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Abstract: Federated learning is a distributed machine learning paradigm, which utilizes multiple
clients’ data to train a model. Although federated learning does not require clients to disclose their
original data, studies have shown that attackers can infer clients’ privacy by analyzing the local
models shared by clients. Local differential privacy (LDP) can help to solve the above privacy
issue. However, most of the existing federated learning studies based on LDP, rarely consider
the diverse privacy requirements of clients. In this paper, we propose an LDP-based federated
learning framework, that can meet the personalized privacy requirements of clients. We consider both
independent identically distributed (IID) datasets and non-independent identically distributed (non-
IID) datasets, and design model perturbation methods, respectively. Moreover, we propose two model
aggregation methods, namely weighted average method and probability-based selection method. The main
idea, is to weaken the impact of those privacy-conscious clients, who choose relatively small privacy
budgets, on the federated model. Experiments on three commonly used datasets, namely MNIST,
Fashion-MNIST, and forest cover-types, show that the proposed aggregation methods perform better
than the classic arithmetic average method, in the personalized privacy preserving scenario.

Keywords: federated learning; local differential privacy; personalized privacy preserving; model
perturbation; model aggregation

1. Introduction

The explosive development of big data has brought new challenges to industry, and the
problem of data silos is one of them. Companies in different industries have different busi-
nesses and systems that are not open to the public, making it difficult to communicate
and integrate data and information [1]. Joint modeling needs to overcome many barriers.
Currently, many people have transferred their data to cloud platforms [2]. This data may
contain sensitive information from individuals, enterprises, and even governments. Solving
the data privacy problem in cloud storage is another challenge for big data. Countries
around the world have proposed laws to protect data privacy, such as the General Data
Protection Regulation (GDPR) [3] implemented by the European Union in 2018. The es-
tablishment of these regulations is undoubtedly a measure to improve the level of social
civilization, but it also brings new challenges to traditional data processing. Facing the
problems of data silos and data privacy, federated learning (FL) provides a feasible solution,
which was first proposed by Google Research in 2016 [4]. In federated learning, the data
analyst (also known as the server) does not collect the original data of clients (e.g., individ-
uals, enterprises, or institutions), but only collects the local training results of the client, for
training a federated model.

Although federated learning does not require clients to disclose their original data,
studies have shown that attackers can infer client privacy by analyzing local models shared
by clients [5,6]. To enhance privacy protection, researchers have applied secure multi-party
computation (SMC) [7,8], homomorphic encryption (HE) [9,10], and differential privacy
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(DP) [11] to federated learning. Secure multi-party computing and homomorphic encryp-
tion are encryption-based methods, that usually require the design of complex encryption
computing protocols to hide the real input and output, where the communication cost and
computation cost are high. SMC-based federated learning, generally utilizes the secret
sharing strategy. The client needs to divide its local model to several parts and transmit
these parts to all other clients, which incurs a high communication cost. In HE-based feder-
ated learning, clients send encrypted model parameters to the server, and the ciphertexts
are of a larger size than the plaintexts. Differential privacy-based methods mainly hide
some sensitive attributes of participants by adding noise to the data, until the attacker
cannot distinguish individuals through differential attacks. In DP-based federated learning,
the client sends perturbed model parameters to the server, and the communication cost
is almost the same as that of ordinary federated learning. Compared with the first two
methods, the differential privacy-based method has low computation and communication
costs, which makes it more suitable for individual users to deploy.

According to the trust assumption, existing differential privacy mechanisms can
be roughly divided into two categories: centralized differential privacy (CDP) and local
differential privacy (LDP) [12,13]. In the federated learning framework based on centralized
differential privacy [14], the client directly uploads the trained local model to the server,
and a trusted server aggregates the collected models, and then randomly perturbs the
aggregated models. Although such a framework can maintain high accuracy, it relies on the
trusted server. The federated learning framework based on local differential privacy [15],
assumes that the server is untrusted, and it does not care what background knowledge
the server has. The client performs model perturbation before sending the local model
to the server, to protect its privacy. However, different clients have different definitions
of privacy and expect different levels of privacy protection. The local differential privacy
mechanism mainly uses the privacy parameter called privacy budget, to measure the level
of privacy protection. The clients can express different privacy requirements by setting
different privacy budgets. A federated learning framework based on local differential
privacy should be adapted to these “personalized” privacy settings.

Many of the existing federated learning methods, based on local differential privacy,
do not take into account the personalized problem [16,17]. Because of the heterogeneity
of data between different clients and the inconsistency of clients’ privacy requirements,
it is difficult to meet the requirements of all participants with a single federated model,
so a personalized method needs to be considered, to meet the personalized requirements
of clients. In federated learning based on personalized local differential privacy, when
a client sets a low privacy budget, a large noise will be introduced, and the accuracy of
the federated model may be low if the server still treats all clients equally. Therefore, it
is necessary for the server to take certain measures to adjust the weights of the clients’
local models.

Following the basic framework of LDP-based federated learning, in this paper we
propose several aggregation methods to meet the personalized privacy requirements of
clients. According to the characteristics of data distribution, federated learning can be
divided into three categories, namely horizontal federated learning, vertical federated
learning, and federated transfer learning [18]. Among them, horizontal federated learning
is the most common one. The main feature of horizontal federated learning, is that training
datasets have the same feature space but different sample spaces. We focus on horizontal
federated learning in this paper. We consider both independent identically distributed
(IID) datasets and non-independent identically distributed (non-IID) datasets. For IID
datasets, we choose the Gaussian mechanism to realize locally differentially private model
perturbation. Each client adds Gaussian random noise to the original local model. For non-
IID datasets, we choose a probability-based "symbolized" function [19] to realize locally
differentially private model perturbation.

The proposed methods are applied on the server side. Specifically, a weighted average
method and a probability-based selection method are proposed for model aggregation.
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The basic idea of the proposed methods, is to assign different weights to different clients,
according to the privacy budgets set by clients. The difference between the two methods,
is that in the weighted average method, every client’s local model is utilized for model
aggregation. If the client chooses a high privacy budget, which means that it does not need
a high level of privacy protection, the client will not add too much noise to its local model
parameters. Correspondingly, a high weight will be assigned to the client’s local model.
While in the probability-based selection method, the server randomly selects a few local
models for model aggregation. If the client chooses a high privacy budget, a high probability
will be assigned to the client’s local model, and the client’s local model is more likely to
be selected by the server. We have conducted experiments on several commonly used
datasets, and compared the results of the proposed methods with those of the traditional
methods (i.e., the server treats all clients equally). The experimental results show that
the weighted average method performs better on IID datasets, and the probability-based
selection method performs well on both IID datasets and non-IID datasets.

Our contributions are summarized as follows:

1. Different model perturbation methods are proposed for IID and non-IID data. For IID
data, the Gaussian mechanism is applied, to achieve local differential privacy preserv-
ing. For non-IID data, the symbolized function is used, to perturb the local model of
the client.

2. In order to obtain a federated model under the premise of personalized privacy
settings, two model aggregation methods are proposed, namely a weighted average
method and a probability-based selection method. The proposed methods can help
to reduce the impact of privacy-conscious clients on the federated model, thus can
preserve the accuracy of the model.

3. Experiments are conducted on real-world datasets. The experimental results show
that, compared with the arithmetic average aggregation method, the proposed aggre-
gation methods can achieve better accuracy on both IID data and non-IID data.

The remainder of this paper is organized as follows. Section 2 introduces some core
concepts about local differential privacy and federated learning used in our work. Section 3
describes the system model of the proposed method. The proposed model aggregation
methods are presented in Section 4. Experiments and performance analysis of the proposed
method are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Preliminaries
2.1. Local Differential Privacy

Local differential privacy considers the possibility of server stealing, or leaking client’s
privacy, during data collection. Under this framework, each client first conducts random-
ized perturbation on the data, and then sends the perturbed data to the server. The server
makes statistics on the collected data, to obtain effective analysis results. A formal definition
of local differential privacy [12] is given below:

Definition 1 (Local Differential Privacy (LDP)). For a randomized algorithm M, its domain of
definition and range are D(M) and R(M), respectively. For any two records l and l′ in D(M), their
same output of M is S, where S ⊆ R(M). If the following inequality holds, then the randomized
algorithm M satisfies (ε, δ)-LDP,

Pr[M(l) = S] ≤ eε · Pr[M(l′) = S] + δ. (1)

In the above definition, Pr[M(l) = S] represents the probability that the output of
algorithm M is S, given the input l, and Pr[M(l′) = S] represents the probability that
the output of algorithm M is S, given the input l′. The parameter ε is called the privacy
budget, and the privacy protection level of the data can be adjusted through this parameter.
Theoretically, the larger the privacy budget ε is, the lower the privacy protection level M,
can be achieved, and the higher the utility of the output is. The parameter δ, represents the
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tolerance of some possibility of failure. The client uses a randomized algorithm satisfying
LDP to perturb the local model parameters. The algorithm applied by the client is referred
to as the perturbation mechanism.

To achieve LDP, a data perturbation mechanism needs to be introduced. At present,
random response (RR) [20] is the mainstream perturbation mechanism of LDP. Its main
idea is using the uncertainty of response to sensitive issues to protect the privacy of the
original data. A Gaussian mechanism [21] is not a typical perturbation mechanism of LDP,
but it is often used to realize LDP in federated learning [22]. The basic idea of the Gaussian
mechanism is to blur the original data, by adding 0-mean Gaussian noise. The advantage
of Gaussian noise is that the sum of two Gaussians is a Gaussian, which means the effects
of the Gaussian mechanism on the statistical analysis may be easier to correct for [11].

2.2. Federated Learning

In a federated learning scenario, there are N clients with their own local data
{D1, D2, . . . , DN}, and a server that wants the participants to jointly train an effective
model. The initial model parameter of the server is denoted as W(0). Each client has their
own model, whose structure is consistent with that of the server. The client will upload
the model to the server every time it trains, which will lead to a high cost of network
communication and low training efficiency. In order to reduce the number of communi-
cations, the client locally trains their model for multiple rounds, and then uploads the
accumulated updates of model parameters to the server. This algorithm is called FedAvg [4],
which is one of the most widely used federated learning algorithms. In the r-th round of
training, the server first randomly selects m clients from N clients, and sends current model
parameter vector W(r) to the selected m clients simultaneously. Then, each selected client
i, utilizes the model parameter sent by the server and its local data, to train a new model.
We denote the new model parameter as G(r)

i . The local model update ∆(r)
i

.
= G(r)

i −W(r) is
sent to the server. After receiving the update from each selected client, the server computes
the federated model as follows:

W(r+1) = W(r) +
∑m

i=1(∆
(r)
i )

m
. (2)

Then the server will send W(r+1) to all clients, and the r + 1-th round of training begins.
Generally, after several rounds of training, the federated model converges.

In the federated learning scenario, the dataset of each client may be IID or non-IID.
The FedAvg algorithm can be directly applied to IID scenarios. While for non-IID scenarios,
using FedAvg will lead to a decline in the accuracy of the federated model, because the data
distributions of different clients are quite different. At present, how to train a federated
model on non-IID data is still an open problem in federated learning and needs to be solved
urgently. To solve the non-IID problem, Zhao et al. [23] proposed creating a data subset that
can be shared on all clients. The shared data subset can narrow the difference between the
data distribution of each client and the overall data distribution. The privacy-preserving
federate learning framework proposed in this paper, is obtained by incorporating an
LDP perturbation mechanism and proposed aggregate methods into federated learning,
and better model accuracy is obtained by modifying the model aggregation method.

3. System Model

The notations used in this article are listed in Table 1.



Appl. Sci. 2023, 13, 4168 5 of 17

Table 1. Notations.

Symbol Description Symbol Description

R Real number field M Perturbation mechanism

f Aggregation rule N Total number of clients

m Number of selected clients
by using probability parameter

i The i-th client

R Maximum number of training rounds r The r-th round (r = 1, 2, . . . , R)

d Dimension of model parameter η Learning rate of SGD

U Maximum number of logistic regression rounds q Random sampling probability

ω A uniformly distributed random number
between 0 and 1, generated by the server

Di Training dataset of the i-th client

εi Privacy budget of the i-th client ci Clipping threshold of the i-th client

δi Inverse of training dataset size (default: 10−5) σi Standard deviation of the i-th client

αi
Weighting coefficient of the i-th client

in the weighted average method
ρi

Inverse of the standard deviation
of the Gaussian distribution of the i-th client

Pi Probability parameter of the i-th client W(0) Initial federated model parameter

W(r) Federated model parameter
generated in the r-th round

g(r)i Gradient of the i-th client in the r-th round

∆(r)
i

Local model update of the i-th client
in the r-th round

G(r)
i

Local model parameter of the i-th client
generated in the r-th round

Ĝ(r)
i

Clipped local model parameter of the i-th client
generated in the r-th round

G̃(r)
i

Perturbed local model parameter of the i-th client
generated in the r-th round

In this paper, we consider a horizontal federated learning architecture. As shown
in Figure 1, there are N clients in total. The server initializes the initial federated model
parameter W(0), and sends W(0) to each client i. The parameter W(0) is a d-dimensional
vector. Each element in the vector is 0. In the r-th round, each client i, trains the local model
G(r)

i , based on the federated model parameter of previous round W(r−1) and local training

dataset Di. Then, each client i, generates the clipped local model parameter Ĝ(r)
i , by the

model clipping process. Next, each client i, generates the perturbed local model parameter
G̃(r)

i = M(Ĝ(r)
i ), by the model perturbation mechanism M, and sends G̃(r)

i to the server.
In the end of the r-th round, the server generates the federated model parameter of r-th
round W(r) = f (G̃(r)

1 , G̃(r)
2 , . . . , G̃(r)

N ), by the model aggregation rule f , and sends W(r) to
each client. Then the r + 1-th round begins.

3.1. Client Side

There are N clients participating in a federated learning task. The local training data
of clients are either IID or non-IID. In each round, each client will update its local model
parameter G̃(r)

i , based on the federated model sent from the server. The client uses stochastic
gradient descent (SGD) [24] to optimize the model’s parameter, and obtain the local model
parameter. Then, the client uses the perturbation mechanism M, to add some random
noise or make some perturbation on the local model parameter. Clients can configure their
individualized privacy budget as they want. Parameter εi, is the privacy budget of client i
in the mechanism. We define that εi satisfies εlow ≤ εi ≤ εhigh, where εlow is usually set to
1, and εhigh is usually set to 10 [25,26]. The privacy budget εi, of each client i, is known to
the server. Next, we will describe the local training process in the r-th round, in detail.
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Figure 1. The overall architecture of the federated learning system with personalized local differen-
tial privacy.

Train the local model G(r)
i . Given the federated model parameter W(r−1) from the

previous round (i.e., the r− 1-th round), each client applies the SGD algorithm on the local
training dataset Di, and obtains the local model parameter G(r)

i :

G(r)
i = W(r−1) − ηg(r)i , (3)

where η denotes the learning rate of the SGD algorithm, and g(r)i denotes the gradient
of the i-th client in the r-th round. It should be noted that, when the clients’ training
data are IID, each client i, will sample from its own training dataset Di, with the same
sampling probability q, before training the local model, and then each client applies the
SGD algorithm on the sampled dataset D′i .

Model clipping. After using SGD to get G(r)
i , each client needs to clip the local

model parameter. Clipping [27] can prevent excessive noise from being introduced in the
subsequent perturbation process, to a certain extent. Clipping can also make the calculation
of sensitivity more convenient. To conduct model clipping, the client needs to pre-specify
a clipping threshold. The value of the threshold depends on the training dataset. That is
to say, different clients may use different clipping thresholds. Let ci denote the threshold
specified by client i. In the r-th round of the training, client i produces the clipped local
model parameter Ĝ(r)

i as follows. For each element b, in G(r)
i , if b > ci, then the client

replaces b with ci, otherwise the client replaces b with −ci.
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Model perturbation. Given the clipped parameter Ĝ(r)
i , the client i, applies the

randomized mechanism M, to each element in Ĝ(r)
i , and obtains a perturbed vector

G̃(r)
i

.
= M(Ĝ(r)

i ). Depending on the distribution of clients’ training data, different per-
turbation mechanisms are applied.

1. For IID data, the perturbation mechanism M, is to add Gaussian noise to each ele-

ment p, in Ĝ(r)
i . Firstly, the client i, calculates the standard deviation σi [28], of the

Gaussian distribution:

σi =

√
4q2R
1− q

(
2
ε2

i
log

1
δi

+
1
εi
), (4)

where εi denotes the privacy budget set by the client i, q denotes the probability of
randomly sampling the samples in clients i’s dataset, and Di, δi

.
= 1
|Di |

denotes the
inverse of the dataset size. Secondly, random noise is generated according to the
Gaussian distribution N

(
0, σ2

i
)
. The probability density function is given by

Gauss(x) =
1√

2πσi
exp(

x2

2σ2
i
). (5)

For each element p, in Ĝ(r)
i , the perturbed result p̃, is given by p +N (0, σ2

i ). Finally,

the client i sends G̃(r)
i to the server.

2. For non-IID data, the perturbation mechanism M, is to symbolize Ĝ(r)
i . By sym-

bolize, we mean that only the sign of each element in Ĝ(r)
i is retained, making Ĝ(r)

i
a vector consisting of only +1 or −1. As described in [19], each client i, uses the
privacy-symbolization function ldpsign(·) to perturb Ĝ(r)

i , and obtain G̃(r)
i . Specifi-

cally, for each element p, in the vector Ĝ(r)
i , the perturbed result p̃, is given by

p̃ = ldpsign(p) =

{
1, with probability ϕ( p

σi
),

−1, with probability 1− ϕ( p
σi
).

(6)

In the above equation, ϕ(·) denotes the cumulative distribution function of the nor-
malized Gaussian distribution, and σi denotes the standard deviation. The standard
deviation is computed as:

σi =
∆2

εi

√
(2ln(1.25/δi)), (7)

where ∆2 denotes the l2-sensitivity [11], and δi
.
= 1
|Di |

denotes the inverse of the
dataset size.

3.2. Server Side

In the proposed federated learning system, the server is an untrusted aggregator, which
is responsible for collecting the local model of each client and generating the federated
model. First, the server initializes the federated model parameter W(0) and sends W(0)

to each client. In the r-th round, the server will collect clients’ parameters for federated
model optimization. In particular, the server aggregates a set of perturbed parameters of
clients’ local models and averages the parameters at the end of each round. The new model
parameter, after the server’s averaging operation, is called the federated model parameter.
The server intends to maximize the accuracy of both the federated and local model, while
preserving clients’ privacy. The federated model parameter is sent back to clients to update
their local model parameters. Next, we will describe the model aggregation process in the
r-th round, in detail.
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Model aggregation. In the r-th round, the server collects the perturbed local parameter
G̃(r)

i , of N clients and performs an aggregation operation, to obtain W(r). Let f denote the
model aggregation rule. The following equation is the aggregation process of independent
identically distributed data:

W(r) = f (G̃(r)
1 , G̃(r)

2 , . . . , G̃(r)
N ). (8)

In particular, when the training data are non-independent identically distributed,
the server needs to symbolize the model parameter after applying the aggregation rule.
For each element p, in f (G̃(r)

1 , G̃(r)
2 , . . . , G̃(r)

N ), the symbolized result p̃, is given by [19]

p̃ = sign(p) =


−1, if p < 0,
0, if p = 0,
1, if p > 0.

(9)

We use the following equation to represent the aggregation and symbolization process
of non-independent identically distributed data:

W(r) = sign( f (G̃(r)
1 , G̃(r)

2 , . . . , G̃(r)
N )). (10)

We summarize the whole federated learning process on independent identically
distributed data and non-independent identically distributed data in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1 Federated learning with personalized local differential privacy on independent
identically distributed data.

Input: The total number of clients N, the maximum number of training rounds R, the max-
imum number of logistic regression rounds U, the clipping threshold ci of client i,
the learning rate η of SGD, the standard deviation σi of client i.

1: Server Side
2: Initialize W(0);
3: for round r = 1, 2, . . . , R do
4: for every client i ∈ N in parallel do
5: G̃(r)

i ← LocalTrain(i, W(r−1));
6: end for
7: W(r) ← f (G̃(r)

1 , G̃(r)
2 , . . . , G̃(r)

N );//Model Aggregation
8: end for

9: Client Side
10: LocalTrain(i, W(r−1)):
11: for round u = 1, 2, . . . , U do
12: G(r)

i ←W(r−1) − ηg(r−1)
i ;

13: end for
14: Ĝ(r)

i ← ModelClip(c, G(r)
i );//Model Clipping

15: G̃(r)
i ← M(Ĝ(r)

i )//Model Perturbation
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Algorithm 2 Federated learning with personalized local differential privacy on non-
independent identically distributed data.

Input: The total number of clients N, the maximum number of training rounds R, the max-
imum number of logistic regression rounds U, the clipping threshold ci of client i,
the learning rate η of SGD, the standard deviation σi of client i.

1: Server Side
2: Initialize W(0);
3: for round r = 1, 2, . . . , R do
4: for every client i ∈ N in parallel do
5: G̃(r)

i ← LocalTrain(i, W(r−1));
6: end for
7: W(r) ← sign( f (G̃(r)

1 , G̃(r)
2 , . . . , G̃(r)

N ));//Model Aggregation
8: end for

9: Client Side
10: LocalTrain(i, W(r−1)):
11: for round u = 1, 2, . . . , U do
12: G(r)

i ←W(r−1) − ηg(r−1)
i ;

13: end for
14: Ĝ(r)

i ← ModelClip(c, G(r)
i );//Model Clipping

15: G̃(r)
i ← M(Ĝ(r)

i ) = ldpsign(σi, Ĝ(r)
i )//Model Perturbation

4. Improved Aggregation Method

In the above section, we describe a federated learning process where clients perturb
their local models to preserve privacy. It should be noted that, though different clients
are allowed to choose different privacy budgets, when computing the federated model,
the server treats all local models equally. While in fact, if some clients choose low privacy
budgets, their local models will contain much noise. As a result, if all local models are
treated equally, it can be foreseen that the accuracy of the federated model will be low.
Therefore, if the client is allowed to choose a personalized privacy budget, it is necessary
for the server to take some measures to adjust the weight of the client, in order to obtain
a federated model with high accuracy. In this section, we propose two methods for the
server to aggregate the local models. It is assumed that every client notifies the server of
the privacy budget it has chosen before the iterative training process starts.

4.1. Weighted Average Method

In order to make the local models of clients with high privacy budgets contribute
more to the federated model, and at the same time ensure the accuracy of the federated
model, the first strategy we consider is to determine the weight of each client’s contribution
in the federated learning, according to the privacy budget set by each client. In the r-th
round of the training, after collecting the perturbed local parameter G̃(r)

i from each client i,
the server first utilizes the privacy budget to compute a weighting coefficient αi, for each
client i, and then performs a weighted average operation to obtain W(r). Intuitively, αi
represents the importance of client i’s local model in this round of learning. We compute αi
as follows:

αi =
ρi

∑N
i=1 ρi

, (11)

where ρi denotes the inverse of the standard deviation σi, of the Gaussian distribution of
the i-th client, and αi ≤ 1. The larger the standard deviation σi, the smaller the coefficient
αi is, and the smaller the influence of G̃(r)

i on W(r).
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Specifically, for independent identically distributed data, the model aggregation rule
(line 7 in Algorithm 1) is now given by

W(r) = f (G̃(r)
1 , G(r)

2 , . . . , G(r)
N ) =

∑N
i=1 αiG̃

(r)
i

∑N
i=1 αi

. (12)

For non-independent identically distributed data, the model aggregation rule (line 7
in Algorithm 2) is now given by

W(r) = sign( f (G̃(r)
1 , G̃(r)

2 , . . . , G̃(r)
N )) = sign(

∑N
i=1 αiG̃

(r)
i

∑N
i=1 αi

). (13)

4.2. Probability-Based Selection Method

In the above method, we assign different weights to different clients, so that the client
who has chosen a higher privacy budget will have a greater impact on the federated model.
To further weaken the impact of clients who have chosen a small privacy budget, here
we propose another strategy. The basic idea is to randomly select a subset of clients to
participate in one round of model aggregation. For a client, the probability of being selected
is determined by the privacy budget chosen. In short, choosing a high privacy budget
means that the client does not need a high level of privacy protection, and it will not add
too much noise to the local model’s parameters. Correspondingly, a high probability will be
assigned to the client’s local model, and the client’s local model is more likely to participate
in this round of federated learning.

In the r-th round of training, after collecting the perturbed local parameter G̃(r)
i , of

each client i, the server first randomly selects a subset of m clients, and then performs an
arithmetic average operation on the local models from the selected clients, to obtain W(r).
Let Pi denote the probability of client i being selected in this round. The probability Pi, is
computed as:

Pi =
ρi

∑N
i=1 ρi

, (14)

where ρi denotes the inverse of the standard deviation σi, of the Gaussian distribution
of the i-th client, and 0 < Pi ≤ 1. The larger the standard deviation σi, the smaller the
probability Pi.

Before the iterative training process starts, the server will utilize the privacy budget to
compute the probability Pi, for each client. Then, in each round of training, the server takes
the following steps to select m clients. The server first generates a uniformly distributed
random number ω ∈ [0, 1]. For each client i, if there is Pi > ω, then the client is selected.
Otherwise, the client will not be selected.

Specifically, for independent identically distributed data, the model aggregation rule
(line 7 in Algorithm 1) is now given by

W(r) = f (G̃(r)
1 , G̃(r)

2 , . . . , G̃(r)
N ) =

1
m

m

∑
i=1

G̃(r)
i . (15)

For non-independent identically distributed data, the model aggregation rule (line 7
in Algorithm 2) is now given by

W(r) = sign( f (G̃(r)
1 , G̃(r)

2 , . . . , G(r)
N )) = sign(

1
m

m

∑
i=1

G̃(r)
i ). (16)

5. Experiments

To evaluate the performance of the methods proposed in the above section, we conduct
a series of experiments on real-world datasets. In general, we have verified the effectiveness
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of the proposed method on independent identically distributed data and non-independent
identically distributed data. For all experiments, we use the federated model accuracy as
the evaluation criterion, which is defined as the ratio of correctly classified samples to the
total number of samples.

5.1. Datasets

All experiments are carried out on the MNIST (http://yann.lecun.com/exdb/mnist/,
accessed on 25 November 2022), Fashion-MNIST (https://github.com/zalandoresearch/
fashion-mnist, accessed on 25 November 2022), and forest cover-types (https://archive.ics.
uci.edu/ml/datasets/Covertype, accessed on 25 November 2022) datasets. These three
datasets are commonly used for classification tasks in federated learning [19,26].

The MNIST hand-written digits dataset, is composed of 0 to 9 handwritten digit
pictures and digit labels. It consists of 60,000 training samples and 10,000 test samples, each
of which is a 28 × 28 pixel grayscale handwritten digit picture. We use the digits dataset as
well, which is the built-in dataset of scikit-learn. It is a copy of the test set of the MNIST
hand-written digits dataset, which consists of 1797 samples with 64 attributes. Each sample
is an 8 × 8 size image of integer pixels, in the range 0 to 16.

The Fashion-MNIST dataset consists of 60,000 training examples and 10,000 testing
examples. Each example is a 28 × 28 size gray-level image, depicting an item from one of
ten different fashion classes.

The forest cover-types dataset consists of 581,012 samples with 54 features. Samples
correspond to 30 × 30 m2 patches of forest in the US, collected for the task of predicting
each patch’s cover type, i.e., the dominant species of tree. There are seven cover types:
spruce/fir, Lodgepole pine, Ponderosa pine, cottonwood/willow, aspen, Douglas-fir and
Krummholz.The original dataset does not differentiate between training data and testing
data. In our experiments, we randomly selected 500,000 samples as the training data,
and 30,000 samples were used as testing data. The training data was evenly distributed to
10 clients.

5.2. Experiments on Independent Identically Distributed Data

We first conduct experiments to evaluate the performance of the proposed methods
on IID data. Two scenarios are simulated. One is the non-personalized scenario, where all
clients set the same privacy budget or do not add any Gaussian noise, and the other is the
personalized scenario, where different clients set different privacy budgets. We use the Fe-
dAvg algorithm in the non-personalized scenario. The proposed methods are evaluated and
compared with the arithmetic average method in the personalized scenario. The aggregation
process of arithmetic average method is: W(r) = f (G̃(r)

1 , G̃(r)
2 , . . . , G̃(r)

N ) = 1
N ∑N

i=1 G̃(r)
i .

5.2.1. Experiment Setting

In the experiment, we train a logistic regression [29] model to solve the classifica-
tion task. The algorithm used to minimize the loss function of logistic regression is SGD.
The learning rate η, in the SGD algorithm, is calculated using the “optimal” strategy (https:
//scikit-learn.org/stable/modules/generated/sklearn.linear_model.\SGDClassifier.html,
accessed on 25 November 2022) and all clients use the same learning rate.

1. MNIST: Experiments are configured with N = 3, R = 10, batch = 50, test dataset
size = 300, δi = 1/500, q = 0.8, c = 200. When simulating the non-personalized
scenario, each client’s privacy budget εi, is set to 1, 5, or 10. When simulating the
personalized scenario, the privacy budgets of the three clients are set as {1, 1, 10},
{1, 5, 10}, or {1, 10, 10}.

2. Fashion-MNIST: Experiments are configured with N = 3, R = 20, batch = 50, test
dataset size = 600, δi = 1/1000, q = 0.9, c = 2. When simulating the non-personalized
scenario, each client’s privacy budget εi, is set to 0.05, 0.5, or 1. When simulating the
personalized scenario, the privacy budgets of the three clients are set as {0.05, 0.05, 1},
{0.05, 0.5, 1}, or {0.05, 1, 1}.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.\SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.\SGDClassifier.html
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3. Forest cover-types: Experiments are configured with N = 10, R = 50, batch = 1000,
test dataset size = 30000, δi = 1/50000, q = 0.8, c = 2. When simulating the non-
personalized scenario, each client’s privacy budget εi, is set to 1, 5, or 10. When
simulating the personalized scenario, the privacy budgets of the ten clients are set as
{1, 1, 1, 1, 1, 10, 10, 10, 10, 10} or {1, 1, 1, 5, 5, 5, 5, 10, 10, 10}.

5.2.2. Results Discussion

The experiment results are shown in Figures 2–4. We denote the arithmetic average
method as ‘A’. We denote the weighted average method as ‘B’. We denote the probability-
based selection method as ‘C’. In the non-personalized scenario, as we can see from
Figures 2a, 3a, and 4a, when all clients set the same privacy budget, the larger the privacy
budget, the higher accuracy of the federated model. The accuracy is highest when Gaussian
noise is not added, because the local models from clients are not perturbed. When clients
do not add Gaussian noise to the local model, the federated model accuracies for those
three datasets are 88.7%, 73.1%, and 49%, respectively, and this shows that for IID data,
the LDP-based federated framework is more applicable and effective for the MNIST and
Fashion-MNIST datasets, than for the forest cover-types dataset.

Setting
30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

ǫ=1

ǫ=5

ǫ=10

without Gaussian noise

(a)

Setting
30

35

40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

ǫ=1

ǫ=5

ǫ=10

ǫ={1,5,10},A

ǫ={1,5,10},B

ǫ={1,5,10},C

(b)

Setting
30

35

40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

ǫ=1

ǫ=10

ǫ={1,1,10},A

ǫ={1,1,10},B

ǫ={1,1,10},C

ǫ={1,10,10},A

ǫ={1,10,10},B

ǫ={1,10,10},C

(c)

Figure 2. Simulation results on MNIST data. Clients’ training data are independent and identi-
cally distributed. (a) The non-personalized scenario. (b) The personalized scenario under the first
privacy setting. (c) The personalized scenario under the second privacy setting.
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Figure 3. Simulation results on Fashion-MNIST data. Clients’ training data are independent and
identically distributed. (a) The non-personalized scenario. (b) The personalized scenario under the
first privacy setting. (c) The personalized scenario under the second privacy setting.
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Figure 4. Simulation results on forest cover-types data. Clients’ training data are independent
and identically distributed. (a) The non-personalized scenario. (b) The personalized scenario
under the first privacy setting. (c) The personalized scenario under the second privacy set-
ting. We nominate {1, 1, 1, 5, 5, 5, 5, 10, 10, 10} as {L, M, H} (i.e., low, middle, high), and nominate
{1, 1, 1, 1, 1, 10, 10, 10, 10, 10} as {L, H} (i.e., low, high).

In the personalized scenario, as can be seen from Figures 2b,c, 3b,c, and 4b,c, when
more clients set large privacy budgets, the accuracy of the federated model increases.
In addition, it is worth noting that under the same setting of privacy budgets, the accuracy
of the probability-based selection method performs best among the three model aggregation
methods, and both the probability-based selection method and the weighted average
method perform better than the arithmetic average method. Compared with the arithmetic
average method, those three datasets obtain accuracy gains in the weighted average method
and the probability-based selection method. For the MNIST dataset, the accuracy gains
obtained by the weighted average method and the probability-based selection method
are 5.57% and 11.28%, respectively. For the Fashion-MNIST dataset, the accuracy gains
obtained by the weighted average method and the probability-based selection method
are 3.04% and 3.93%, respectively. For the forest cover-types dataset, the accuracy gains
obtained by the weighted average method and the probability-based selection method are
4.07% and 10.90%, respectively. In general, both the weighted average method and the
probability-based selection method perform best on the MNIST dataset.

5.3. Experiments on Non-Independent Identically Distributed Data

Our idea is to try to make the sample label distribution of each client different,
that is, the samples of each category label need to be divided on different clients ac-
cording to different proportions. Our strategy is to divide the samples according to the
Dirichlet distribution.

In the non-IID experiment, the scenarios of the experiment and the methods used in
each scenario are the same as the IID experiment. In particular, for non-IID experiments,
the method without privacy (i.e., symbolized perturbation) is to change the 7th line of
Algorithm 2, to W(r) ← sign( 1

N ∑N
i=1 G̃(r)

i ), remove the 13th line, and change the 14th line

to G̃(r)
i ← sign(G(r)

i ).

5.3.1. Experiment Setting

The logistic regression model, SGD algorithm, and learning rate η, used in the non-IID
experiment, were the same as those in the IID experiment.

1. MNIST: Experiments are configured with N = 10, R = 10, batch = 400, test dataset
size = 2400, δi = 10−5, c = 4, ∆2 = 8. When simulating the non-personalized scenario,
each client’s privacy budget εi, is set to 5, 10, or 15. When simulating the personalized
scenario, the privacy budgets of the ten clients are set as {5, 5, 5, 5, 5, 15, 15, 15, 15, 15}
or {5, 5, 5, 10, 10, 10, 10, 15, 15, 15}.
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2. Fashion-MNIST: Experiments are configured with N = 10, R = 10, batch = 200,
test dataset size = 1200, δi = 10−5, c = 4, ∆2 = 8. When simulating the non-
personalized scenario, each client’s privacy budget εi, is set to 5, 10, or 15. When
simulating the personalized scenario, the privacy budgets of the ten clients are set as
{5, 5, 5, 5, 5, 15, 15, 15, 15, 15} or {5, 5, 5, 10, 10, 10, 10, 15, 15, 15}.

3. Forest cover-types: Experiments are configured with N = 10, R = 20, batch = 2500,
test dataset size = 30, 000, δi = 10−5, c = 2, ∆2 = 4. When simulating the non-
personalized scenario, each client’s privacy budget εi, is set to 1, 5, or 10. When
simulating the personalized scenario, the privacy budgets of the ten clients are set as
{1, 1, 1, 1, 1, 10, 10, 10, 10, 10} or {1, 1, 1, 5, 5, 5, 5, 10, 10, 10}.

5.3.2. Results Discussion

The experiment results are shown in Figures 5–7. We denote the arithmetic average
method as ‘A’. We denote the weighted average method as ‘B’. We denote the probability-
based selection method as ‘C’. In the non-personalized scenario, as we can see from
Figures 5a, 6a, and 7a, when all clients set the same privacy budget, the larger the privacy
budget set, the higher the accuracy of the federated model; the accuracy is highest when
there is no symbolized perturbation. When clients do not make symbolized perturbation to
the local model, the federated model accuracies for those three datasets are 65.2%, 49.8%,
and 62.6%, respectively, and this shows that for non-IID data, the LDP-based federated
framework is more suitable and usable on the MNIST and forest cover-types datasets, than
the Fashion-MNIST dataset.

In the personalized scenario, as we can see from Figures 5b,c, 6b,c, and 7b,c, when more
clients set large privacy budgets, the accuracy of the federated model increases. In addition,
it is worth noting that under the same setting of privacy budgets, the probability-based
selection method still performs best on the MNIST and Fashion-MNIST datasets, as in the
IID experiments. The MNIST and the Fashion-MNIST datasets obtain accuracy gains in the
probability-based selection method, compared with the arithmetic average method. For the
MNIST dataset, the accuracy gain obtained by the probability-based selection method is
6.97%. For the Fashion-MNIST dataset, the accuracy gain obtained by the probability-based
selection method is 19.85%. The forest cover-types dataset does not obtain accuracy gains
from the weighted average method and the probability-based selection method. In general,
the probability-based selection method performs best on the Fashion-MNIST dataset.
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Figure 5. Simulation results on MNIST data. Clients’ training data are non-independent and
identically distributed. (a) The non-personalized scenario. (b) The personalized scenario un-
der the first privacy setting. (c) The personalized scenario under the second privacy setting.
We nominate {5, 5, 5, 10, 10, 10, 10, 15, 15, 15} as {L, M, H} (i.e., low, middle, high), and nominate
{5, 5, 5, 5, 5, 15, 15, 15, 15, 15} as {L, H} (i.e., low, high).
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Figure 6. Simulation results on Fashion-MNIST data. Clients’ training data are non-independent
and identically distributed. (a) The non-personalized scenario. (b) The personalized scenario
under the first privacy setting. (c) The personalized scenario under the second privacy setting..
We nominate {5, 5, 5, 10, 10, 10, 10, 15, 15, 15} as {L, M, H} (i.e., low, middle, high), and nominate
{5, 5, 5, 5, 5, 15, 15, 15, 15, 15} as {L, H} (i.e., low, high).
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Figure 7. Simulation results on forest cover-types data. Clients’ training data are non-independent
and identically distributed. (a) The non-personalized scenario. (b) The personalized scenario
under the first privacy setting. (c) The personalized scenario under the second privacy set-
ting. We nominate {1, 1, 1, 5, 5, 5, 5, 10, 10, 10} as {L, M, H} (i.e., low, middle, high), and nominate
{1, 1, 1, 1, 1, 10, 10, 10, 10, 10} as {L, H} (i.e., low, high).

6. Conclusions

The emergence of federated learning, breaks the barriers of joint training models
between different parties, and also provides protection for sensitive data. In the client-
server framework of federated learning, the server does not access the clients’ original data.
However, the clients still face the risk of privacy violation. Differential privacy is a kind of
privacy protection technology based on strict mathematical theory. Previous studies have
applied differential privacy to federated learning, to enhance privacy protection. Different
clients have different privacy requirements. Previous DP-based approaches usually set the
same privacy budget for all clients and cannot provide personalized privacy protection.
In this paper, under the basic framework of LDP-based federated learning, we propose a
weighted average method and a probability-based selection method for model aggregation,
to obtain the trade-off between privacy and accuracy. The basic idea of the proposed
methods is to assign different weights to different clients according to the privacy budgets
set by clients. We consider two cases, where clients’ training data are IID or non-IID.
Different model perturbation methods are applied to satisfy the constraint of LDP. The
experiments show that the performances of the proposed aggregation methods are better
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than that of the arithmetic average method. In the future, we plan to further explore the
diversity of privacy requirement and design better model perturbation methods. We also
plan to investigate other solutions for federated learning with non-IID data.
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