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Abstract: Image edge detection is a difficult task, because it requires the accurate removal of irrelevant
pixels, while retaining important pixels that describe the image’s structural properties. Here, an
artificial plant community algorithm is proposed to aid in the solving of the image edge detection
problem. First, the image edge detection problem is modeled as an objective function of an artificial
plant community searching for water sources and nutrients. After many iterations, the artificial plant
community is concentrated in habitable areas that are rich in water sources and nutrients, that is,
the image edges, and the nonhabitable zones that are not suitable for living are deserted, that is, the
nonedges. Second, an artificial plant community algorithm is designed to solve the objective function
by simulating the growth process of a true plant community. The living behavior of the artificial
plant community includes three operations: seeding, growing, and fruiting. The individuals in the
plant community also correspond to three forms, namely seeds, individuals, and fruit. There are
three fitness comparisons in each iteration. The first fitness comparison of each iteration is carried out
during the seeding operation. Only the fruit with higher fitness levels in the last iteration can become
seeds, while the fruit with low fitness levels die, and some new seeds are randomly generated. The
second fitness comparison is implemented in the growing operation. Only the seeds with higher
fitness levels can become individuals, but the seeds with lower fitness levels will die; thus, the
community size will decrease. The third fitness comparison is in the fruiting operation, where the
individual with the greatest fitness can produce an identical fruit through parthenogenesis, and
the individuals with higher fitness levels can learn from each other and produce more fruit, so the
population size can be restored. Through the continuous cycle of these three operations, the artificial
plant community will finally determine the edge pixels and delete the nonedge pixels. Third, the
experiment results reveal how the proposed algorithm generates the edge image, and the comparative
results demonstrate that the proposed artificial plant community algorithm can effectively solve the
image edge detection problems. Finally, this study and some limitations are summarized, and future
directions are suggested. The proposed algorithm is expected to act as a new research tool for solving
various complex problems.

Keywords: image edge detection; image processing; artificial intelligence; plant community

1. Introduction

Image edge detection is an important topic in feature extraction and computer vision.
It can greatly reduce the amount of data, eliminate irrelevant information, and retain the
important structural attributes of an image. Image edge detection has been widely used
in many areas, including spatial wave measurement [1], shape identification [2], prostate
ultrasound image analysis [3], license plate recognition [4], COVID-19 detection [5], real-
time moving ship detection [6,7], facial recognition [8], weak and small target infrared
detection [9,10], three-dimensional microstructure reconstructions and visualizations [11],
and low-light image enhancement [12]. The edge may be related to the angle of view and
can vary with it. For example, different scenes and object geometries will block other
objects from different angles of view. The edge may also be independent of the angle of
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view, depending on the properties of the object being observed, such as the surface texture
and surface shape [2,13]. However, the edge of the natural image is not always the ideal
ladder edge. On the contrary, it is usually affected by one or more factors [9], including
focus blur caused by a limited scene depth, penumbra blur caused by shadows generated
by nonzero radius light sources, shadows on the edges of smooth objects, and the local
specular or the diffuse reflections near the edges of objects.

In edge detection, it is necessary to quickly search for a set of pixels with sharp
changes in the surrounding pixel gray level from amongst a large number of image pix-
els, which is not an easy task. The edge is the most basic feature of an image. It exists
between the target, background, and region [14] and is the most important basis for image
segmentation. Due to the difficulty of the edge detection task, many researchers have
developed algorithms to improve the solving performance. Some heuristic and artificial
intelligence(AI) algorithms have been widely applied in image edge detection and image
processing in recent years, such as the artificial neural network (ANN) [11], the U-net [1],
the depth-perceptual network [3], the long short-term memory (LSTM) [5], the edge-
net [7], the Y-net [12], the convolutional neural networks (CNNs) [10–12], deep learning
(DL) [13–15], machine learning [16], fuzzy logic [8,10], particle swarm optimization
(PSO) [14], ant colony optimization (ACO) [15,17], the genetic algorithm (GA) [18], the sup-
port vector machine (SVM) [18], the artificial bee colony (ABC) [5], the artificial fish swarm
algorithm (AFSA) [19], the salp swarm algorithm (SSA) [20], bird swarm optimization
(BSO) [21], and simulated annealing (SA) [22]. In these algorithms, each individual in the
group has only simple intelligence, and complex intelligent behaviors are shown through
cooperation with each other. In image edge detection, the core of swarm intelligence is that
a group composed of many simple individuals can achieve a certain function and perform
the edge detection task together, through simple cooperation with each other.

However, the accuracy and speed of the algorithm are often in conflict. Complex
algorithms often have high accuracy in image segmentation, but they take too long. Most ar-
tificial intelligence algorithms focus on the behaviors of animals with nerves, i.e., ANN [15],
CNN [14–17], DL [17–19], PSO [14], ACO [19,21], ABC [5], GA [22], AFSA [23], SSA [24],
BSO [25], and naked mole-rat algorithm(NMRA) [26], but few people pay attention to the
behaviors of plants. Therefore, we reviewed recent research on biological intelligence. After
billions of years of evolution, plant communities can survive on the earth through their
own survival strategies. Although the members of the plant community have no nerves,
they can find areas rich in water and nutrients through the continuous cycle of seeding,
growing, and fruiting, allowing them to survive in these areas [27,28]. If we can simulate
the growth behavior of plant communities on a computer, we could also use this artificial
plant community algorithm to search for the image edges on an original image.

The main contributions of this paper are as follows:

• First, the image edge is described as an area rich in water and nutrients, and the edge
detection process is modeled as an objective function that can be used to search for wa-
ter sources and nutrients. Hence, edges with higher habitable value are detected, and
nonedges with lower habitable value are removed due to being unimportant details.

• Second, an artificial plant community (APC) algorithm is designed to solve the objec-
tive function by simulating the growth process of a true plant community. The growth
behavior of an artificial plant community includes three operations: seeding, growing,
and fruiting. These three operations correspond to three fitness comparisons, and the
population size will also decrease or recover accordingly. Only seeds, individuals, and
fruit with high fitness levels can survive, while those with low fitness levels will die.
The individuals with the highest fitness levels can produce identical offspring fruit,
other individuals can learn from each other to produce new fruit, and individuals with
higher fitness levels can produce more fruit. Through this continuous cycle of three
operations, the artificial plant community finally identifies the optimal image edge.
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• Third, the proposed algorithm is verified by a series of experiments and is compared
with other image edge detection algorithms. Comparative analysis results are provided
and discussed.

The organization of the paper is as follows: The relevant work is briefly reviewed in
Section 2. A description of the model is given in Section 3. The architecture of the proposed
APC algorithm is developed in Section 4. The experimental results of the proposed scheme
are presented and compared with other algorithms in Section 5. Finally, this study and
some limitations are summarized, and future directions are suggested in Section 6.

2. Relevant Work

The problem with edge detection is determining how to accurately recognize sig-
nificant changes in image attributes. Such changes usually reflect important events and
changes in attributes, such as discontinuity of depth, discontinuity of the surface direction,
changes in material attributes, and changes in scene lighting [9,12]. There are many edge
detection method, and these can be divided into two main categories, namely search-based
algorithms and zero-crossing-based algorithms. The search-based algorithms are main-
stream and first calculate the edge strength [26], which is usually expressed by the first
derivative, such as the gradient modulus. Zero-crossing-based algorithms determine the
edge according to the zero-crossing point of the second derivative of the image, such as the
Laplace operator.

Threshold-based edge detection is one of the most popular techniques and is the
basis of many edge detection algorithms. It can be applied in many cases that emphasize
computational efficiency and hardware implementation. In [26], a multilevel threshold in a
hybrid transient search of a naked mole-rat optimizer was used for image segmentation.

Region-based edge detection includes two typical serial region technologies, namely
region growth and decomposition. Region growth describes the continuous growth of
regions based on the existing pixels until the whole region is formed so that target extraction
can be carried out. Region decomposition is the inverse process of region growth, where
the whole image is continuously divided into many subregions, and then the foreground
regions are merged to achieve target extraction. In [14], an adaptive fuzzy-region growing
fusion method was developed, and CNN-ANFIS-based automated segmentation was
improved for the classification of cervical cancer. This method can be used to judge the
regional computing results from the previous steps.

The feature-based clustering algorithm is a category-based edge detection method. It
calculates the image space with corresponding feature space pixels, and makes segments of
the feature space according to their feature aggregation. Then, it maps the feature space
back onto the original image space to obtain the edge image. In [29], an image feature-
based independent adversarial example detection model was developed, and in [30], an
adaptive-window-based 3D feature selection method was developed for multispectral
image classification, using a firefly algorithm.

Fuzzy edge detection employs fuzzy mathematics to describe a large number of un-
certain concepts in order to achieve proper processing and image edge detection. Fuzzy
C-means clustering (FCM) [9] and fuzzy region growing [14] are the two commonly used
fuzzy detection algorithms. In [31], automobile instrument detection using prior informa-
tion and fuzzy sets was illustrated, and in [32], adaptive image steganography using fuzzy
enhancement and the grey wolf optimizer was developed.

In wavelet transform edge detection, the image histogram is divided into different
levels of wavelet coefficients by a dyadic wavelet transform, and a threshold is then chosen
according to the wavelet coefficients and given edge detection criteria. Lastly, a threshold
is used to mark the region of the edge image. The calculation performance of the wavelet-
transform-based edge detection algorithm varies linearly with the image size. In [33], image
denoising was introduced to edge detection based on the wavelet transform.

The histogram-based algorithm uses a histogram to measure the color and strength of
the image pixels. The histogram indicates the image edges, and the peaks and troughs of the
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histogram can be used to select the clusters in the image. In [34], a histogram-matched chest
X-ray-based tuberculosis detection method using CNN was introduced. Compared with
other image edge detection algorithms, the histogram-based algorithm is very effective,
since it only needs a passing pixel.

The artificial neural network (ANN) and deep learning (DL) methods have undoubt-
edly been the biggest research topics in this area in recent years. The ANN is a nonlinear and
adaptive information processing system composed of a large number of interconnected pro-
cessing units [15]. Due to the surprising learning performance of the ANN and DL, many
scholars have focused on this area, and many new variants have emerged, including the
convolutional neural networks (CNNs) [14–17,34–37], the U-net [1], the depth-perceptual
network [3], the long short-term memory (LSTM) [5], the edge-net [8], the generative
adversarial network [13], the adaptive neuro fuzzy inference system (ANFIS) [14], the
Y-net [16], deep learning (DL) [17–19,25,35], machine learning [20], the support vector
machine (SVM) [22], the you only look once (YOLO) [35], the word embedding vector [37],
and the auto-encoder [38]. The learning characteristics of a neural network can be easily
integrated with other algorithms to generate new methods, i.e., [5] combined the LSTM
model and the ABC algorithm, [14] incorporated the fuzzy-region and CNN, [18] merged
the PSO and DL, and [25] designed a bird swarm optimization algorithm based on deep
learning. However, neural networks and deep learning can only learn based on existing
data; they cannot judge the correctness of the data and cannot correct the learning results
unless they are retrained. In addition, complex neural network calculations are often very
time-consuming.

The edge detection problem can be seen as a combinatorial optimization problem
that is a process of finding the optimal solution to the edge image. Therefore, complex
algorithms, such as the CNNs [14–17,34–37] and DL [17–19,25,35], may have a high level of
accuracy but take a long time to find a solution. The simulated annealing (SA) algorithm is
a random optimization algorithm that can be used to solve the combinatorial optimization
problem. It adopts a Monte Carlo iterative solution strategy based on the annealing process
of solid materials in physics. In [26], the simulated annealing algorithm was applied to
image segmentation using multilevel thresholds. However, the learning ability of the
simulated annealing algorithm is not strong.

Swarm intelligence algorithms are also random optimization algorithms that simulate
the foraging behavior of biological groups in nature, and can easily achieve a balance
between the solving time and solving accuracy [39]. The ability or behavior rules of each
individual in a swarm intelligence algorithm are very simple, so the implementation of
the algorithm is convenient and simple. Common swarm intelligence algorithms include
particle swarm optimization (PSO) [18,40], ant colony optimization (ACO) [19,21], the arti-
ficial bee colony (ABC) [5,41], the genetic algorithm (GA) [22,42], the artificial fish swarm
algorithm (AFSA) [23], the salp swarm algorithm (SSA) [24], bird swarm optimization
(BSO) [25], the naked mole-rat optimizer [26], the firefly algorithm (FA) [30,41], the grey
wolf optimizer (GWO) [32], the sparrow search algorithm (SSA) [43], and the whale opti-
mization algorithm (WOA) [44]. These algorithms provide the great advantages of swarm
intelligence to the field of image edge detection and image processing.

Both neural network algorithms and swarm intelligence algorithms often use the
neural learning function and swarm learning mechanism of organisms to solve problems.
In fact, plants, without nerves or brains, have evolved and survived for billions of years on
the earth, and they also have own special learning mechanism and evolution strategy [27].
For example, in [28], an artificial slime mold algorithm was used to solve traffic network
problems by simulating the natural nerveless slime mold, and in [45], an artificial Physarum
swarm algorithm was employed to solve a logistics network problem by imitating the
swarm learning mechanism of the nerveless Physarum. Both methods achieved satisfactory
solving results. Here, we try to build a novel swarm intelligence algorithm to solve the
image edge detection problem by simulating natural plant communities [27,46]. The
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proposed algorithm is expected to provide us with a new research tool for solving various
complex problems.

3. Model Description
3.1. Basic Structure of the APC

Based on the natural plant community described in [27,46], an artificial plant com-
munity is designed to solve the image edge detection problem. The basic structure of an
artificial plant community system includes many artificial plant individuals, habitable
zones, and nonhabitable zones, as shown in Figure 1. In nature, plant communities can only
survive in places with water and nutrients, known as habitable zones or feasible solutions.
Other places are known as nonhabitable zones, and are not suitable for living, i.e., they are
infeasible solutions. The habitable zones and nonhabitable zones constitute the living area
of an artificial plant community.
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Many artificial plant individuals form an artificial plant community, and each artificial
plant individual has similar characteristics and behaviors. They have three forms, namely
seeds, individuals, and fruit, as shown in Figure 1. Different forms can be transformed
into each other. The control of the artificial plant community is distributed, and there is no
central control. Therefore, the community can better adapt to the working state of the exter-
nal environment, and has strong robustness; that is, the failure of one or several artificial
plant individuals will not affect the problem solution of the whole group. Each artificial
plant individual in a group can change the environment, which is a method of indirect
communication between artificial plant individuals, also known as stigmergy. Because
artificial plant community intelligence can transmit and cooperate information through
indirect communication, it has good scalability, whereby the increase in communication
cost as the number of artificial plant individuals increases is small.

The solution space is divided into habitable zones and nonhabitable zones by an
artificial plant community. Individual plants in habitable zones can survive, but individuals
in nonhabitable zones will die. In the image edge detection problem, all feasible solutions
of the edge image are equivalent to the living area of the artificial plant community. Each
artificial plant individual can mark its living area as a habitable zone or a nonhabitable
zone according to its learning experience, and other artificial plant individuals can learn
from this experience. The complex learning behavior of an artificial plant community is an
emergent intelligence that emerges through the interaction process of simple individuals in
the solution space. Therefore, the artificial plant community can find habitable zones and
nonhabitable zones by self-organization.

A fitness function of the image edges should be defined to select the optimal artificial
plant individual, and individuals with low fitness levels will die. The artificial plant
individuals are randomly distributed through the whole solution space, and separately
search for feasible solutions or habitable zones according to the fitness function. The
learning ability or operation behavior rules of each artificial plant individual in a group
are very simple, so it is convenient to achieve artificial plant community intelligence. Each
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artificial plant individual marks the found edges as habitable zones and the nonedges as
nonhabitable zones, according to a comparison of the fitness results. After several iterative
calculations, and mutual learning of the artificial plant community, the edge image with
the optimal fitness level is generated and output as a feasible solution.

3.2. Main Operations of the APC

An artificial plant community has three main operations, namely seeding, growing,
and fruiting. The individuals in the plant community also correspond to three forms,
namely seeds, individuals, and fruit. There are three fitness comparisons in each iteration.

The seeding operation is a process in which an artificial plant community searches for
feasible solutions in the solution space, which is a probabilistic search operation, as shown
in Figure 1a. The first fitness comparison of each iteration is carried out during the seeding
operation. In the first iteration, the artificial plant community will randomly search for
the feasible solutions in the solution space. In subsequent iterations, the fruit calculated in
the previous iteration are selected as the seeds, and a small number of random seeds are
generated at the same time. The seeding operation can help the artificial plant community
to find new feasible solutions according to the seeding probability.

The growing operation is not only a natural selection process of an artificial plant
community but also a probability search process, as shown in Figure 1b. The second fitness
comparison is implemented in the growing operation. Not all artificial plant individuals
can survive after randomly seeding, so the population size decreases after the growing
operation. Only artificial plant individuals seeded in habitable areas will survive, and
artificial plant individuals seeded in nonhabitable areas will die. The artificial plant com-
munity algorithm needs to establish a fitness function to judge the habitable area, namely
the growing probability.

The fruiting operation is a swarm learning process of the artificial plant community,
and is also probabilistic, as shown in Figure 1c. The third fitness comparison is completed
in the fruiting operation. After seeding and growing, only a portion of the artificial
plant individuals survive. The surviving plant individuals live in habitable zones, that
is, the feasible solutions of the image edges. In the fruiting operation, two different
plant individuals need to exchange feasible solution information to generate new plant
individuals using the fruiting probability, that is, new feasible solutions. The new artificial
plant individuals have the characteristics of two different parents; that is, the new feasible
solutions learn the information from the previous two feasible solutions. Artificial plant
individuals with higher fitness levels can produce more fruit, and the individual with the
highest fitness levels can produce an identical fruit through parthenogenesis. Therefore,
the population recovers to its original size.

3.3. Assumptions

To simplify the algorithm design, some assumptions are made, as follows:

i. In the artificial plant community, it is assumed that the differences in artificial plant
species are not considered. Different artificial plant individuals have the same seeding,
growing, and fruiting operations and can learn about the environment from each other.

ii. The survival of natural plant communities requires not only water and nutrients
but also light. In the artificial plant community, it is assumed that the influence
of light is not considered. Areas with water and nutrients are habitable zones for
artificial plant communities. It is assumed that light does not affect the survival and
solution of artificial plant individuals.

iii. The natural plant community will become lush, and the population size will become
larger over time. In this algorithm, it is assumed that the population size of the
seeding operation is the original one, the population size decreases during the
growing operation, and the population size is restored after the fruiting operation.
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iv. The seeding ranges of plant communities in nature are uncertain and are easily af-
fected by media organisms, such as wind, water, rain, snow, fire, etc. Here, the seed-
ing operation is assumed to be random, and is represented as a seeding probability.

v. The fitness function for natural selection is determined according to the goal of the
particular edge detection problem. In the APC algorithm, the fitness function is
used to measure the pixels in the digital image with obvious brightness changes
and is compared three times, in the seeding, growing, and fruiting operations.

vi. The natural plant individuals are able to undergo parthenogenesis, and it is assumed
that the artificial plant community will produce fruit that is identical to the optimal
solution. Parents with high fitness levels can produce more fruit each time to
improve their solution performance. All artificial plant individuals can perform the
fruiting operation according to the proximity principle, and can implement simple
spatial and temporal calculations using the fruiting probability.

3.4. Symbol Definitions

The symbol definitions used in this article are provided in this section, as shown in
Table 1. The iteration counter k adds one for each iteration calculation with the maximum
value being K.

Table 1. Symbol Definitions.

Symbol Definition

I An image
w Image width
h Image height
L Grey level

ThH High threshold
ThL Low threshold

i Pixel number
S Population size
K Maximum number of iterations
k Iteration counter
x Artificial plant individual
ps Seeding probability
pg Growing probability
p f Fruiting probability

Obj_ f un() Value of the evaluation function
e Error of the evaluation function

eth Error threshold

For an original image, the width is w, and the height is h. Hence, the pixel number is i,
and the total number of image pixels can be attained as w × h. An image I(i,j) is a set of all
pixel locations with the horizontal coordinate i and vertical coordinate j, and the size of
the image I(i,j) can be calculated as |I(i,j)| = w × h. The value of the evaluation function
Obj_ f un() is used for the fitness evaluation, and the error threshold eth is used for the end
condition judgment.

The artificial plant individual can be encoded as a binary string with a length of no
more than the maximum w × h value, where a binary value of 1 indicates that the pixel
corresponding to the bit is an edge pixel and a binary value of 0 indicates that the pixel
corresponding to the bit is a nonedge pixel.

4. Algorithm Design
4.1. Image Preprocessing

Referring to the principles of the Sobel algorithm [47] and Canny algorithm [48], four
main steps are used to preprocess the image in order to provide a living environment for
the APC algorithm.
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First, the original image needs to be formatted, where the original color image is
converted into a grayscale image. An original image Ioriginal(i,j) will be converted into a
grayscale image Igray(i,j) with a gray level of L.

Second, the noise contained in the grayscale image Igray(i,j) is filtered out and the
level of disturbance in image edge detection is decreased. Because most of the noise in the
image is Gaussian noise, the Gaussian filter can help us to obtain images with a higher
signal-to-noise ratio (SNR) [7,33]. The Gaussian filter is a linear smoothing filter that is
suitable for eliminating Gaussian noise and is widely used in the noise reduction process
of image processing. According to the Sobel operator [47] and Canny operator [48], the
Gaussian filter is used to find the weighted average pixel values of the whole image, where
the value of each pixel is obtained by a weighted average of its own value and the neighbor
pixels values.

A Gaussian function can be written in a separable form, so a separable filter can be used
for acceleration; that is, a multidimensional convolution can be converted into multiple
one-dimensional convolutions. The two-dimensional Gaussian filtering of a gray image
Igray(i,j) involves one-dimensional convolution on the row first, and then one-dimensional
convolution on the column, which greatly reduces the computational complexity [7,33].

The two-dimensional Gaussian distribution function G(i,j) is used to calculate the
convolution values of the grayscale image in the horizontal and vertical directions Igray(i,j).

G(i, j) =
1

2πσ2 exp(− i2 + j2

2σ2 ) (1)

where σ is the standard deviation of the Gaussian smoothing filter G(i,j), which controls
the smoothing degree of the grayscale image Igray. If the value of σ is small, it will be a
precise edge but with more noise, but if the value of σ is big, it will be an imprecise edge
but with less noise. After applying the Gaussian smoothing filter, the image Igray(i,j) will
change as follows:

I(i, j) = G(i, j) ∗ Igray(i, j) (2)

where ∗ is the convolution operation. Now the filtered image I(i,j) can be obtained, ready
to be processed for edge detection.

Third, after the convolution operation and filtering, the habitable gradient, amplitude,
and direction are obtained. The traditional operator calculates the first-order partial deriva-
tive finite difference of the pixels in the 2 × 2 convolution template to approximately obtain
the habitable gradient amplitude and direction of the image I(i,j). If Hx(i,j) and Hy(i,j) are
the horizontal and vertical partial derivative arrays, respectively, they can be calculated
as follows:

Hx(i, j) =
1
2
[I(i + 1, j)− I(i, j) + I(i + 1, j + 1)− I(i, j + 1)] (3)

Hy(i, j) =
1
2
[I(i, j + 1)− I(i, j) + I(i + 1, j + 1)− I(i + 1, j)] (4)

Then, the habitable gradient amplitude H(i,j) and habitable direction D(i,j) of the
image are calculated as

H(i, j) =
√

H2
x(i, j) + H2

y(i, j) (5)

D(i, j) = arctan[
Hy(i, j)
Hx(i, j)

] (6)

Fourth, the nonmaximum algorithm is used to suppress the habitable gradient ampli-
tude and find all potential edge pixels according to the habitable gradient amplitude H(i,j).
First, a 3 × 3 template is used to detect all pixels in H(i,j), and then H(i,j) is compared, in
the gradient direction D(i,j), with the gradient amplitudes H+(i,j), in the positive direction,
and H-(i,j), in the negative direction of the adjacent pixels. When the habitable gradient
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amplitude of a pixel is greater than the gradient amplitudes of the adjacent gray pixels in
the positive and negative gradient directions, they are potential edge pixels.{

i f H(i, j) > H+(i, j)and H−(i, j), then an edge pixel
else, then i is a non− edge pixel

(7)

Furthermore, if H(i,j) < H+(i,j) or H(i,j) < H−(i,j), and H(i,j) remains unchanged, then the
current adjacent pixel i is defined as a no-edge pixel, and H(i,j) is set as 0. On the contrary,
H(i,j) is set as 1 and is defined as a potential edge pixel to achieve the nonmaximum
suppressing process.

Now, all possible edge pixels of the image I(i,j) have been obtained, but there are a lot
of false edges. It is very difficult to determine the edge pixels and eliminate the false edges.
The APC algorithm will help us to search for the true edges and delete the false edges by
heuristic searching.

4.2. Initialization of the APC

In this step, the main parameters are initialized, including the population size S,
maximum number of iterations K, iteration counter k, seeding probability ps, growing
probability pg, fruiting probability pf, and artificial plant individual x.

It is assumed that the seeding rate represents the ratio of the population size of the
artificial plant community after a seeding operation to the original population size of
the artificial plant community before seeding. The relationship of the seeding rate to the
population size is shown in Table 2.

Table 2. Seeding rate and population size.

Seeding Rate Population Size after 50 Iterations

0.8 0.850 × original size
1.0 1 × original size
1.2 1.250 × original size
1.5 1.550 × original size
2.0 250 × original size
5.0 550 × original size

As we can see from Table 2, negative growth of the population size will cause the
artificial plant community to lose its search ability quickly, and positive growth of the
population size will cause the search ability of the artificial plant community to continue to
increase. However, an increase in the population size will also bring about a rapid decline
in the convergence speed, and the temporal and spatial performance of the algorithm will
also deteriorate rapidly. Here, it is recommended that the population size S of the artificial
plant community should be fixed.

The natural plant community is composed of a variety of plants, and each artificial
plant has many individuals. Similarly, the artificial plant individual x is encoded into a set
of possible edge pixels as a feasible solution variable. If the corresponding pixel is selected
as an edge pixel, the corresponding binary bit in the artificial plant individual x is set to
1; otherwise, it is 0. To reduce the amount of computation required, pixels with habitable
gradient values greater than the high threshold ThH are marked as edge pixels, and they do
not need to be calculated or solved. Hence, to obtain the feasible solution x, we only need
to search the candidate edge pixels below the high threshold ThH.

Here, double thresholds are employed in the APC to implement edge detection and
recognize false edges. After image preprocessing and nonmaximum suppression, we
obtain all possible edges of the image I(i,j), together with many false edges. The gray
value distribution of the habitable gradient edge image H(i,j) produced by the bi-threshold
operator detection, is uneven. If the pixels with low nonzero habitable gradient values are
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regarded as edge pixels, false edges will occur. Here, the use of two thresholds can help us
efficiently identify the edge pixels, with a high threshold ThH and a low threshold ThL.

On one hand, pixels with habitable gradient amplitudes greater than ThH must be
edge pixels, not false edge pixels. On the other hand, pixels with habitable gradient
amplitudes smaller than ThL are false edge pixels, and may not be edge pixels. If the
gradient amplitude of a pixel is greater than ThL but less than ThH, it is necessary to judge
the gradient amplitude values of its neighboring pixels. Hence, if the gradient amplitude
value of a neighbor pixel is greater than ThL and less than ThH, the APC algorithm is
employed to judge a candidate edge pixel.

i f H(i, j) > ThH , then i is an edge pixel
else i f H(i, j) < ThL, then i is a false edge pixel
else, APC selects i as an edge pixel by hueristic search

(8)

Many potential edges identified in Equation (7) are officially recognized as edges
because their gradient amplitudes are higher than the high threshold ThH, but the con-
nectivity is low. In Equation (8), it is still difficult to accurately determine whether the
pixels below the high threshold ThH are edges. On one hand, the edge lines under the
low threshold ThL are thick and inaccurate; on the other hand, the image edges above the
high threshold ThH are discontinuous, and their details are lost. If we want to maintain
good edge connectivity, the APC should accurately select the edge pixels below the high
threshold ThH and eliminate nonedges or false edges.

The pixels below the high threshold ThH are called candidate edge pixels, and the
APC needs a fitness function to further confirm whether the candidate edge pixels are edge
pixels or not. Therefore, the APC needs to connect all edges in the image into contours.
When it reaches the end of the contour, it will search for the candidate edge pixels that can
be connected to the contour. However, it is not easy to search all true edges and eliminate
all false edges. The artificial plant community algorithm should repeatedly implement
seeding, growing, and fruiting operations to aid in the search for possible edges from the
candidate edge pixels to obtain a more accurate, rich, and consistent edge image.

4.3. Seeding of APC

The seeding operation is the first fitness comparison, and the population size is the
original size S. The artificial plant community algorithm processes multiple individuals at
the same time, and can easily achieve seeding parallelism.

In the first iteration, all artificial plant individuals are randomly selected for seeding,
where each bit in the selected individual is randomly selected as an edge pixel. The smaller
the seeding probability is, the greater the probability of finding a new feasible solution is,
but the slower the convergence is. On the contrary, the greater the seeding probability is,
the lower the probability of finding a new feasible solution is, but the faster the convergence
is, and there may even be premature convergence to the local optimal solution.

The artificial plant individual x is encoded as a binary string for seeding, as shown in
Equation (9):

x = {x1, x2, x3, · · · , xi, · · · } (9)

Each binary bit xi represents the selection bit of the corresponding candidate edge
pixel i, that is, whether pixel i is selected as an edge pixel. xi = 1 denotes that pixel i is
selected as the possible edge pixel, and xi = 0 denotes that pixel i is deleted as the false
edge pixels. {

i f xi = 1, then the pixel i is edge pixel
i f xi = 0, then the pixel i is non− edge pixel

(10)

The artificial plant individual x is encoded as a binary string for seeding, as shown in
Equation (9).

In the subsequent iterative calculation, the artificial plant community selects the plant
individuals from the best fruit of the previous iterative calculation according to the seeding



Appl. Sci. 2023, 13, 4159 11 of 24

probability ps. However, the rest of the fruit population 1 − ps dies, and the APC generates
a small number of random plant individuals for seeding with a probability of 1 − ps. On
one hand, this ensures fast convergence; on the other hand, it also prevents premature
attainment of the local optimal solution.

4.4. Growing of the APC

The growing operation is the second fitness comparison. The population size decreases
to pg × S, while the rest of the population (1 − pg) × S dies. The natural plant communities
are selected according to the surrounding water sources and nutrients. The artificial plant
community is supposed to use the evaluation function as a fitness evaluation to judge the
growing probability of the individuals. The growing operation is aimed at selecting the
best artificial plant individuals from the seeding population and giving them a growing
probability of pg to grow into individuals. Through the growing operation, the artificial
plant individual is selected as a feasible solution by the evaluation function, and a new edge
image I’(i,j) is obtained. If the artificial plant individuals score highly on the evaluation
function of the living area, their growing probability is greater, and if the opposite occurs,
their growing probability is smaller. The scoring process of the growing operation can help
the artificial plant community to converge to a feasible solution. The evaluation function
for APC growth includes several indexes, including the accuracy, information entropy,
standard deviation, peak signal-to-noise ratio, and degree of distortion.

Accuracy is used to describe the precision of image edge detection, as shown in
Formula (11). The greater the accuracy is, the more accurate the image edge detection is.
On the contrary, the lower the accuracy is, the more inaccurate the edge detection is

ACC =
TP + TN

TP + TN + FP + FN
(11)

where TPis the number of true positives, showing the total number of correctly detected
edge pixels; TN is the number of true negatives, showing the total number of correctly
detected nonedge pixels; FP is the number of false positives, showing the number of the
wrongly detected edge pixels which are actually nonedge pixels; and FN is the number of
false negatives, showing the number of the wrongly detected nonedge pixels which are
actually edge pixels. The accuracy matrix defining the terms TP, TN, FP, and FN is shown
in Table 3.

Table 3. Accuracy Matrix Definition.

Original Image
Edge Image

Edge Pixel Non-Edge Pixel
Edge pixel TP FP

Non-edge pixel FN TN

Information entropy is an important indicator that is used to measure the richness of
image information. For a grayscale image Igray(i,j) with a gray level of L, Pi represents the
probability that the pixel gray value in the image is i, so the information entropy can be
defined as

ENT = −
L−1

∑
i=0

[Pi × log Pi] (12)

where ENT represents the entropy of the image: the greater the entropy of the image, the
more information the image has.
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The standard deviation STD is one of the most commonly used quantization forms to
reflect the degree of dispersion in the grayscale data from two images. For two images I(i,j)
and I′(i,j) with the same size w × h, the standard deviation is defined as

STD =
1

w× h

w

∑
i=1

h

∑
j=1

[I(i, j)− I′(i, j)]2 (13)

The higher the STD is, the more discrete the data set of the image is, and the less clear
the image is. On the contrary, the lower the STD is, the clearer the image is.

The peak signal-to-noise ratio PSNR of an image is an important indicator of the
quality of the edge image. It is the ratio of the effective signal to the noise signal in the
image, that is, the ratio of the edges to the nonedges. For two images I(i,j) and I′(i,j) with
the same size w×h, the mean square deviation is defined as PSNR.

PSNR = 10× log(
L2

STD
) (14)

In general, for a given image, a high peak signal-to-noise ratio indicates high qual-
ity, and a low peak signal-to-noise ratio indicates low quality, which seriously affects
image recognition.

The degree of distortion DST directly reflects the degree of distortion of the image.
For two images I(i,j) and I′(i,j) with the same size w × h, the distortion DST is defined as

DST =
1

w× h

w

∑
i=1

h

∑
j=1
|I(i, j)− I′(i, j)| (15)

The smaller the DST is, the less distortion there is. On the contrary, the greater the
DST is, the greater the image distortion is.

In image edge detection, one or more of Equations (11)–(15) can be selected as the
objective function to evaluate the growth of artificial plant individuals, where the higher the
evaluation value is, the greater the growing probability of the artificial plant individual is,
and the more likely it is that the optimal edges will be found. The multiobjective evaluation
function for image edge detection can be built as follows:

Obj_fun = max{ACC, ENT, PSNR}−min{STD, DST} (16)

In each iterative computing step, an artificial plant community will compare the
fitness using the evaluation function in Equation (16) to reduce the risk of falling into the
local optimal solution. Thus, the artificial plant community can grow and respond to the
evaluation results in the environment.

4.5. Fruiting of the APC

The fruiting operation is the third fitness comparison, and the population size recovers
to the original size S. In nature, plant individuals often need the help of other organisms,
wind, or water to complete pollination or fruit bearing. However, these conditions are
not compulsory here, and natural selection is employed. The artificial plant individuals
with the highest fitness levels can produce identical fruit through parthenogenesis, and
those artificial plant individuals with high fitness levels are selected to produce more
fruit. Through the fruiting operation, a new generation of artificial plant individuals
can be obtained. These individuals have a combination of the parents’ features, and the
best solution is preserved. In the fruiting operation, several pixels are randomly chosen;
then, the two parents’ features are recombined, with the fruiting probability of pf, to
generate an offspring. The fruit are the descendants of the father’s generation for the
next seeding, and are the results of the evolution learning of the APC. For two artificial
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plant parents x = {x1, x2, x3, · · · , xi, xi+1 · · · } and y = {y1, y2, y3, · · · , yi, yi+1 · · · }, their
individual fruits x′ and y′ are shown as follows.{

x′ = {x1, x2, x3, · · · , xi, yi+1, · · · }
y′ = {y1, y2, y3, · · · , yi, xi+1, · · · } (17)

After the fruiting operation, a new edge image I′′(i,j) is obtained, and we can also score
the artificial plant individuals using Equation (16). Then, the optimal artificial individuals
in I′(i,j) and I′′(i,j) are compared, and the best solutions are selected for the next iterative
computation. The fruiting probability pf determines how much information the new
feasible solution can learn from other plant individuals. The higher the fruiting probability
is, the greater the information exchange between plant individuals is, and the greater
the generation gap is. However, it is also easier to destroy the excellent individuals in
the plant community and reduce the convergence rate. On the contrary, the smaller the
fruiting probability is, the less information exchange there is between plant individuals,
and the smaller the generation gap is. Nevertheless, it is also easier to protect the excellent
individuals in the plant community, and improve the convergence performance.

4.6. End Judgment

The artificial plant community algorithm uses the neighbor information obtained
by evolutionary learning to organize and search for feasible solutions. Among them, the
artificial plant individuals with greater fitness levels have a greater survival probability, and
a more adaptive plant community is gradually obtained. Through three main operations,
seeding, growing, and fruiting, the solutions of the image edge detection algorithm can
be judged, either by a predefined error, the maximum number of iterations, or the total
computational time, so that an optimal solution will be produced.

At iteration k, the best artificial plant individual is x(k) with a score of Obj_fun (x(k))
by Equation (16). In the previous iteration, the best artificial plant individual is x(k−1) with
a score of Obj_fun (x(k−1)). The error between the two iterations can be calculated.

e = |Obj_fun (x(k))−Obj_fun (x(k−1))| (18)

Subsequently, a predefined error is used to find a globally optimal solution. For
example, an error threshold eth can be predefined as an end judgment.{

ife < eth, then go to end
else, preform the next iteration

(19)

If the error e calculated by two iterations is less than the preset error threshold eth, the
calculation is completed, and the optimal solution x and the corresponding optimal edge
image will be output. Otherwise, the optimal solution is taken as the seed. Then, we return
to the seeding operation and perform the next iterative calculation to search for the optimal
solution again.

4.7. Algorithm Flow of APC

The APC algorithm flow is shown in Figure 2, which simulates the evolution mech-
anism of the natural plant community and extends our knowledge about the learning
behaviors of brainless living things. Based on the seeding, growing, and fruiting operations
instructed by swarm learning, the APC algorithm can help us to efficiently extract the edges
and delete the nonedges.

The algorithm flow is composed of two main steps and a large circulation.
The first main step is image preprocessing, including image format conversion, filter-

ing, the calculation of habitable values, nonmaximal suppression, and double-threshold
checking. These steps are performed to preprocess the image, reduce noise, identify the
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obvious edges, and provide candidate edges to reduce the amount of calculation required
by the artificial plant community in the next stage.
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The next major step involves the initialization, seeding, growing, and fruiting of the
APC, and the end judgment. The stage includes a large circulation and double-threshold
checking, where the artificial plant community randomly searches for all possible edge
pixels from the candidate edges by evolution computing, and then optimizes the edge
image according to the fitness function.

The APC algorithm successfully simulates the evolution process of a natural plant
community through three main operations of seeding, growing, and fruiting. If the end con-
ditions are not satisfied after the evaluation and comparison, the artificial plant community
will return to the previous steps and repeatedly select the edge pixels.

5. Experimental Analysis
5.1. Experiment Results

In this section, we provide an experimental analysis of the proposed APC algorithm on
edge detection problems. The experimental results, with different simulation parameters
and detection effects, are further compared with other related algorithms to illustrate the
application and characteristics of the APC. In these experiments, our algorithm uses several
plant individuals to search for edges and nonedges, and the population size of the plant
community may determine its searching capability. Three learning probabilities are used to
prevent the artificial plant community from prematurely falling into local optimal solutions.
Some assumptions are made before the experimental analysis.
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(i) The structural complexity, topic, politics, history, ethics, ecology, and privacy protec-
tion factors of images are not considered.

(ii) The performance differences between the binarization methods and the filtering
algorithms are not considered and the color differences of pixels are not compared.

(iii) It is assumed that different algorithms run the same iteration steps for the same
images with the same parameters.

(iv) To simplify the analysis, we do not discuss comprehensive parameter adjustment and
optimal data sets. Many algorithms have complicated improved editions, which may
allow better effects on different test datasets through intelligent parameter adjustment;
however, these are not studied here.

The experimental platform includes an AMD Ryzen 3 4300U with Radeon Graphics
2.70 GHz CPU, 8.00 GB RAM, a 64-bit Windows 10 operating system, and Matlab R2018a
simulation software. The main simulation parameters used in our proposed algorithm are
as follows: The population size of the artificial plant community is S = 20. For the three
learning factors, the seeding probability is ps = 0.9, the growing probability is set as pg = 0.8,
and the fruiting probability is pf = 0.7. The maximum number of iterations is preset to 120,
and the error threshold is less than 0.0001.

There are many test sets for image processing, so they could not all be selected for our
tests. The Pascal VOC dataset and Stanford background dataset were chosen for our test,
and were sufficient to verify the application of our proposed method. We provide the links
to the two supporting datasets in the Data Availability Statement.

The Pascal VOC 2012 segmentation competition dataset is the ancestor of visual recog-
nition competitions, and provides 20 categories of objects to be identified, such as people,
animals, vehicles, and indoor scenes. It includes target detection, object classification,
image segmentation, and other tasks. Figure 3 shows our edge detection solutions on
four images from the Pascal VOC 2012 dataset. The four images have 500 × 375 pixels,
356 × 480 pixels, 500 × 375 pixels, and 314 × 186 pixels, respectively.
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Figure 3. The test results of the proposed algorithm on the Pascal VOC dataset.

The first column in Figure 3 contains the original images, and the second column
shows the histograms. Columns 3 to 8 show us the solving processes used by the artificial
plant community. In the early solving stage, the artificial plant community can easily
determine the edges with habitable values higher than the high threshold. The plant
community will then further search for possible edge pixels to connect the image into
contours. In the different test images shown in Figure 3, the artificial plant community
can successfully build optimal edge images by feeding, growing, and fruiting, as shown
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from iterations 20 to 120 in Figure 3. In every test, the solutions for the same image may be
different, because the evolution behavior of the artificial plant community is random and
the pixel searching processes will also vary. These test cases, such as the personal computer,
horseman, piano, and house, have different histograms, but the proposed APC algorithm
shows a strong ability to connect possible edges and construct an optimal edge image.
Despite the image differences and randomness in each test, the proposed APC algorithm
can balance the edge detection accuracy and image noise.

The Stanford background dataset was then applied to the test. This dataset was
selected from many famous databases, including LabelMe, MSRC, Pascal VOC, and Geo-
metric Context. The Stanford background dataset has 715 outdoor images and is divided
into eight categories: the sky, trees, roads, grass, water, buildings, mountains, and forest
objects. Figure 4 shows our edge detection solutions and histograms on four images from
the Stanford background dataset. The four images contain 320 × 214, 320 × 285, 320 × 240,
and 320 × 212 pixels, respectively.
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The first column in Figure 4 contains the original images, which have different his-
tograms, as shown in the second column in Figure 4. Columns 3 to 8 show us the solving
processes used by the artificial plant community. At the beginning of the test, the plant
community is randomly distributed, and edges with habitable values higher than the high
threshold are identified first, as shown in column three of Figure 4, where the number
of iterations is 20. In the subsequent iterative calculation, the artificial plant community
will continuously search for the edges and delete the nonedges, according to the objective
function. Compared with the Pascal VOC 2012 test in Figure 3, there are fewer pixels
in the Stanford background dataset, decreasing the calculation time. Despite the image
differences and randomness in each test, the artificial plant community can successfully
build optimal edge images by feeding, growing, and fruiting, as shown from iterations
20 to 120 in Figure 4. These edge results on the Stanford background dataset again show
that the artificial plant community algorithm can be used to solve image edge detection
problems. After a process of iterative computing of continuous seeding, growing, and
fruiting, the proposed APC algorithm can balance the edge detection accuracy and image
noise and finish the image edge detection task.

To sum up, the results presented in Figures 3 and 4 show us the evolution process
of the proposed APC algorithm. The original images in the first columns on Figures 3
and 4 should be preprocessed, including image format conversion, filtering, calculating
habitable values, nonmaximum suppressing, and double-threshold checking. After this,
the processed images will be detected by the APC algorithm. The next major step involves
the initialization, seeding, growing, and fruiting of the APC, and the end judgment. The
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image pixels above the high threshold ThH are classified as edge pixels. After that, the APC
repeatedly selects the edge pixels below the high threshold ThH and eliminates nonedges
or false edges until the optimal edge image is obtained.

5.2. Analysis and Discussion

In this section, the proposed APC algorithm is compared with some mainstream
artificial intelligence algorithms, such as the artificial bee colony (ABC) [5,41], fuzzy C-
means (FCM) [9,14,27,28], convolutional neural networks (CNNs) [14–17,34–37], particle
swarm optimization (PSO) [18,40], ant colony optimization (ACO) [19,21], genetic algorithm
(GA) [22,42], artificial fish swarm algorithm (AFSA) [23], and simulated annealing (SA) [26].
The algorithm comparison using the Pascal VOC 2012 dataset is shown in Figure 5, and the
algorithm comparison using the Stanford background dataset is shown in Figure 6.
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The first column in Figure 5 contains the original images from the Pascal VOC 2012
dataset. The eight images have 500 × 340 pixels, 500 × 375 pixels, 350 × 500 pixels,
500 × 343 pixels, 375 × 500 pixels, 375 × 500 pixels, 500 × 375 pixels, and 500 × 375 pixels,
respectively. The second column in Figure 5 shows the edge detection results for our
proposed APC algorithm, and columns 3~10 in Figure 5 are the results of the ABC [5,41],
FCM [9,14,31,32], CNN [14–17,34–37], PSO [18,40], ACO [19,21], GA [22,42], AFSA [23],
and SA [26]. Figure 5 presents eight cases, including the bus, yacht, eagle, plane, bridge,
telephone booth, computer operator, and building, and they shows that the proposed APC
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algorithm can achieve similar effects in image edge detection to other artificial algorithms.
The 5th column in Figure 5 presents the results of a multi-layer convolutional neural net-
work [14–17,34–37]. This algorithm can achieve a good edge connection effect, but it is
the most time-consuming of all algorithms. Other artificial algorithms can achieve good
edge detection results with shorter calculation times, and are more suitable for fast and
high-quality processing of image data. The comparative results, using the Pascal VOC
2012 dataset, show that our algorithm can successfully build a high-quality edge image,
that is not inferior to other AI algorithms, through the evolution mechanism of an artificial
plant community.
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Figure 6 shows more cases from the Stanford background dataset to provide a further
comparison between the proposed algorithm and other artificial intelligence algorithms.
Figure 6 gives eight cases, including the bungalow, yacht, Si-o-Seh Bridge, apartment
house, streetscape, motorcyclist, red car, and horse feeder. The first column in Figure 6
contains the original images from the Stanford background dataset. The eight images have
320 × 240 pixels, 320 × 240 pixels, 320 × 240 pixels, 320 × 213 pixels, 320 × 240 pixels,
320 × 240 pixels, 320 × 239 pixels, and 320 × 264 pixels, respectively. Columns 3–10 of
Figure 6 show the edge detection solutions of the different algorithms, including our
proposed APC algorithm, ABC [5,41], FCM [9,14,31,32], CNN [14–17,34–37], PSO [18,40],
ACO [19,21], GA [22,42], AFSA [23], and SA [26].

The results presented in Figure 6 again verify that the proposed algorithm can achieve
similar effects in image edge detection to other artificial intelligence algorithms. Because
these test images from the Stanford background dataset have fewer pixels than those
from the Pascal VOC 2012 dataset, the computational workload is greatly reduced, and all
algorithms can complete the edge detection task in a shorter period of time. Among them,
the computing time required for the CNN [14–17,34–37] algorithm is significantly reduced,
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but it is still the most time-consuming algorithm. Additionally, our APC algorithm can
successfully complete the edge detection tasks and achieve a good and timely performance.

Furthermore, the quantitative comparison results of the different detection models
on the Pascal VOC dataset and Stanford background dataset are shown in Tables 4 and 5,
respectively. There are six quantitative indexes, namely the average accuracy (ACC in
Equation (11)), entropy (ENT in Equation (12)), standard deviation (STD in Equation (13)),
peak signal-to-noise ratio (PSNR in Equation (14)), distortion (DST in Equation (15)), and
average solving time (ms).

Table 4. Comparison of results of different models on the Pascal VOC dataset.

Detection
Models

Average
Accuracy

(ACC)

Entropy
(ENT)

Standard
Deviation

(STD)

Peak
Signal-to-

Noise
Ratio

(PSNR)

Distortion
(DST)

Average
Solving

Time (ms)

APC 0.902 0.384 61.72 18.48 14.65 813
ABC [5,41] 0.791 0.286 62.03 18.62 15.27 858

FCM
[9,14,31,32] 0.825 0.322 83.35 14.77 14.53 739

CNN
[14–17,34–37] 0.914 0.391 58.67 19.36 13.73 3022

PSO
[18,40] 0.859 0.325 80.91 12.59 15.18 806

ACO
[19,21] 0.846 0.318 70.54 13.61 15.09 1496

GA [22,42] 0.873 0.323 82.49 12.42 15.21 847
AFSA [23] 0.790 0.307 69.26 13.34 14.84 1305

SA [26] 0.787 0.299 71.60 12.78 15.12 714

Table 5. Comparison of results of different models on Stanford background dataset.

Detection
Models

Average
Accuracy

(ACC)

Entropy
(ENT)

Standard
Deviation

(STD)

Peak
Signal-to-

Noise
Ratio

(PSNR)

Distortion
(DST)

Average
Solving

Time (ms)

APC 0.913 0.457 55.31 19.42 14.53 649
ABC [5,41] 0.822 0.305 57.54 18.49 15.16 724

FCM
[9,14,31,32] 0.817 0.381 61.29 15.38 14.25 692

CNN
[14–17,34–37] 0.926 0.502 56.48 20.23 14.51 2107

PSO
[18,40] 0.864 0.413 74.60 12.81 14.97 706

ACO
[19,21] 0.857 0.398 63.07 14.84 13.82 1138

GA [22,42] 0.889 0.409 73.16 12.90 14.68 785
AFSA [23] 0.828 0.326 59.53 13.76 14.64 1140

SA [26] 0.811 0.320 65.72 13.05 14.79 653

In terms of the average performance, the proposed APC and CNN [14–17,34–37] can
achieve the highest accuracy levels, but the proposed APC needs less time than the latter.
In terms of the average detection time, the proposed APC and SA [26] can achieve the
fastest detection rates, but the proposed APC has an advantage in terms of its average
accuracy. The performance test results using the Pascal VOC dataset are worse than those
using the Stanford background dataset, due to the increased complexity of the problems
to be solved. In both test datasets, the heuristic algorithms, including the proposed APC,
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ABC [5,41], FCM [9,14,31,32], PSO [18,40], ACO [19,21], GA [22,42], AFSA [23] and SA [26],
have more advantages than the CNN [14–17,34–37], as they have shorter solving times.
Compared with other heuristic algorithms, the proposed APC can solve the image edge
detection problem with a better average accuracy, entropy, and peak signal-to-noise ratio,
but a lower standard deviation and level of distortion.

By comparing the experimental results presented in Figures 5 and 6, Tables 4 and 5,
it is clear that the proposed APC algorithm can successfully solve image edge detection
problems through a probabilistic, parallel, and distributed evolution mechanism that
differs from traditional algorithms. For both the Pascal VOC 2012 dataset and the Stanford
background dataset, the artificial plant individuals can cooperate and evolve to search for
the optimal edge pixels with accurate solutions in a shorter period of time. Unlike the
traditional AI algorithms, such as the ABC [5,41], FCM [9,14,31,32], CNN [14–17,34–37],
PSO [18,40], ACO [19,21], GA [22,42], AFSA [23] and SA [26], the proposed APC uses
artificial plant individuals and a variable population size, and can search for the edge
pixels through three fitness comparisons of seeding, growing, and fruiting in each iteration.
Finally, the APC will converge on the optimal solution with the highest fitness level and
output it as an optimal edge image.

5.3. Performance Summary and Internal Cause Analysis

From Figures 5 and 6, and Tables 4 and 5, it is apparent that the APC algorithm has
some advantages for edge detection. In this section, we try to reveal the internal reasons
for the experimental results presented in Sections 5.1 and 5.2. The performance comparison
summary of different artificial intelligence algorithms is shown in Table 6, where the main
indexes include the artificial swarm, time performance, fitness comparison, and variable
population size. It is assumed that all algorithms use the same the population size m and
iteration steps t to solve the edge detection problem in an image with n pixels. The artificial
algorithms include particle swarm optimization (PSO) [18,40], ant colony optimization
(ACO) [19,21], the artificial bee colony (ABC) [5,41], the genetic algorithm(GA) [22,42],
the artificial fish swarm algorithm (AFSA) [23], the salp swarm algorithm (SSA) [24], bird
swarm optimization (BSO) [25], the naked mole-rat algorithm (NMRA) [26], simulated
annealing (SA) [26], the firefly algorithm (FA) [30,41], the grey wolf optimizer (GWO) [32],
the sparrow search algorithm (SSA) [43], and the whale optimization algorithm (WOA) [44].

Table 6. Performance comparison summary of different artificial intelligence algorithms.

Detection
Algorithms

Artificial
Swarm

Time
Performance

Fitness
Comparison

Variable
Population

Size

APC Artificial plant
community O(mnt) Three times m→m × pg→m

ABC [5,41] Artificial bees O(mnt) Often once Fixed m
FCM [9,14,31,32] Fuzzy classes O(mnt) Often once Fixed m

CNN [14–17,34–37] Artificial neurons O(n2m2cincout) Often once Fixed m
PSO [18,40] Artificial particles O(mnt) Often once Fixed m
ACO [19,21] The ants O(mnt) Often once Fixed m
GA [22,42] Chromosomes O(mnt) Often once Fixed m
AFSA [23] Artificial fish O(mnt) Often once Fixed m
SSA [24] Salp swarm O(mnt) Often once Fixed m
BSO [25] Bird swarm O(mnt) Often once Fixed m

NMRA [26] Naked mole-rats O(mnt) Often once Fixed m
SA [26] Null O(nt) Often once Null

FA [30,41] Fireflies O(mnt) Often once Fixed m
GWO [32] Grey wolves O(mnt) Often once Fixed m
SSA [43] Sparrows O(mnt) Often once Fixed m

WOA [44] Whales O(mnt) Often once Fixed m
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Table 6 shows that the time performance of the swarm learning algorithms can be
described as O(mnt), which is nearly linear, and is related to the image scale n, the popula-
tion size m, and the number t of iterations. Swarm learning algorithms with similar time
performances include the proposed APC, the ABC [5,41], FCM [9,14,31,32], PSO [18,40],
ACO [19,21], GA [22,42], AFSA [23], SSA [24], BSO [25], FA [30,41], GWO [32], SSA [43],
and the WOA [44]. The time performance of the CNN [14–17,34–37] is related to the scale
n of the image, the population size m of the convolution cores, the number cin of input
channels, and the number cout of output channels. However, there is no swarm learning
mechanism in SA [26], and its time performance is decided by the image scale n and the
number t of iterations.

To sum up, some special characteristics can give the APC some advantages in terms of
its solving performance.

First, the three fitness comparisons conducted per iteration in the APC algorithm; this
is higher than in most AI algorithms, which often only include one fitness comparison. The
seeding, growing, and fruiting operations all compare fitness levels and select individuals
with high fitness levels to survive, while individuals with low fitness levels die. In this
sense, one round of iterative computation of the APC algorithm is equivalent to three
rounds of iterative computation of the other AI algorithms.

Second, the variable population size can improve the convergence of the APC. In the
seeding operation, previous fruit with high fitness levels can be seeds with a probability of
ps, while some new seeds are randomly generated to form an original population size m.
In the growing operation, the seeds with high fitness levels can survive with a probability
of pg, and the population size decreases. In the fruiting operation, individuals with a
high fitness level can produce more fruit with a probability of pf, and the population size
recovers to m.

Third, the optimal solution in the APC can be well preserved by parthenogenesis,
while the optimal solutions in other artificial intelligence algorithms are randomly changed
in each iteration. Furthermore, the optimal solution, in the APC algorithm, is given the
highest priority to be learnt by other individuals, in order to produce more fruit. This
avoids the loss of the optimal solution in the solution process, and can also allow the search
for new feasible solutions near to the optimal solution.

Fourth, the APC algorithm has a good global searching capability. In the seeding
operation, a batch of random seeds will be generated for the global search. The growing
operation then helps to screen out the seeds with low fitness levels. In the fruiting operation,
the individuals surviving from the growing operation will learn from each other to produce
new fruit, and those individuals with high fitness levels can produce more fruit.

Finally, the time performance of APC is equivalent to that of other AI algorithms with
O(mnt). With an increase in the population size m, the APC algorithm will also increase its
search ability, as in many AI algorithms, making it possible to find the optimal solution
with fewer iterative steps, but the calculation time of each iteration will increase linearly.
With an increase in the image size, the time and difficulty required for the APC algorithm
to provide a solution will increase each round, like many AI algorithms, and the solving
accuracy will also be affected.

Additionally, enhanced editions and improved parameters will strengthen the global
performance of all artificial intelligence algorithms. Here, we only focus on the feasibility
of the proposed APC algorithm and its potential application, but we do not intend to
denigrate other artificial algorithms. In fact, other intelligence algorithms, including the
ABC [5,41], FCM [9,14,31,32], CNN [14–17,34–37], PSO [18,40], ACO [19,21], GA [22,42],
AFSA [23], SSA [24], BSO [25], NMRA [26], SA [26], FA [30,41], GWO [32], SSA [43], and
WOA [44] have been verified as effective tools for image edge detection.

6. Conclusions and Future Work

Here, an artificial plant community (APC) algorithm was presented to solve the image
edge detection problem. The proposed algorithm can simulate the evolutionary learning
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and swarm intelligence of a natural plant community without requiring professional biolog-
ical laboratories or biological operations [19,30]. The growth behavior of an artificial plant
community includes three operations: seeding, growing, and fruiting. Three operations
correspond to three fitness comparisons, and the population size will also decrease or
recover accordingly. Only seeds, individuals, and fruit with high fitness levels can survive,
while those with low fitness levels will die. The individuals with the highest fitness levels
can produce identical offspring fruit, other individuals can learn from each other to produce
new fruit, and the individuals with high fitness levels can produce more fruit. The exper-
imental results on the Pascal VOC 2012 dataset and Stanford background dataset verify
that the proposed artificial plant community algorithm can obtain an average accuracy of
above 0.9 and a solving time of less than 800 ms. This balance in performance seems to
be better than that of most other artificial intelligence algorithms, such as the ABC [5,41],
FCM [9,14,31,32], CNN [14–17,34–37], PSO [18,40], ACO [19,21], GA [22,42], AFSA [23] and
SA [26]. Different from traditional artificial intelligence algorithms, our algorithm employs
many anencephalic and nerveless plant individuals to optimize the edge images and obtain
a good image detection performance. The proposed APC algorithm may provide us with
a new research tool for solving similar image processing problems and multi-objective
optimization problems through a series of computing iterations.

The limitations of our study mainly focus on the fact that the parallelism of iterative
computing is different from a natural plant community. Real plant communities can pro-
duce more and more plant individuals and seeds through continuous evolution, which
will increase their ability to search the environment. However, on a personal computer,
the expansion of artificial plant populations will worsen the computing performance of
the computer system. In addition, more data tests and filters were not implemented here
due to restrictions on time, space, and resources; specifically, only the Pascal VOC 2012
and the Stanford background datasets were tested, and only the Gaussian filter was em-
ployed. In addition, many powerful improved versions of artificial intelligence algorithms
were not tested in this article, and the proposed APC algorithm was only compared with
mainstream artificial intelligence algorithms, such as the ABC [5,41], FCM [9,14,31,32],
CNN [14–17,34–37], PSO [18,40], ACO [19,21], GA [22,42], AFSA [23], and SA [26]. Today,
there are so many state-of-the-art techniques that we cannot grasp all of them and cannot
reproduce them one by one, so this study could only preliminarily prove the feasibility of
the proposed algorithm.

In the future, the proposed APC algorithm will be further improved and compared
with more state-of-the-art techniques. From there, more parameter adjustments, different
population sizes, more datasets, more filters, and more algorithm comparisons will be con-
ducted, together with many powerful improved versions of artificial intelligence algorithms.
Furthermore, the proposed APC algorithm should be extended to solve more research
problems, such as handwriting recognition, face recognition, license plate recognition,
image enhancement, and multi-objective optimization problems.
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