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Abstract: At present, the development of the Internet of Things (IoT) has become a significant symbol
of the information age. As an important research branch of it, IoT-based video monitoring systems
have achieved rapid developments in recent years. However, the mode of front-end data collection,
back-end data storage and analysis adopted by traditional monitoring systems cannot meet the
requirements of real-time security. The currently widely used edge computing-based monitoring
system can effectively solve the above problems, but it has high requirements for the intelligent
algorithms that will be deployed at the edge end (front-end). To meet the requirements, that is,
to obtain a lightweight, fast and accurate video face-recognition method, this paper proposes a
novel, set-based, video face-recognition framework, called sample reduction-based pairwise linear
regression classification (SRbPLRC), which contains divide SRbPLRC (DSRbPLRC), anchor point
SRbPLRC (APSRbPLRC), and attention anchor point SRbPLRC (AAPSRbPLRC) methods. Extensive
experiments on some popular video face-recognition databases demonstrate that the performance of
proposed algorithms is better than that of several state-of-the-art classifiers. Therefore, our proposed
methods can effectively meet the real-time and security requirements of IoT monitoring systems.

Keywords: IoT monitoring system; video face recognition; recognition performance optimization;
attention mechanism; anchor point; large-size video

1. Introduction

At present, the development of the Internet of Things [1,2] has become a significant
symbol of the information age, and the video monitoring systems are an important basic
aspect within the IoT field, which can be used in many real word scenarios, such as intel-
ligent elderly care monitoring systems, intelligent access control systems, and intelligent
anti-theft systems.

Traditional monitoring systems usually consist of two parts, the front-end cameras, and
the back-end server, and their basic processes are usually as follows: the front-end cameras
are first used to collect the monitoring data, then the collected data will be uploaded to
the back-end server for storage and processing; finally, the useful information is obtained
through human inspection or some intelligent algorithms. However, such manner has
the following disadvantages: (1) uploading the collected data to the server will cost a
lot of time, resulting in a failure to meet real-time requirement; (2) compared with PCs
and other devices, IoT devices are generally weak in performance and more vulnerable
to attacks, resulting in their inability to ensure the security of data during transmission;
(3) the collected video data usually need to be analyzed and recognized using intelligent
algorithms. However, the existing video face-recognition methods still have some defects.
For the above problems (1) and (2), the currently mature solution is to introduce edge
computing [3] and migrate the data analysis process to the edge end. Specifically, some
intelligent algorithms to each edge end (for example, deploy them to the surveillance
cameras) are firstly deployed, in order to process the collected data in real time; secondly,
the recognition or analysis results processed by the algorithm are returned to the back-end
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(server) for storage, or even alarming. In such a manner, we can not only effectively reduce
the amount of data transmission and meet the real-time requirements, but also gain higher
security, because the transmission data no longer comprise the original data but the analysis
results. However, this scheme has high requirements for the intelligent algorithms to be
deployed, that is, the intelligent algorithms need to have fewer parameters (because the
memory of the edge device is limited), faster computing speed and higher recognition
accuracy. In view of this practical demand, this paper will focus on the research of video
face-recognition methods applicable to IoT monitoring systems.

So far, face recognition is already widely used in everyday life, including sign-in
systems, fugitive tracking systems, etc. Many related algorithms have been developed [4,5],
such as the principal component analysis (PCA) algorithm [6], linear regression classifica-
tion (LRC) algorithm [7], support vector machine (SVM) algorithm [8], linear discriminant
analysis (LDA) algorithm [9], k-nearest neighbor (K-NN) approach [10], canonical cor-
relation analysis (CCA) method [11], and the sparse representation-based classifications
(SRC) algorithm [12]. All of these single image-based image recognition algorithms have
achieved satisfactory performances; however, with the development of imaging technology,
a great number of videos is being produced everyday, and how to recognize video [13]
data, i.e., how to measure the distance between videos, is still a challenging problem.
Many researchers have pointed out that temporal information is not important for face
recognition; hence, the term video face recognition in this study refers to set-based video
face recognition, i.e., where temporal information is not considered.

When compared to a single image, videos and image sets contain useful information,
such as varying expressions, varying poses, and varying illumination conditions, that
describe the objects within in the images. Hence, it is very important to study the classi-
fication problem from the perspective of image sets, i.e., the image set classification task.
The purpose of image set classification (or set-based video recognition) is to assign labels to
the probe set (or video) by measuring the similarities between the gallery videos (or sets)
and the probe videos (or sets). When compared with the single image-based recognition
task, the set-based video recognition task can directly calculate the labels for whole videos,
without classifying each frame of the videos separately, which can effectively accelerate
the calculation speed. Since every video includes a wide range of appearance variations,
the key to set-based video face recognition lies in two strategies: the representation of the
videos and the accurate measurement of the distance between different videos. From the
perspective of model representation and measurement learning, many set-based video face-
recognition methods have been presented in recent decades, in order to identify the optimal
recognition performance, including the discriminant canonical correlations (DCC) algo-
rithm [14], covariance discriminative learning (CDL) algorithm [15], dual-linear regression
classification (DLRC) algorithm [16], manifold discriminant analysis (MDA) algorithm [17],
pairwise linear regression classification (PLRC) algorithm [18], image set-based collabo-
rative representation and classification (ISCRC) algorithm [19], and set-level joint sparse
representation classification (SJSRC) algorithm [20]. Among these algorithms, LRC-based
methods have gradually attracted the attention of a greater number of researchers because
of their superior performance.

Recently, the PLRC algorithm [18] has been proven to be a valid image set-classification
method. By analyzing PLRC, the distance between images has been identified as the key
point in the construction of unrelated sets. However, previously developed unrelated set
construction strategies (i.e., S1 and S2 in [18]) are not optimal distance metric methods.
Fortunately, based on collaborative and sparse representation, Gao et al. proposed another
two unrelated set construction strategies: S3 and S4 [21]. In addition, when the size of the
videos or image sets is small, PLRC can work well (see Figure 4). Therefore, how to make
PLRC suitable for large-size videos has become an interesting problem. Gao et al. proposed
the kernel PLRC (KPLRC) algorithm [21], with the aim of increasing the dimensionality of
image samples in an image set, in order to increase the linear separability and overcome
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this issue. Unfortunately, KPLRC not only increases the classification accuracy, but also the
additional computational overhead.

Motivated by this, and starting from the direction of decreasing the number of images
in each video, this paper proposes a novel video face recognition or image set classification
framework, named sample reduction-based PLRC (SRbPLRC), which consists of divide
SRbPLRC (DSRbPLRC), anchor point SRbPLRC (APSRbPLRC), and attention anchor point
SRbPLRC (AAPSRbPLRC) methods. Specifically, the DSRbPLRC algorithm was evalu-
ated first, which simply divides large-size videos into several small-size videos/subsets
randomly. However, DSRbPLRC increases the number of videos, which may reduce the
computing speed, and it does not consider the influence of any noise or outliers that may
exist in the videos. Then, we looked at the APSRbPLRC algorithm, which first uses the
clustering method to divide each video into several sub-videos, and then the centroid and
mean values of each sub-video were used as anchor points. APSRPLCR can greatly reduce
the number of samples in videos and does not increase the number of videos. Thus, it can
realize set-based video face recognition efficiently and accurately. Additionally, APSRPLCR
can overcome the influence of noise and outliers to some extent. Nevertheless, APSRPLCR
considers all images within each sub-video to be of equal importance while computing
the anchor points; however, we believe that a good anchor point construction strategy
should adaptively weigh and combine the images in each sub-video/subset. Thus, the
AAPSRbPLRC algorithm was developed, which utilizes an attention mechanism to learn
the optimal anchor points. An overall flow chart of this algorithm is shown in Figure 1.
Finally, several experiments were conducted on some popular databases (i.e., Honda, Mobo,
and YTC) to demonstrate the effectiveness of our proposed method for large-size video
face recognition. The main contributions of this paper are given as follows:

• A simple, yet effective, sample reduction-based pairwise linear regression classifica-
tion framework is proposed, which consists of three methods, and these methods are
augmented one by one.

• By introducing the attention mechanism, our attention anchor point SRbPLRC method
can adaptively weigh and combine the images in each cluster, so as to achieve faster
and effective image set classification.

• Experimental results can demonstrate the effectiveness of our proposed three methods
for large size video face recognition. Therefore, our proposed methods can effectively
meet the real-time and security requirements of IoT monitoring system.
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Figure 1. An illustration of the proposed framework. Aiming at obtaining an effective and efficient
video face recognition method, a new SRbPLRC framework is proposed, by decreasing the number of
images in each video. This framework contains DSRbPLRC, APSRbPLRC, and AAPSRbPLRC methods.
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The rest of this paper is organized as follows. In Section 2, we briefly review the
existing set-based video face-recognition algorithms. In Section 3, we present the SRbPLRC
framework in detail. The experiments and the results analysis are discussed in Section 4. In
Section 5, we present our conclusions.

2. Related Works

In this section, we briefly review some related works, which cover Internet of Things
and video face-recognition methods for IoT monitoring systems.

2.1. Internet of Things

The definition of IoT is as follows: “through various information sensors, collect any
object or process that needs to be monitored, connected and interacted in real time, collect
all kinds of required information such as sound, light, heat, electricity, mechanics, chemistry,
biology and location, and realize the universal connection between things and people, and
realize the intelligent perception, recognition and management of things and processes
through various possible network access”. According to this definition, there are many
research branches in IoT, such as IoT basic theory and technology, IoT data management
and middleware technology, IoT electrical automation and remote monitoring, etc.

In the IoT basic theory and technology branch, researches mainly study the IoT
communication protocol and node technology, sensor network architecture deployment
and performance evaluation, information security and privacy, multi-sensor information
fusion, etc. For example, regarding the IoT scenario, Cauteruccio et al. had developed
many works on social networks [22–24]. For instance, in the literature [24], they proposed
a new method to investigate anomalies in a multiple IoT scenario. In the literature [22], the
authors proposed computing the scope of a social object in a multi-IoT scenario; and in
another study [23], they proposed three new measures of betweenness centrality, specifically
conceived for a multiple IoT scenario. Besides, Nicolazzo et al. [25] proposed a privacy-
preserving approach to prevent feature disclosure in a multiple IoT scenario, i.e., a scenario
where objects can be organized into (partially overlapped) networks that interact with
each other.

In the IoT data management and middleware technology branch, researches mainly
study massive data processing and analysis technology, as well a sdata storage, query,
mining, analysis and fusion technology, in other words, applying artificial intelligence (AI)
algorithms to IoT systems, and thus producing the AIoT concept. The AI technology is
usually used to interpret and respond to some human-to-machine and machine-to-machine
data flows in real time, and it can reduce latency, as well as increase the privacy and
real-time intelligence of the system at the edge. This also means that fewer data need to
be sent and stored on the server. Note that the research in this paper just belongs to this
research field.

2.2. Video Face-Recognition Methods for IoT Monitoring Systems

Video- or image set-based face-recognition has been actively studied for decades.
In this paper, we only considered inputs of orderless sets of face images. Since many
researchers have pointed out that temporal information is not important for face-recognition
tasks, existing methods that exploit temporal dynamics are not considered here.

Up until now, existing video recognition or image set classification approaches have
been roughly grouped into three classes: model representation-based methods, metric
learning-based methods, and simultaneous model representation- and metric learning-
based methods.

Model representation-based methods mainly focus on how to build more discrimina-
tive model representations. For example, the discriminant canonical correlations (DCC)
algorithm [14] used subspaces to model videos or image sets, and employed the canonical
correlation metric to measure the similarities between two videos. The log-Euclidean
metric learning (LEML) algorithm [26] and covariance discriminative learning (CDL) al-
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gorithm [15] both used covariance matrices to model videos and logarithm kernels, in
order to learn the distance between videos or image sets. Single Gaussian or Gaussian mix-
ture models (GMM) used probability distributions to model videos, and utilized existing
K-L divergence to measure the similarities between the distributions. The disadvantage
of model representation-based methods is that they ignore the importance of distance
metric learning.

Different from model representation-based approaches, metric learning-based meth-
ods mainly use existing strategies to represent videos, and focus on how to learn accurate
distance metrics. Cevikalp and Triggs [27] modeled image sets and videos as affine hulls
and convex hulls, and then proposed two metric learning methods: the convex hull-based
image set distance (CHISD) algorithm and the affine hull-based image set distance (AHISD)
algorithm. They then developed two optimization functions to learn distance metrics,
based on collaborative representation. The SANP [28] method also used affine hulls to
represent videos, and employs a new distance learning method, which tries to identify
the SNAP between two videos. The ISCRC algorithm [19] represents probe videos as
regularized/convex hulls and uses all gallery videos to collaboratively reconstruct these
hulls in order to learn the discriminative distances. Dual-linear regression classification
(DLRC) [16] took LRC as its baseline and extended it to video recognition. Specifically,
DLRC used spanning subspaces to represent image sets and videos, and tried to learn more
suitable set-based distances. Inspired by DLRC, the concept of unrelated sets was first
defined in PLRC, which learned related distance metrics, unrelated distance metrics, and
combination metrics to improve classification performance. Unfortunately, experiments
have shown that even though DLRC and PLRC can achieve satisfactory performances in
small-size video recognition or image set classification tasks, they do not perform well on
large-size videos. Additionally, the existing unrelated set construction strategies (i.e., S1
and S2 in PLRC) are not optimal. So, how to construct more discriminative unrelated sets
and extend the methods to large-size video recognition tasks remain challenging problems.
Gao et al. proposed the KPLRC algorithm, which uses two new, unrelated set-constructing
strategies, and tries to increase the dimensionality of the image samples in each image
set to overcome the limitations of PLRC. Unfortunately, KPLRC not only increases the
classification accuracy but also the additional computational overhead. Inspired by this,
a novel SRbPLRC framework is proposed in this paper, which combines the two new
unrelated set construction strategies from KPLRC with three extensions of SRbPLRC, for
large-size video recognition or image set classification.

Simultaneous model representation- and metric learning-based methods consider
model representation and metric learning at the same time, in order to achieve more
accurate video recognition. For instance, the joint metric learning-based class-specific
representation (JMLC) [29] framework modeled image sets as affine hulls, and simultane-
ously learned the related and unrelated distance metrics. The projection metric learning
(PML) algorithm [30] used subspaces to represent videos, and learned the projection metric
directly using Grassmann manifolds, in order to reduce the computation costs. The MDA al-
gorithm [17] and manifold–manifold distance (MMD) algorithm [31] both modeled videos
as local linear models. Thus, the similarities between two videos are then characterized
by the distance between their corresponding local linear models. The covariate-relation
graph (CRG) algorithm [32] used graphs to represent videos, and tried to learn the graph
guide distance metric. The multi-model fusion metric learning (MMFML) algorithm [33]
was developed because it was thought that using one model to represent each image set
was not enough; therefore, this algorithm used multi-models to jointly model each video or
image set and adopted a distance fusion method. Other methods in the literature [34–36]
also used subspace points, which lie on Grassmannian manifolds, to represent videos, and
different discriminant analysis approaches have been developed to learn more effective
distance metrics.



Appl. Sci. 2023, 13, 4209 6 of 14

3. SRbPLRC Framework for Large-Size Video Face Recognition

In one study [18], the PLRC algorithm has been developed and a definition of unrelated
sets has been introduced, with the aim of improving discriminative information. According
to that definition of unrelated sets, Ni samples need to be selected from all classes (except
the ith class) to construct an unrelated set. Additionally, two unrelated set construction
strategies have been developed in PLRC, which are denoted as S1 and S2. In S1, response
vectors are reconstructed using a complete dataset X = [X1, X2, · · · , XC] ∈ Rq×L and a
probe set Y ∈ Rq×n, where L is the sum of all Ni and Ni is the number of samples in Xi.
Obviously, q, L, n satisfy the inequality q < L + n, which indicates that S1 does not satisfy
the basic conditions of the DLRC algorithm. Hence, the learned reconstruction coefficient
of S1 is unbelievable (see Figure 4). Inspired by S1, two novel unrelated set construction
strategies have further been proposed in the literature [21]: S3 and S4. The details of these
strategies are shown in Figure 2. However, although KPLRC overcomes the disadvantages
of PLRC with the help of S3 and S4, its computing time is very high. Aiming at obtaining
an effective and efficient video face recognition method, we developed the new SRbPLRC
framework by decreasing the number of images in each video. Note that our proposed
framework will borrow the above mentioned unrelated set-construction strategies.
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Figure 2. A diagram of the unrelated S3 and S4 set-constructing strategies. In S3, the sparse represen-
tation is used to learn the distances, while in S4, the collaborative representation is used.

3.1. DSRbPLRC Algorithm

Suppose that there are C large-size videos/image sets, denoted as {X1, · · · , XC}, with
each video containing Ni images and each image being xi

m ∈ Rq×1. Additionally, suppose
that the image vector xi

m is normalized to [0, 1]. Using these definitions, the ith gallery
video or image set can be formulated as Xi = {xi

j|j = 1, · · · , Ni} and the probe video or
image set can be represented as Y = {yj|j = 1, · · · , n}, where n is the number of images in
the probe video Y.

The DSRbPLRC algorithm aims to divide large-size videos into several small-size sub-
videos to improve its ability to deal with the large-size video recognition task. Assuming
that t is the division threshold, i.e., the number of samples in the divided video is no
larger than t, the related (or unrelated) gallery video Xi can be randomly divided into
Xi1, Xi2, · · · , Xia, where a = [Ni/t + 1] is the number of the divided sub-videos, and

Xij = {x
ij
1 , · · · , xij

t }, j = 1, · · · , a− 1,
Xia = {xia

1 , · · · , xia
Ni−t(a−1)},

(1)

where i means the sub-video Xij or Xia comes from the original ith gallery video, and j
means that it is the jth sub-video of Xi.
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Similarly, the probe video Y can be divided into Y1, Y2, · · · , Yb, where b = [n/t + 1] is
the number of the divided sub-videos of Y, and

Ye = {ye
1, · · · , ye

t}, e = 1, · · · , b− 1,
Yb = {yb

1, · · · , yb
n−t(b−1)},

(2)

where e means the eth sub-video of Y.
The DSRbPLRC algorithm uses spanning subspaces to represent each sub-video; thus,

the gallery set Xij can be represented as Xijα = [xij
1 , · · · , xij

t ]α ∈ Rq×1, i = 1, · · · , C,
j = 1, · · · , a, which can represent all images in Xij. The probe set Ye can be represented
as Yeη = [ye

1, · · · , ye
t ]η, e = 1, · · · , b. Finally, the unrelated set Uij that corresponds to the

gallery set Xij can be represented as Uijγ = [uij
1 , uij

2 , · · · , uij
Ni
]γ ∈ Rq×1.

By minimizing the Euclidean distance between Yeη and Xijα (or Uijγ), we obtain the
following optimization problem:

min ||Xijα−Yeη||22
s.t. ∑

i
αi = 1, ∑

i
ηi = 1, (3)

and
min ||Uijγ−Yeη||22
s.t. ∑

i
γi = 1, ∑

i
ηi = 1. (4)

Then, using the least squares algorithm, the related and unrelated representation
coefficients β

ij
e,r and β

ij
e,u between (Xij, Ye) and (Uij, Ye), respectively, can be computed

as follows:
β

ij
e,r = (Sij

e,r
T

Sij
e,r)
−1Sij

e,r
T

sij
e,r,

β
ij
e,u = (Sij

e,u
T

Sij
e,u)
−1Sij

e,u
T

sij
e,u,

(5)

where sij
e,r = ye

mean − xij
mean, sij

e,u = ye
mean − uij

mean, Sij
e,r = [X̄ij,−Ȳe], Sij

e,u = [Ūij,−Ȳe],

X̄ij = [xij
1 − xij

mean, · · · , xij
Ni
− xij

mean], β
ij
e,r = [α; η], β

ij
e,u = [γ; η], and the definitions of

Ȳe, Ūij are the same as in X̄ij.

Thus, the related metric distance dij
e,r and the unrelated metric distance dij

e,u between
Xij and Ye can be calculated as follows:

dij
e,r = ||s

ij
e,r − Sij

e,rβ
ij
e,r||2,

dij
e,u = ||sij

e,u − Sij
e,uβ

ij
e,u||2.

(6)

Finally, the combination metric dij
e = dij

e,r/dij
e,u is used to obtain the label of sub-video

Ye (the detail can be found in [29]). Thus, the label of probe video Y can be obtained by
using the majority voting strategies.

3.2. APSRbPLRC Algorithm

From the above subsection, we can see that the DSRbPLRC algorithm increases the
number of videos, which may reduce the computing speed, and it does not consider the
influence of any noise or outliers that may exist in the videos. Thus, the APSRbPLRC
algorithm is introduced in this subsection, which first uses the clustering method to divide
each video into several sub-videos, and then uses the centroid and mean values of each
sub-video as anchor points.

Anchor points are the most representative points in videos or image sets, and the
subsets formed by anchor points can approximately replace the original videos or sets. In
order to decrease the size of image sets or videos and improve efficiency, subsets of anchor
points are constructed by extracting the common characters from each image and singling
out the most representative points. An illustration of this process is shown in Figure 3.
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In this study, the hierarchical divisive clustering (HDC) algorithm [31] is used as
the clustering method to extract the clusters, i.e., to divide each video into several sub-
videos. Specifically, the HDC algorithm regards each image set or video as a manifold and
measures the non-linearity degrees of different clusters according to the deviations between
the Euclidean distances and geodesic distances. This ensures that there is a similar number
of images in the extracted clusters, and that the samples in each cluster have similar visual
characteristics. Then, the mean image of each cluster is computed as the anchor point,
which can in turn represent the whole subset.
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Figure 3. An illustration of the proposed DSRbPLRC and APSRbPLRC algorithms. DSRbPLRC
directly divides a large-size video into several small-size sub-videos, and each sub-video is used for
classification. Different from DSRbPLRC, APSRbPLRC uses the HDC algorithm to extract anchor
points, which will not increase the number of videos.

After obtaining the anchor points, the size of the videos is greatly reduced, and due
to the necessary information being preserved by the anchor points, recognition rates can
also be retained. We should point out that other anchor points extraction strategies can
also be used, such as the K-means clustering approach, spectral clustering algorithms, and
one-class SVMs.

In this study, for C gallery videos {X1, · · · , XC} and a probe video Y, the HDC al-
gorithm is first used to extract the anchor points of each video, so we could obtain the
following anchor point gallery and probe videos: {Xap

1 , · · · , Xap
C } and Yap (where Xap

i
contains Nap

i representative images, Yap contains nap representative images, and Nap
i � Ni,

nap � n is satisfied). As with the DSRbPLRC algorithm, we could then directly obtain the
label of Y using Equations (5) and (6).

3.3. AAPSRbPLRC Algorithm

The APSRbPLRC algorithm uses the mean image of each subset as the anchor point;
however, we believe that a good anchor point construction strategy should adaptively
weigh and combine the images in each subset. Hence, we adopted an attention mechanism
to obtain more discriminative anchor points.

Suppose that we obtained subset {x1, · · · , xm} using the HDC algorithm, and then
initialized the query vector q0 ∈ Rq×1. We can then obtain the score of each image xi by
computing the dot product as follows:

ek = (q0)Txk, (7)
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where T is the transpose operation. The attention distribution αk can then also be computed,
as follows:

αk =
exp(ek)

∑j exp(ej)
. (8)

Finally, the weighted average of subset can be obtained as follows:

r0 =
m
∑

k=1
αkxk. (9)

The obtained r0 can be input into the following equation to obtain the new query vector q1, q2:

q1 = Tanh(W1r0 + b1),
q2 = Tanh(W2q1 + b2).

(10)

Finally, the anchor point r2 of the subset generated by q2 can be obtained using Equations (7)–(9).
In order to solve the parameters in Equation (10), the subspace-based contrastive

loss is used in this paper. Suppose that {Xap
1 , · · · , Xap

C } are anchor point gallery videos
computed after the above attention mechanism, then the distance dij between Xap

i and Xap
j

can be computed by Equations (5) and (6). Thus, the subspace based contrastive loss can be
defined as:

L = ∑
ij

yijdij + (1− yij)max(0, m− dij) (11)

where yij equals 1 or 0 (yij = 1 means that Xap
i and Xap

j belong to the same class, whereas

yij = 0 means that Xap
i and Xap

j belong to different classes).
After obtaining more discriminative anchor points for each video, the AAPSRbPLRC

method can effectively produce the labels for the probe video.
In summary, when we suppose that each sub-video or subset has a similar number

of images, then the PLRC algorithm needs to compute C large-size distances to classify
one probe video, while the DSRbPLRC algorithm needs to compute C× a× b small-size
distances, and the APSRbPLRC and AAPSRbPLRC algorithms both need to compute C
small-size distances.

4. Experiments
4.1. Experimental Settings

Next, we verified the effectiveness of the proposed framework for large-size video
recognition tasks. In this study, the division threshold t in DSRbPLRC was set as t = 100.
There are two parameters for the APSRbPLRC algorithm: the threshold parameter θ and
the nearest neighbor parameter k. According to [31], it is known that larger θ values imply
fewer local models (thus, higher efficiency) but larger linearity deviations, and vice versa.
Thus, the parameter θ was selected by searching from 1, 2, · · · , 5, while parameter k was
selected by searching from 1, 2, · · · , 12. In the AAPSRbPLRC algorithm, the parameter m
was set as 1.5.

4.2. Methodology

In this subsection, we describe the comparison experiments that we conducted, in
order to compare our proposed method with some state-of-the-art set-based video recogni-
tion methods, including DCC [14], AHISD, CHISD [27], SANP [28], MMD [31], COV [15],
ISCRC [19], LEML [26], PML [30], the covariate-relation graph (CRG) algorithm [32],
DLRC [16], and PLRC (PLRC-I and PLRC-II) [18]. The implementation codes of these algo-
rithms were provided by the original authors, and their parameters were empirically tuned,
according to the recommendations in the original references. The attention mechanism in
our AAPSRbPLRC algorithm was trained using a standard backpropagation algorithm. On
the Honda and Mobo databases, we randomly divided the gallery videos into two small
videos, as each class only has one gallery video.
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4.3. Databases

In this study, three popular large-size databases were used in our experiments:
the Honda database, Mobo database, and YouTube Celebrities (YTC) database. The
Honda/UCSD database contains 59 video sequences from 20 different people and there are
about 300∼500 frames in each sequence. For fair comparison, 20 sequences were randomly
selected for training (one sequence was selected from each class), and the other 39 video
sequences were selected for testing. So, the video frames from each video sequence became
a face image set. The Mobo database contains 96 video sequences from 24 different people,
with each person having four video sequences in each class. In our experiments, we ran-
domly selected one sequence from each person for training, and used the remaining three
video sequences for testing. The YTC database is a large-size video recognition database,
which consists of 1910 video clips from 47 celebrities on the YouTube website. In each clip,
there are hundreds of frames. In our experiments, we randomly selected three video clips
or image sets from each celebrity for training and six video clips or image sets for testing.
All of the face images in these databases were resized to 20× 20.

4.4. SRbPLRC for Large-Size Video Recognition

On the Honda database, the biggest video sequence contains 618 images. On the
Mobo database, the biggest video sequence includes 340 images, while on the YouTube
Celebrities database, the biggest video sequence includes 349 frames. Hence, we will
perform large-size video recognition experiments on these databases.

Figure 4 illustrates the recognition rates of 10 random experiments using the DLRC
and PLRC methods. The videos were from the Honda and Mobo databases and contained
varying numbers of frames. In the experiments, PLRC-III and PLRC-IV are the combina-
tions of PLRC and the S3 and S4 unrelated set construction strategies. From the figure, it
can clearly be observed that the DLRC, PLRC-I, and PLRC-II methods only work well on
small videos (when there are fewer than 150 frames in each video). Specifically, on the
Honda database, the performance of the DLRC, PLRC-I, and PLRC-II methods is signifi-
cantly reduced when the number of frames is larger than 150. For the Mobo database, the
demarcation point for the DLRC, PLRC-I, and PLRC-II methods is also 150 frames. We also
noticed that the PLRC-III and PLRC-IV methods perform better than the DLRC, PLRC-I,
and PLRC-II methods.

(a) Honda database (b) Mobo database

Figure 4. The experimental results of DLRC and PLRC methods from two popular databases, with
varying numbers of frames.

In subsequent experiments, the Honda, Mobo and YouTube Celebrities databases, with
all their frames, were used as the large-sized videos. The average classification accuracies
of the DSRbPLRC, APSRbPLRC, and AAPSRbPLRC algorithms are shown in Figure 5.
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(a) DSRbPLRC method (b) APSRbPLRC method (c) AAPSRbPLRC method

Figure 5. The average recognition rates of the DSRbPLRC, APSRbPLRC, and AAPSRbPLRC algo-
rithms, in terms of large-sized videos.

Figure 5 lists a quantitative evaluation (i.e., the average classification accuracy) of the
DSRbPLRC, APSRbPLRC, and AAPSRbPLRC algorithms for large-size videos. It can be
observed that our proposed method outperforms PLRC in all cases, which indicates that
our SRbPLRC framework is effective, i.e., the DSRbPLRC, APSRbPLRC, and AAPSRbPLRC
algorithms can overcome the limitations of PLRC to some extent. We also found that
the DSRbPLRC and APSRbPLRC algorithms achieve similar performances, while the
AAPSRbPLRC algorithm achieves a better performance, which indicates that the attention
mechanism could find more discriminative anchor points. From Figure 5, it can also be seen
that the unrelated S3 and S4 set -construction strategies outperform the other unrelated
subspace-construction strategies. These quantitative and qualitative comparisons confirm
the applicability of the proposed method for large-size video recognition.

Finally, Table 1 enumerates the performances of the different methods on the different
databases when using all frames. The results of DSRbPLRC, APSRbPLRC and AAPSRb-
PLRC are the best classification accuracies selected from Figures 4 and 5. As can be seen
from the table, we observed the following: (1) the proposed method performs better than
PLRC, which indicates that our proposed approach is effective for the large-sized video face-
recognition task; (2) the AAPSRbPLRC algorithm obtains the best classification accuracy
on all databases, while the APSRbPLRC algorithm achieves a sub-optimal classification
performance on the Mobo database, which means that decreasing the number of images in
the videos used can overcome the shortcomings of the DLRC and PLRC algorithms, and
that the attention mechanism is helpful for the large-sized video face-recognition task.

Table 1. The average classification accuracies of the different methods on the three popular
databases (%), where the bold denotes the best results.

Method Honda Mobo YTC

DCC 96.67 88.54 61.73
MMD 97.18 94.10 67.23
LEML 97.18 88.69 50.60
PML 96.67 89.69 66.13
CRG 88.46 70.48 49.38
COV 100.0 90.35 69.18

SANP 93.60 93.87 66.70
AHISD 96.34 93.13 65.13
CHISD 95.44 94.21 63.40
DLRC 30.54 77.30 37.31
PLRC-I 65.13 84.67 49.89
PLRC-II 67.95 86.03 49.43

DSRbPLRC 96.59 95.96 67.18
APSRbPLRC 96.36 96.83 68.11
AAPSRbPLRC 100.0 97.98 72.23
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4.5. Computation Times

In this subsection, we present the testing times for identifying a query video on the
Honda and Mobo databases, using different methods. Here, only the unrelated S1 and S2
set-construction strategies were used for all methods. The average computing times are
shown in Table 2. From the table, we can see the following: (a) compared to PLRC, our
APSRbPLRC and AAPSRbPLRC algorithms require less time for testing, possibly because
our anchor point method can effectively decrease the set size; (b) compared to the other
methods, the DSRbPLRC algorithm requires the most testing time, which is due to the fact
that the DSRbPLRC algorithm needs to solve more optimization problems.

Table 2. The testing times for identifying a query video, on the Honda and Mobo databases.

Method Honda Mobo

PLRC-I 2.03 3.38
PLRC-II 6.33 9.38

DSRbPLRC-I 20.38 30.89
DSRbPLRC-II 80.80 100.8
APSRbPLRC-I 1.28 2.89
APSRbPLRC-II 4.98 8.83
AAPSRbPLRC-I 1.79 3.21
AAPSRbPLRC-II 5.67 8.87

5. Conclusions

In this study, a new set-based video face recognition framework for IoT monitoring sys-
tems, called sample reduction-based pairwise linear regression classification, was proposed,
which can effectively classify large-size videos. Subsequently, three classifiers (DSRbPLRC,
APSRbPLRC, and AAPSRbPLRC) were also developed by decreasing the number of im-
ages in each video. Our experimental results on some popular databases demonstrate the
superiority of our DSRbPLRC, APSRbPLRC, and AAPSRbPLRC algorithms. Specifically,
qualitative and quantitative comparisons between our proposed method, DLRC, and PLRC
for the large-size video face-recognition task demonstrate that the DSRbPLRC, APSRb-
PLRC, and AAPSRbPLRC algorithms can overcome the limitations of PLRC. We also find
that the AAPSRbPLRC method achieves the best classification results on all databases.

The main limitations of the proposed framework include the fact that we did not con-
sider the importance of feature learning; only one model feature is used in our framework,
while multi-model features are very common in IoT monitoring systems. Therefore, the
unrelated set construction strategy can be further improved. Hence, our future studies
will combine our framework with deep neural networks, classify multi-feature videos, and
design new unrelated set-construction strategies. Besides this, we will also research the
accelerating deploy problem in IoT systems using these algorithms.
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