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Abstract: The stability of high backfill slopes emerges in practice due to the expansion of transporta-
tion infrastructures. The seepage and infiltration of rainfall into the backfills brings challenges to
engineers in predicting the stability of the slope, weakening the shear strength and modulus of the
soil. This study carried out a series of model tests under a plane strain condition to investigate
the stability of a high backfill slope moisturized by rainfalls, considering the influences of rainfall
duration and intensity. The slope displacements were monitored by a laser displacement sensor
and the moisture content in the backfill mass were obtained by a soil moisture sensor. The test
results show that increasing the rainfall intensity and duration caused the slope near the surface
to be saturated, resulting in significant influences on the lateral displacement of the slope and the
reduction of stability as well as the sizes of the sliding mass. Based on the model tests, the numerical
analysis was adopted to extend the analysis cases, and the backpropagation (BP) neural network
model was further adopted to build a model for predicting the stability of a high backfill slope under
rainfall. The trained BP model shows the average relative error of 1.02% and the goodness of fitness
of 0.999, indicating a good prediction effect.

Keywords: physical modeling; high backfill slope; instability; rainfall; prediction model

1. Introduction

It is widely reported that high backfill slopes are damaged by rainfall and they signifi-
cantly endanger people’s lives and property [1–4]. With the rapid growth of the economy
and fast urbanization process of China in the past decades, the demand for the expansion
and/or renewal of transportation infrastructures (e.g., highways, railways, and airports)
has increasingly grown. To shorten the commuting distance, some transportation infras-
tructures have to be constructed in mountainous areas; as a result, a large number of high
slopes due to excavation and backfill construction emerge. This gives rise to some critical
geotechnical problems, e.g., excessive total and differential settlement, and slope failure.
Meanwhile, rainfall is abundant in some regions; for example, it is commonly over 1500 mm
a year in the east coast area of China. The seepage and infiltration of rainfall into the soil
make the performance of high backfill slopes more complex. Under the influence of rainfall,
the mechanical properties of the slope mass tend to be weak, such as the shear strength,
matric suction, and modulus, which brings further challenges to engineers in predicting
the stability of the slope [5–10].

Previous studies found that rainfall significantly affects the performance of the
slope [11–14]. Wu et al. [15] conducted model tests to quantify the loess soil slopes un-
dergoing failure due to rainfall, which may cause multi-sliding retrogressive landslides.
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Li et al. [16] carried out a hazard assessment of rainfall-induced debris landslides, and
pointed out that the rainfall duration corresponding to the initiation of the debris landslide
was exponentially related to the rainfall intensity. Meanwhile, some theoretical analy-
ses, such as the limit equilibrium analysis and numerical simulation, were conducted
to investigate the fracture evolution characteristics and failure mode of the slope [17–20].
Liu et al. [21] investigated the progressive development of rainfall-induced landslides using
the random finite element and material point methods with hydro-mechanical coupling.

In addition, machine learning techniques, such as neural networks, data mining
techniques, BP algorithms, etc., have been increasingly adopted to assess the stability of
slopes [22–27]. Based on neural networks, Du et al. [28], Liu et al. [29], and Cao et al. [30] pro-
posed a displacement prediction and early warning system for landslides. Chen et al. [31]
and Leonarduzzi et al. [32] applied data mining techniques to plot landslide susceptibility
mapping so that more landslide-related parameters were considered, including the slope
angle, slope aspect, plan curvature, rainfall threshold, etc. Panda et al. [33] proposed a new
BP algorithm for achieving a better prediction of the slope. However, machine learning has
seldom been adopted for assessing high backfill slopes in practice.

This study is aimed at investigating the stability of high backfill slopes moisturized by
rainfall. A series of model tests were carried out under a plane strain condition considering
the influences of rainfall duration and intensity. The slope displacements and moisture
content in the backfill mass were monitored during the test. Based on the model tests,
a numerical analysis was adopted to extend the analysis cases, and a machine learning
method was used to develop a prediction method for the stability of high backfill slopes
considering the effects of rainfall duration and intensity.

2. Model Test Preparation and Program
2.1. Test Setup

Figure 1 presents the schematic of the model test. The model box had inside dimen-
sions of 1400 mm long, 700 mm high, and 300 mm wide, and was made of double-layer
toughened glass plates to allow the visual observation and photogrammetry of the model
slope during the test. The model box was fixed by steel frames to minimize its lateral
deformations. To minimize the side effect due to the friction of the side walls of the box, a
thin layer of Vaseline was smeared on the inside of the side walls.

The model bedrock slope with a slope angle of 41◦ was made of wood. Waterproof
glue was spread on the boundary of the model bedrock contacting with the side walls of the
model box to prevent water leakage. A backfill slope with a slope angle of 35◦ and a crest
of 350 mm was constructed adjacent to the bedrock slope. A loading plate with dimensions
of 290 mm long, 200 mm wide, and 15 mm thick was placed on the top of the backfill
slope. A hydraulic jack was connected to the loading plate, which was used to apply an
external load on the top surface of the backfill slope. An artificial rainfall device containing
three atomizing nozzles was installed directly over the model box to achieve modeling of
rainfall in this study. The rainfall intensity can be simply controlled by manually adjusting
the valve.
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Figure 1. Setup of the model test: (a) plane view; and (b) cross section (unit: mm).

2.2. Materials and Preparation

Considering the sizes of the model test, this study selected a scale ratio of 1/40 to
a typical prototype size. This study mainly paid close attention to the similarities of
the backfill properties, including the strength and permeability. The model backfill soil
was made of a mixture of quartz sand, nano-bentonite, and expanded polystyrene (EPS)
particles. The quartz sand had a particle size range of 0.5 mm to 4 mm, and the non-
uniformity coefficient Cu and the curvature coefficient Cu were 3.64 and 0.98, respectively.
The EPS particles had a particle size range of 1 mm to 2 mm. The quartz sands were mixed
with nano-bentonite according to a mass ratio of 7:3, and the mixture was then mixed
with the EPS particles according to the volume ratio of 10:1. The inclusion of EPS particles
can adjust the compressibility of soil. As the water content of the backfill changes due
to rainfall, a series of laboratory tests were conducted to obtain the physical–mechanical
properties of the artificial soils with different water contents. Table 1 summarizes the main
properties of the soils. Clearly, the shear strength properties and modulus decreased with
the increase of the water content. The prepared backfill can reflect the material properties
weakened by the seepage and infiltration of rainfall. The permeability of the soil under the
saturated condition was 1.3 × 10−7 m/s, obtained from a falling-head permeability test,
which is in the same order of magnitude as the protype.
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Table 1. Physical–mechanical properties of the artificial soil.

w, % γ, kN/m3 c, kPa φ, ◦ E, MPa

5% 15.44 22.3 31.1 5.6
15% 16.91 24.0 23.1 3.8
30% 19.11 14.7 7.0 2.9

Note: w is the water content, γ is the unit weight, c is the cohesion, φ is the friction angle, and E is the
compressibility modulus.

In the model tests, the soils with a water content of 5% were prepared. Semi-resin
alumina sandpaper was pasted on the slope side of the mode bedrock to increase the
roughness of the bedrock surface. The interface shear test showed the interfacial frictional
angle of 32.3◦ and cohesion of 9.1 kPa for the interface between the bedrock and the backfill.
A 50 mm-thick soil layer was compacted on the base of bedrock. To better control the
manufacture of backfill slope, a wooden facing plate with an inclination angle of 60◦ was
installed in front of the backfill slope, and then the weighted backfill soils were gently
placed into the channel between the bedrock and the facing plate. The soils were compacted
manually by a steel hammer to a relative density of 80% with a lift thickness of 50 mm up
to the desired slope height. The compaction was controlled by the mass and volume in
each lift. After the backfills in the channel were complete, the facing plate was removed,
and the desired slope shape with a slope angle of 35◦ and a crest of 350 mm wide were
carefully trimmed.

2.3. Testing Program and Monitoring Plan

This study mainly considered the influence of rain on the stability of high backfill
slopes. Rainfall intensities of 0.2 mm/h and 4 mm/h were considered, which correspond
to light rain and heavy rain in the prototype [31]. Rainfall durations of 0.5 h and 1 h were
considered. Table 2 shows the model test program.

Table 2. Test program.

Number Rainfall Intensity/mm/h Rain Duration/h

T-1 / /
T-2 4 0.5
T-3 4 1
T-4 0.2 0.5

Figure 1 also includes the layout of the monitoring instruments in the model test.
In this study, the displacements, earth pressures, and water contents of the backfill were
measured. The load sensors were placed right below the jack to measure the applied load.
Six earth pressure cells were installed along the centerline of the backfill slope to measure
the vertical soil stress, and two were installed at the toe of the slope to measure the hori-
zontal and vertical soil stresses, respectively. Two linear variable displacement transducers
(LVDT) were installed at the slope shoulder to measure the vertical displacements, and two
laser displacement censers were installed above the slope surface to measure the lateral
displacements. A soil moisture sensor was used to measure the soil moisture content in
the backfill slope after the rain. A data logger device was used to record the test data in
real time. A Canon 6D digital camera was fixed on the cross section to take high-definition
photos during the test, so, as with the displacement field, the cross section of the backfill
slope can be obtained with the particle image velocimetry (PIV) technique.

In each model test, after manufacturing the model test and leaving to rest for 24 h, the
artificial rainfall device was started up according to the planned rain intensity and duration.
A soil moisture sensor was used to record the soil moisture content near the slope surface.
A loading device applied a load on the top of the slope crest with a gradual increase of
1.7 kPa (kiloPascals) per second until the slope eventually failed. The displacements and
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earth pressures were monitored, and the pictures were taken four times a second in the
loading process. After the test, the backfills were carefully excavated with a layer of 50 mm,
and the soil moisture content in the internal zone of the backfill slope were recorded.

3. Test Results and Analyses
3.1. Slope Deformation

Figure 2 shows the variation of the vertical displacement on the top surface of the slope
with the increase of the surcharge load. It can be seen that, with the increase of the surcharge,
the vertical displacement of the slope increased almost linearly and gradually accelerated
with a fast rate irrespective of the rainfall. However, the rainfall had a significant impact
on the slope stability. The instability critical surcharge was determined by referring to the
graphing method proposed by Casagrande [34]. The backfill slopes had instability critical
surcharges of 149 kPa, 125 kPa, 117 kPa, and 136 kPa in the tests T-1 to T-4, respectively. It
can be found that the stability of the backfill slope decreases with the increase of the rainfall
intensity and duration as other factors are consistent.
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Figure 2. Variation of vertical displacement on the top of slope with the applied load.

Figure 3 displays the variations of the lateral displacement of the backfill slope at the
monitoring points L1 and L2 with the vertical displacement on the top surface of the slope.
The lateral displacement of the backfill slope increased rapidly with the increase of the
vertical displacement. After reaching a certain value, it remained stable with the increase
of the vertical displacement. With the increase of the rainfall intensity and duration, the
increase of the lateral displacement became more significant. In the model test T-1, the
lateral displacement near the slope shoulder (i.e., L1) was more significant than that in
the middle part of the slope (i.e., L2), while, after the rainfall, we see the opposite result.
Comparing T-2 and T-3, the lateral displacement near the slope shoulder (i.e., L1) in the
model test T-2 is 5.0 mm larger than in the model test T-3. In the middle part of the slope
(i.e., L2), the lateral displacement of T-2 and T-3 are basically identical. This showed that a
different rainfall duration can increase the slide of the slope. Comparing T-2 and T-4, the
lateral displacement near the slope shoulder (i.e., L1) in the model test T-2 is 3.1 mm larger
than in the model test T-4. In the middle part of the slope (i.e., L2), the lateral displacement
of T-2 is 3.1 mm larger than T-4. This showed that rainfall intensity can increase the sliding
area of the slope. This indicated that the rainfall changed the slope failure from the part
near the shoulder to the middle part.
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Figure 3. Variation of lateral displacement of the slope with its vertical displacement.

3.2. Stress Development

The earth pressure cells S1 to S5 were kept almost constant during the loading test,
indicating that they were not influenced by the surcharge. The earth pressure cell S8
varied consistently with the applied surcharge. Thus, they were excluded from the analysis.
Figure 4 shows the variation of the earth pressure cells S6 and S7. The earth pressures of S6
and S7 increased fast with the increase of the surcharge, and reduced sharply or became
stable after reaching a peak value. As the slip plane passed through the zones near S6 and
S7, the backfills experienced plastic shear displacement with the surcharge load, resulting
in a reduction in earth pressure. Thus, the decline in earth pressure can also be used as an
indication of the slope failure.
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Figure 4. Relationship between the increment of earth pressure and the surcharge load: (a) S6; and
(b) S7.

Figure 5 shows the surcharge load at the peak earth pressure. The surcharge load
corresponding to the peak earth pressures at S6 were generally smaller than those at S7.
In addition, increasing the rainfall intensity and duration decreased the surcharge load
corresponding to the peak earth pressure. It is indicated that the rainfall caused a decline
of the shear strength of the backfill.
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3.3. Slope Humidification Range

Figure 6 shows the contours of the mass moisture contents in the backfill slope de-
termined by the soil moisture sensor. The moisture contents near the slope surface were
28.76% and 28.20% in the tests T-2 and T-3, while it was 20.63% in the test T-4. The heavy
rain causes the slope surface to be saturated faster than the light rain. In the internal
zone of the backfill slope, the moisture content was distributed almost parallel to the
slope surface. With the movement of the wetting front into the slope, the water content
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gradually decreased to the initial water content of 5%. Figure 7 illustrates the moisture
contents distributed along the backfill slope at the middle height, as shown in Figure 6a.
The moisture content gradually decreases and eventually tends to a certain value. The
trend of the change in tests T2 and T3 is basically the same. It can be observed that, in test
T-4, the expansion rate of the wetting front was relatively slow, resulting in a narrowly
distributed moisturized zone. Therefore, rainfall intensity significantly impacts the internal
distribution of the moisture contents in the backfill slope.
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3.4. Failure Modes

Figure 8 illustrates the shear strain contours of the backfill slope determined by PIV
in each test. The slip plane can be determined as the zone with the relatively larger shear
strains. Test T-1 had a primary slip plane near the slope shoulder. Test T-2 and T-4 had
a similar slip plane, which passed from the rear of the top surface to the middle of the
side slope. The slip plane of test T-3 was further contacted with the bedrock interface. All
the slip planes were close to an arc-like sliding, but the rainfall influenced the sizes of the
sliding mass.
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Table 3 shows the maximum displacements and shear strains of the slope at failure.
The maximum vertical and horizontal displacements of the backfill slope after rainfall
were nearly two to three times as large as the test without rainfall, and they increased with
the rain intensity and duration. The rainfall caused the backfill to be softened; as a result,
relatively large displacements occurred after rainfall.

Table 3. The maximum displacement and shear strain at failure.

Test No. Horizontal Displacement/mm Vertical Displacement/mm Shear Strain/%

T-1 19 18 1.4
T-2 50 54 4.6
T-3 53 57 4.8
T-4 46 47 4.2

4. Model Base Establishment

To further investigate the influence of rainfall on the stability of the backfill slope, a
numerical analysis incorporated in the software Geostudio was adopted in this study. The
numerical simulation has the advantages of high efficiency, safety, and good repeatability. It
can freely consider different conditions as compared with the physical model test. Test T-2
was used to calibrate the numerical model, including the relationship of the mass moisture
content with the matric suction and permeability of the backfill soil [33]. Adopting the rest
model tests T-1, T-3, and T-4 to validate a numerical model is a great step towards ensuring
the accuracy and reliability of the simulation results. Accordingly, a large number of model
bases were established considering the different surcharges, and the rainfall intensity and
duration were established.

A two-dimensional numerical model with the same geometry as test T-2 was created.
The backfill slope was modeled as Mohr–Coulomb failure criteria, and the material proper-
ties are as shown in Table 1. The bottom boundary was fixed in both the horizontal and
vertical directions. The lateral displacements on the side boundaries were set to zero but the
vertical movement was free. A rainfall boundary condition was set along the slope surface
with a rainfall intensity of 4 mm/h. The Fredlund–Xing method was adopted to estimate
the functions of the mass moisture content with the matric suction and permeability. After
the simulation of rainfall, the Morgenstern–Price method was adopted to calculate the
stability of the slope under the determined instability critical surcharge from the model test.

Figure 8b includes the calculated slip plane by the numerical analysis. Table 4 summa-
rizes the calculated displacements of the backfill slope and factor of safety. It is indicated
that the results by the calibrated numerical model T-2 agreed well with the model test. The
calibrated model was used to further predict the stability of the tests T-1, T-3, and T-4. The
numerical model had the same geometry, displacement boundary condition, and material
properties instead of the rainfall boundary. As seen from Figure 8 and Table 4, the results
of the numerical analysis were in good agreement with the model tests.

Table 4. Test results of numerical analysis.

Test No. Horizontal Displacement/mm Vertical Displacement/mm Factor of Safety

T-1 18.0/19.0 * 22.2/18.0 * 1.117
T-2 56.6/50.0 * 58.4/54.0 * 1.080
T-3 61.8/53.0 * 59.4/57.0 * 1.044
T-4 49.6/46.0 * 50.9/47.0 * 1.053

Note: * denotes the data of the model test.

Based on the calibrated model, a model base including 112 cases was established,
considering the factors of surcharge load and rainfall intensity and duration, as listed in
Table 5. The rain duration changes from 0 to 9 h. The rain intensity varies from 0.65 to
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4.0 mm/h, which refers to the rain intensity changing from light rain to heavy rain in the
prototype.

Table 5. Numerical model base.

Case No. Rain Duration/h Rainfall Intensity/mm/h Surcharge/kPa

1–16 0/0.5/1/1.5/2/2.5/3/3.5/4/4.5/5/5.5/6/6.5/7/7.5/8 0.65 100
17–28 0/0.5/1/1.5/2/2.5/3/3.5/6/7.5/8/8.5/9 0.65 300
29–37 0/1/1.5/2/2.5/3/3.5/4/4.5 2.0 300
38–42 0/0.5/1/1.5/2/2.5 4.0 300
43–48 0/0.5/1/1.5/2/2.5/3 6.5 50
49–54 0/0.5/1/1.5/2/2.5/3 6.5 100
55–57 0/0.5/1 6.5 200
58–68 0/0.5/1/1.5/2/2.5/3/3.5/4/4.5/5.5 2.0 200
69–77 0/0.5/1/1.5/2/2.5/3/3.5/4 2.0 100
78–86 0/0.5/1/2/2.5/3/3.5/4/4.5 2.0 50

87–102 0/0.5/1/1.5/2/3/3.5/4/4.5/5/5.5/6/6.5/7/7.5/8 0.65 50
103 2 0.65 100
104 7 0.65 300

105–106 0.5 2.0/4.0 300
107 0 4.0 50

108–109 1.5 4.0 50/100
110 5 2.0 200
111 1.5 2.0 50
112 2.5 0.65 50

4.1. Model Establishment and Training

This study adopted the BP neural network to evaluate the stability of the backfill slope.
The BP neural network adopts error backpropagation and signal forward propagation and
continuously adjusts the threshold and weight of the network to minimize the error [35,36].
The BP neural network structure contains the input layer, hidden layer, and output layer.
In this study, the surcharge load, and rainfall intensity and duration were the input layer,
and the factor of safety was the output layer. The values of the 116 cases were normalized
to values between [−1, 1] using the mapminmax function to make the network converge
quickly. Normalization can prevent the phenomenon of neuron output saturation due to
the tremendous absolute value of the input.

Among the cases, 102 cases were randomly selected as the training set, and the
remaining 10 cases were the testing set. The newff function was adopted to create a BP
neural network for the backpropagation algorithm:

net = new f f (P, T, S) (1)

in which P is the input vector, T is the target vector, and S is the number of neurons in the
hidden layer. P is a matrix of R × Q1. In the created neural network, there are R neurons in
the input layer, and each row corresponds to the typical value of the input data of a neuron.
T is a matrix of SN × Q2. The network has SN output layer nodes, and each row is a typical
value of the output value. In this study, the training was set to have two hidden layers, and
the number of neurons in the output layer was 10. The sigmoid function was selected as
the transmission function of the neurons in both the hidden layer and the output layer, and
the sigmoid function can prevent the phenomenon of neuron output saturation caused by
the excessive net input absolute value. The traingdx function was selected as the training
function of the backpropagation algorithm because that updates the weight and bias values
according to the gradient descent momentum and an adaptive learning rate. It will return
a trained net and the training record, and the learngdm function is adopted as the gradient
descent learning function with an additional momentum factor. Figure 9 shows the final
radial basis network structure.
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The maximum training times of the network were set to 1000 times with the target
error tolerance of 0.01, the learning rate of 0.001, and the displayed interval times of 10.
Figure 10 shows the training state based on the BP neural network.
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Figure 10. Training state.

4.2. Model Testing

Table 6 shows the testing results of the 10 cases by the trained model. The factors of
safety predicted by the trained BP neural network were close to the ideal output values.
The average relative error of 1.02% and the goodness of fitness of 0.999 for the BP model
indicate a good prediction effect.

Table 6. Prediction results of BP neural network model.

Number Predictive Value Output Value Relative Errors/%

1 1.5147 1.5498 2.26
2 0.9019 0.9013 0.07
3 0.9252 0.9273 0.23
4 0.9252 0.9213 0.42
5 2.4210 2.4248 0.16
6 1.5283 1.4981 2.02
7 1.0576 1.0421 1.49
8 1.0424 1.0428 0.04
9 2.3401 2.3528 0.54
10 2.3049 2.3764 3.01
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The trained BP neural network model was further used to predict the stability of the
four physical model tests. Table 7 shows the predicted factors of safety for the model tests.
It can be seen that the predicted safety factors of the four tests are all less than 1.1, indicating
that the slope was under a critical state, which was consistent with the test.

Table 7. Safety factor prediction results of the model tests.

Test T-1 T-2 T-3 T-4

Prediction result 1.108 1.090 1.060 1.045

5. Conclusions

This paper carried out a series of model tests under a plane strain condition to investi-
gate the stability of high backfill slopes moisturized by rainfalls, considering the influences
of rainfall duration and intensity. Based on the extended model cases, a BP neural net-
work model was used to develop a prediction model considering the rainfall duration and
intensity. Based on the test result and analyses, the following conclusions can be drawn:

1. The deformation of the slope increased sharply after reaching a certain surcharge.
Increasing the rainfall intensity and duration made the lateral displacement of the
slope become more significant, and reduced the stability of the backfill slope.

2. The moisture content was distributed almost parallel to the slope surface after rainfall.
Increasing the rainfall intensity caused the soil near the slope surface to be saturated
faster. All the slip planes were close to an arc-like sliding, but the rainfall influenced
the sizes of the sliding mass.

3. Based on the calibrated model, a model base including 112 cases was established
considering the factors of surcharge load, and rainfall intensity and duration. The
BP neural network was adopted to build a model for predicting the stability of high
backfill slopes under rainfall. The trained BP model shows the average relative error
of 1.02% and the goodness of fitness of 0.999, indicating a good prediction effect.
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