datasets. In essence, we constructed
a balanced subset of data for fine-tuning the model trained on the complete dataset, with
the goal of reducing model bias caused by dataset unfairness. Inspired by score normal-
ization in speaker recognition, we believed that the score distribution may vary between
different dialects. Therefore, we introduced the Z-Score method to normalize the scores
between dialects.

Our contributions are threefold:

1. We propose a dialect identification model that is based on the ECAPA-TDNN network
as the backbone and that incorporates the proposed MSCA-Res2Block module, which
enables multi-scale channel adaptation in TDNN. Our model improves Cavg by 22%
compared to ECAPA-TDNN.

2. We propose a balanced fine-tuning strategy to address data imbalance, which has
potential applicability in other domains.

3. We investigate the complementary effects of training models with diverse data and
introduce the Z-Score standardization approach to address the variations in score
distribution among distinct dialects.

The remainder of this paper is organized as follows. Section 2 outlines the critical
components of the ECAPA-TDNN, while Section 3 describes the structure of the proposed
MSCA-Res2Block. We provide a detailed account of the experimental setup in Section 4, and
Section 5 presents and analyzes the experimental results. Finally, in Section 6, we present a
brief summary of our experiments and provide recommendations for future research.
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2. Related Works

In this section, we mainly introduce the key module of ECAPA-TDNN and its advan-
tages and disadvantages. ECAPA-TDNN is a novel speaker embedding extractor that uses
the Time Delay Neural Network (TDNN) for speaker verification. This model builds on the
original x-vector architecture and places additional emphasis on channel attention, propaga-
tion, and aggregation. ECAPA-TDNN demonstrates substantial improvements in speaker
verification performance, despite its relatively low number of parameters. ECAPA-TDNN
mainly consists of SE-Res2Block modules, multi-level inputs, multi-scale aggregation, and
attention pooling modules.

The SE block in SE-Res2Net models the dependency between channels, while the
Res2Net module enhances feature processing by constructing a hierarchical residual con-
nection within the convolution layer. The multi-scale input and multi-scale aggregation
aim to leverage features at different levels of the neural network. Attention pooling assigns
different weights based on their importance to the task, allowing the network to focus more
on speech features that are discriminative.

Although the ECAPA-TDNN architecture has the above-mentioned advantages, there
are still some shortcomings in its application to dialect recognition. Firstly, the fixed
convolution kernel in the SE-Res2Block may not capture broader contextual information,
which could have a negative impact on model performance for dialect recognition tasks
that require more contextual information. Secondly, although the attention mechanism
in the SE-Res2Block can help the model focus on important features, it does not consider
local channel information, which is also important for more informative features in dialect
recognition tasks.

To address these issues, we propose the MSCA-Res2Block. This module consists of
two parts: multi-scale dilated convolution and multi-scale channel attention. The multi-
scale dilated convolution allows the network to learn features at different scales, better
adapting to changes in speech speed; by comparison, the multi-scale channel attention
can dynamically adjust the weights between different feature channels at different scales,
allowing the network to better capture subtle feature information related to pronunciation
and tone differences. The detailed structure design is introduced in Section 3. The following
subsection provides a description of the main modules of ECAPA-TDNN.

2.1. SE-Res2Block

The ECAPA-TDNN [15] incorporates one-dimensional SE [17] and Res2Net [18] to
create the SE-Res2Block module. The SE module has demonstrated remarkable success
in global channel interdependence in image vision applications, and has been adapted to
one-dimensional SE for speech applications [19].

Res2Net is a deep convolutional neural network architecture that can be used for
image classification and object detection. It replaces the traditional 3 × 3 filters with a set
of smaller filter groups and uses hierarchical residual-style connections between these filter
groups to enhance the network’s feature representation capability. Specifically, the input
feature map is divided into multiple groups, and each group, except for the first group,
uses a filter to extract features. The output features of the previous group are then sent
together with the input features of another group to the next filter. This operation can be
expressed by the following formula:

yi =


xi i = 1
Ci(xi) i = 2
Ci(xi + yi−1) 2 < i ≤ s

(1)

Here, Ci represents the convolution operation, xi represents the i-th group input
feature, yi represents the i-th group output feature, and s represents the group size.
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2.2. Multi-Level Inputs, Multi-Scale Aggregation, and Attention Pooling

The approach for multi-level input involves utilizing the outputs of all prior SE-
Res2Block blocks and the initial convolution layer as the input of each frame layer block [20].
To minimize the number of model parameters, feature map accumulation is selected over
feature map connections. The following formula can be represented as:

outn =


gn(out 1) n = 1

gn(out 1 + · · ·+ outn−1) n ≥ 2
(2)

Here, outn represents the output of the n-th bottleneck network layer, and gn denotes
the n-th bottleneck network.

Recent research, such as [20,21], demonstrates that the aggregation of different net-
work feature layers can enhance the accuracy of speaker embedding models in speaker
verification tasks. Multi-scale aggregation in ECAPA-TDNN involves concatenating the
output features of all SE-Res2Block modules. It can be expressed mathematically as follows:

out = concat[out2, out3, . . . , outn] (3)

Furthermore, ECAPA-TDNN extends the temporal attention mechanism to the channel
dimension and performs attention pooling on the aggregated features [22]. The activation of
the last frame layer at time step t is represented as xt. It is noteworthy that the computation
of the scores et,c involves projecting the self-attention information using parameters W
and b onto a smaller R-dimensional representation, followed by a non-linear activation
function f ( ) and a linear layer with weights vc and bias kc. Subsequently, the importance
αt,c of each frame in a given channel is obtained by applying the softmax function along
the temporal dimension, and can be described mathematically as:

et,c = vT
c f (Wxt + b) + kc (4)

αt,c =
exp(et,c)

∑T
τ exp(eτ,c)

(5)

For the attention statistics of each utterance, we weighted mean vector µc and weighted
standard deviation vector σc. They can be expressed using the following formula:

µc =
T

∑
t

αt,cxt,c (6)

σc =

(
T

∑
t

αt,cx2
t,c − µ2

c

) 1
2

(7)

The final output of the global multi-scale attention pooling layer is obtained by con-
necting the vectors of weighted mean µ and weighted standard deviation σ. These modules
were also incorporated into our model design.

3. The Proposed Model Architecture

In this section, we address some limitations of the ECAPA-TDNN architecture and
propose a module that is more suitable for the DID task. In the SE-Res2Block module, the
convolutional kernels of each layer are fixed and do not consider local channel information.
However, for dialect identification, a larger receptive field and richer features are typically
beneficial. To address the shortcomings of the SE-Res2Block module, we propose a multi-
scale channel adaptive Res2Block module. We replace the SE-Res2Block module in the
ECAPA-TDNN architecture with our MSCA-Res2Block module. For ease of description,
we refer to this ECAPA-TDNN architecture with multi-scale channel adaptive module
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as the MSCA-TDNN architecture, as shown in Figure 1. We describe the structure of the
MSCA-Res2Block module below.
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Among them, Conv1D represents one-dimensional convolution, k, d, and s represent
convolution kernel size, dilated convolution dilation rate, and grouping size, respectively, C
and T correspond to the channel number and time dimension of feature map, respectively,
and S represents dialect classification number.

MSCA-Res2Block

The multi-scale channel adaptive (MSCA) module is an attention mechanism that
allows convolutional neural networks to adaptively learn the importance of different scale
channels, in order to improve the model’s representation and generalization performance.
The structure of MSCA, as shown in Figure 2, can be obtained through the following steps.

The first step of the MSCA module is to obtain multi-scale feature maps through
n dilated convolutions of different size scales. Dilated convolution is a technique that
increases the receptive field of the convolutional kernel while keeping the same number
of parameters. This means that dilated convolution can capture information from larger
regions of the input feature map, allowing the network to learn more meaningful features.

Assuming the input feature is X, the multi-scale feature maps obtained through dilated
convolution can be described as a set of matrices, where each matrix represents the response
of different filters to the input feature. The filters are defined by the convolution kernel size
ki and dilation rate d, which determine the size of their receptive field. By using multiple
filters with different receptive fields, the MSCA module can capture features of different
scales Fi, allowing it to learn more complex patterns and improve the accuracy of dialect
identification. This can be described as:

ki = 2i− 1 (i = 1, 2 · · · n) (8)

Fi = Conv(ki, d)(X) (i = 1, 2 · · · n) (9)
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In order to reduce parameters and save computational resources, we used a dimension
reduction m in the channel dimension, which reduces the output channels to 1/m of the
original feature map. In this experiment, we set the dimension reduction factor m to 4 and
the number of dilation convolution n to 4.

The Squeeze-and-Excitation (SE) module is highly effective in enhancing the perfor-
mance of neural networks. The SE module enhances the influence of useful feature channels
by learning the weights of each channel. The basic idea is to use another neural network to
learn the weights of each channel, and then apply the weights to each channel of the input
feature map, allowing the neural network to focus on the useful feature channels.

In a multi-scale scenario, we can apply the SE module on different scale feature maps Fi
to obtain multi-scale channel attention zi, which can help the network to better understand
the input feature maps and improve the model performance.

We applied squeeze operations on multiple scale features Fi to compute the average
vector si of frame-level features at different scales:

si =
1
T

T

∑
t=1

Fi(t) (i = 1, 2 · · · n) (10)

Here, T denotes the total number of frames on the scale, and Fi(t) represents the
feature vector of the t-th frame on the i-th scale.

Next, we perform the excitation operation to calculate the weights of the multi-scale
channels, which can be defined as:

zi = σ(W2 f (W1si + b1) + b2) (i = 1, 2 · · · n) (11)

Here, σ represents the sigmoid function, f represents a non-linear function, b1 and b2
are bias terms, and W1 ∈ RR×C, W2 ∈ RC×R (where C and R represent the number of input
channels and the reduction factor, respectively, and in our experiments, C is set to 64 and R
is set to 1/2).

After the multi-scale attention processing, the SE module obtains the channel attention
of each scale feature map, but not all scales have equal importance for the task. Therefore,
it is necessary to further calibrate the different scale feature maps to obtain more effective
feature representations. To address this issue, this paper proposes a method for adaptively
calibrating the channel attention vectors of different scale convolutions. Specifically, the
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softmax function is used to normalize the channel attention feature vector zi of each feature
map, thereby obtaining the multi-scale channel adaptive weight Wi:

Wi = So f tmax(zi) =
exp(zi)

∑n
i=1 exp(zi)

(i = 1, 2 · · · n) (12)

After this step, each scale’s feature map is adaptively weighted based on its contribu-
tion to the task, leading to more effective feature representation. Finally, we multiply the
corresponding scale feature map Fi with its adaptive weight Wi. To ensure that the number
of channels remains the same at each layer, we concatenate in the channel dimension,
yielding the multi-scale channel adaptive feature map Y, which can be expressed as:

Y = Concat[W1F1; W2F2; . . . ; WnFn] (13)

We embed the MSCA module in Res2Net, as shown in Figure 3. From the above
analysis, our proposed MSCA-Res2Block module pays attention to multi-scale space and
channel information locally. It allows information to interact better and makes the network
better adapt to the extraction of complex contextual information in dialect identification.
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4. Experimental Setup
4.1. Dataset

The ADI17 dataset is provided by MGB-5 [23]. We followed the dataset partitioning
of the MGB-5 challenge without any modifications. The ADI17 dataset we used was
collected from YouTube, consisting of approximately 3000 h of Arabic dialect speech
from 17 Arab countries, with significant variation in data proportions across different
languages. As the data were collected via specific country YouTube channels, label errors
may exist. Therefore, the official dataset was first adjusted and verified manually for
dialect labels from approximately 280 h of speech data, and then 58 h of data was chosen
for performance evaluation as the development and test sets. The test set was grouped
into three subcategories based on the duration of speech segments: short (<5 s), medium
(5–20 s), and long (>20 s). The detailed statistical data of the ADI17 dataset are presented
in Table 1.
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Table 1. Speech data for Arabic dialect identification.

Training Dev Test

Dur (h) 3033.4 24.9 33.1
Utterances 1,043,269 8955 12,615

Speed Perturbation Data: To enhance the performance of dialect identification, we
applied data augmentation by using the open-source software SoX to generate speed
perturbations with coefficients of 0.9, 1.0, and 1.1 for the training set before training.
The official speech dataset provided varying durations, so we segmented them into 3 s
speech clips and repeated shorter clips to obtain a total of 12,148,293 segments. For the
development set and testing set, no manipulation was performed.

Balanced Data: We observed that the speech duration of the IRA dialect in the official
raw data was 815.8 h, while the speech duration of JOR and SUD dialects was only 25.9 and
47.7 h, respectively. Therefore, we applied special processing to JOR and SUD. Specifically,
we applied speed perturbation to JOR and obtained 98,189 segments of speech, followed
by RIR data augmentation, resulting in 239,482 segments of speech. Similarly, we applied
speed perturbation to SUD and obtained 186,789 segments of speech, followed by RIR data
augmentation, resulting in 447,602 segments of speech. Although special data augmenta-
tion was applied to dialects with limited samples, the problem of severe data imbalance
remained, greatly affecting training speed and the fairness of the model’s identification of
dialects with a smaller proportion. To eliminate the issue of unbalanced data, we randomly
selected 200,000 3 s speech segments for each dialect to form the balanced training subset
for this paper, while maintaining the same development and test sets as the official dataset.

4.2. Experimental Details

To extract features from Arabic dialect audio, we used the Kaldi platform [24] to extract
80-dimensional Fbank features and 3-dimensional pitch features. The feature extraction
used a frame length of 25 ms and a frame shift of 10 ms, without using energy VAD to filter
out non-speech frames. Finally, we performed cepstral mean and variance normalization
(CMVN) on the extracted 83-dimensional features to improve the system’s robustness.

Our model was implemented using the PyTorch toolkit [25], with Adam [26] chosen as
the optimizer and an initial learning rate set to 0.001. We used a cosine annealing schedule
to decrease the learning rate, and the batch size was 32. We employed two NVIDIA
V100S GPUs with 32 GB memory each. The models were trained for 30 and 20 epochs,
respectively, using balanced and speed perturbation data. An additional 10 epochs were
trained during the fine-tuning process for balancing. Due to the particularly large size of
the dialect dataset, each experiment required a month-long cycle to complete. Additionally,
we proposed a balanced fine-tuning and score normalization method in the experiments.
In addition, we proposed a balanced fine-tuning method and a score normalization method
in the experiment.

Balanced Fine-Tuning: In order to address the issue of imbalanced data, we eval-
uated our proposed model using three data processing methods: balanced data, speed
perturbation, and balanced fine-tuning. The specific steps of balanced fine-tuning are as
follows: first, a model is trained using unbalanced data augmented with speed perturba-
tion, and then the model is fine-tuned using a previously constructed balanced dataset to
correct the fairness issues caused by significant differences in training data volume across
different dialects.

Z-Score: The score distributions differ among different dialects, and even the same
dialect may have significant variations in scores due to differences in semantic content
and noise environments during data collection. Therefore, it is necessary to normalize the
scores for each dialect. In our experiments, we used Z-Score normalization, also known as
standard score.
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Z-Score normalization can be used to compare the values of different datasets, espe-
cially when they have different means and standard deviations. In Arabic dialect clas-
sification scoring, using Z-Score normalization can map the score of each dialect to a
standard normal distribution, thereby reducing the influence of different score distributions
of dialects and facilitating the comparison of scores of different dialects.

As shown in Figure 4, we randomly selected 2500 utterances from the original training
data of each dialect and fed them into our trained model to generate a score file. Utilizing
the known labels from the training set, we obtained the mean and standard deviation of
each dialect:

µj =
1
n

n

∑
i=1

xij (14)

σj =

(
1
n

n

∑
i=1

(x ij − µj)
2

) 1
2

(15)
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Here, Xij represents the probability of the j-th dialect belonging to the i-th sentence
in the speech corpus. µj represents the mean value of the j-th dialect, and σj represents its
standard deviation. n represents the total number of speech utterances.

During the testing process, we input a complete speech sentence and perform softmax
processing, resulting in 17 scores. We then use the previously obtained mean and standard
deviation of each dialect to calculate the deviation from the mean (i.e., the difference
between the test score and the mean), and divide it by the standard deviation. For the j-th
dialect in the i-th speech sentence, the normalized value Zij can be calculated using the
following formula:

Zij =
(
Xij − µj

)
/σj (16)

4.3. Evaluation Protocol

To evaluate the performance of our model, we followed two official metrics in our
experiments: overall accuracy and cost. The ADI17 task is a closed-set identification task,
and the softmax output can be directly used as the score for each Arabic dialect. We
calculate accuracy by selecting the highest score from the 17 dialects for each test utterance.
For the cost metric, we used the average cost performance (Cavg) of each target/non-target
pair defined in LRE NIST 2017 [27], with Ptarget set to 0.5.

5. Result and Analysis
5.1. Comparison of ECAPA-TDNN and MSCA-TDNN Systems

We evaluated our system using the test set of ADI17. Table 2 shows the performance
evaluation results of ECAPA-TDNN and MSCA-TDNN under three different data usage
scenarios: balanced data, speed-perturbed data, and fine-tuned balanced data. Following
the dialect evaluation standard, we used the average cost performance (Cavg) as the main
metric. Overall, our proposed MSCA-TDNN system outperforms ECAPA-TDNN under
different conditions. Finally, compared to ECAPA-TDNN, the Cavg of the MSCA-TDNN
system relative improved by 22%. The Arabic dialects are very similar and lack distinct
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discriminative features. The superiority of MSCA-TDNN is due to its adoption of multi-
scale dilated convolution to learn features at different scales, which better adapts to the
speed variations in dialects. In addition, it also utilizes multi-scale channel attention to
dynamically adjust the weights between different scale feature channels, enabling the
network to better capture subtle phonetic and tonal differences, thereby improving the
accuracy in dialect identification tasks. Although the balanced subset only used less than
one-third of the entire dataset, its overall performance is still competitive. According to the
analysis of the MSCA-TDNN test set, training with speed-perturbed data relative to using
balanced data improved performance by 16%, whereas our proposed fine-tuned balanced
data relative to using only speed-perturbed data improved performance by 13%.

Table 2. The average cost performance (Cavg %) of ECAPA-TDNN and MSCA-TDNN under different
data usage scenarios.

Data Usage ECAPA-TDNN MSCA-TDNN

Balance data 6.83 6.30
Speed perturbation data 6.09 5.28

Balanced fine-tuning 5.43 4.57

Balance + speed+ fine-tuning 6.00 5.54
Balance + speed + fine-tuning + Z-Score 5.39 4.19

We aimed to investigate whether models trained using three different data training
methods (balanced data, speed perturbation data, and fine-tuned balanced data) have
complementary effects. During testing, we fed the test speech into each of the three
different models and then combined their output scores. However, we found that simple
averaging of scores did not improve results. We speculate that this may be due to the
influence of differences in dialect score distribution. Inspired by speaker recognition, we
normalized scores using Z-Score before score fusion. Experimental results show that this
method effectively improves dialect identification performance, which is evident in the last
two rows of Table 2.

The confusion matrices in Figures 5 and 6 demonstrate the accuracy of the MSCA-
TDNN model trained using speed perturbation data and balanced fine-tuning. As shown
in Figure 5, the accuracy for most dialects exceeds 85%, while the JOR dialect has a lower
accuracy of only 78.36%, indicating poorer performance. We believe this is due to the
relatively small size of the JOR dialect dataset compared to the other dialects, which
affected the fairness of the model. On the other hand, Figure 6 shows the confusion matrix
after fine-tuning, which increased the accuracy of the JOR dialect to 84.88%. This indicates
that balanced fine-tuning can correct the bias of the model and effectively improve the
performance of dialect categories with limited data.

In Figure 5, another poorly performing dialect is SYR, which is most frequently
confused with the EGY dialect, accounting for 4.47% of the total confusion pairs. We
attribute this to the fact that Syria and Egypt are neighboring countries that merged to form
the United Arab Republic in 1958, resulting in frequent communication between the two
and possibly language convergence. The ADI17 dataset contains 119.5 h of SYR dialect
data and 451.1 h of EGY dialect data. Therefore, when training the model, more emphasis
is placed on the EGY dialect, which leads to poorer performance when evaluating the
SYR dialect.
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5.2. Comparison with Advanced Systems

Table 3 presents the DID performance of some advanced systems and our proposed
system on the ADI17 dataset. Results from different systems in the table show that the
length of the speech has a significant impact on the test results, with longer speech typically
resulting in better performance. The official best baseline is an end-to-end system that
uses softmax layer output as the posterior probability of each dialect, which achieves an
average cost performance Cavg of 13.7% and an accuracy of 82% on the test set. Theoretically,
transformer models can capture long-term information, which is beneficial for DID perfor-
mance, but experimental results show that the improvement is very limited, indicating that
overly long linguistic information cannot have a significant positive impact on Arabic DID
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tasks. DKU and Uken are two teams that participated in and won awards in the ADI17
competition. The DKU team that won first place achieved an accuracy of 93.8% on the test
set using a single network model, while the system that combines multiple network models
has an average cost performance Cavg of 4.3% and an accuracy of 94.9%. The Uken system
that won second place had an average cost performance Cavg of 6.2% and an accuracy of
91.1% on the test set. Based on the characteristics of spectrogram information analysis and
the shortcomings of ECAPA-TDNN in DID tasks, we propose a competitive MSCA-TDNN
model. The model achieves an average cost performance Cavg of 4.19% and an accuracy
of 94.28% on the test set. Experimental results show that the multi-scale channel adaptive
module is effective for dialect identification. The average cost performance Cavg of our
MSCA-TDNN system is the best result reported in the literature to date.

Table 3. Performance comparison of different systems. [Cavg and Acc] (%).

System
Overall <5 s 5∼20 s >20 s

Cavg Acc Cavg Acc Cavg Acc Cavg Acc

E2E (Softmax) [23] 13.7 82.0 18.8 76.2 10.9 85.1 6.7 90.4
Transformer [10] - 82.54 - 76.21 - 86.01 - 90.58

UKent [16] 6.2 91.1 8.3 88.4 5.3 92.3 2.5 96.1
DKU [16] - 93.8 - - - - - -

DKU (Fusion) [16] 4.3 94.9 5.5 93.3 3.7 95.6 2.0 97.7
MSCA-TDNN (Ours) 4.19 94.28 5.64 92.23 3.45 95.22 1.98 98.12

6. Conclusions

This paper introduces for the first time ECAPA-TDNN, currently popular in speaker
recognition, to recognize Arabic dialects. Starting from the goal of obtaining more information
on channel and time dimensions for dialect identification, we propose a multi-scale channel
adaptive time-delay neural network. We also address the data imbalance problem in the
ADI17 dataset by using a balanced subset fine-tuning strategy, and standardizing the scores
using the Z-Score before score fusion to mitigate the score distribution differences between
dialects. We evaluate our proposed models and compare them with other systems submitted
to the ADI17 challenge. Our experiments show that ECAPA-TDNN is highly suitable for
Arabic dialect identification, and our proposed MSCA-TDNN further demonstrates more
powerful performance. To the best of our knowledge, the performance of MSCA-TDNN
is superior to the results of existing single network models. Our future work will focus
on optimizing network architecture from the aspects of adaptively extracting contextual
information and enhancing channels to better improve dialect identification performance.
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