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Abstract: During the contribution of a metaheuristic algorithm for solving complex problems, one of
the major challenges is to obtain the one that provides a well-balanced exploration and exploitation.
Among the possible solutions to overcome this issue is to combine the strengths of the different
methods. In this study, one of the recently developed metaheuristic algorithms, artificial electric
field algorithm (AEFA), has been used, to improve its converge speed and the ability to avoid the
local optimum points of the given problems. To address these issues, Gaussian mutation specular
reflection learning (GS) and local escaping operator (LEO) have been added to the essential steps on
AEFA and called GSLEO-AEFA. In order to observe the effect of the applied features, 23 benchmark
functions as well as engineering and real-world application problems were tested and compared with
the other algorithms. Friedman and Wilcoxon rank-sum statistical tests, and complexity analyses
were also conducted to measure the performance of GSLEO-AEFA. The overall effectiveness of the
algorithm among the compared algorithms obtained in between 84.62–92.31%. According to the
achieved results, it can be seen that GSLEO-AEFA has precise optimization accuracy even in changing
dimensions, especially in engineering optimization problems.

Keywords: artificial electric field algorithm; local escaping operator; Gaussian mutation; specular
reflection learning

1. Introduction

The development of optimization techniques is crucial since there are many optimiza-
tion issues that need to be resolved in the real world. The majority of these techniques
depend on being able to find derivatives of the involved functions. However, for vari-
ous reasons, the derivatives might be occasionally challenging to get. Those problems
include electromagnetic problems which were difficult to tackle because of limitations
in computational sources [1]. However due to the advancement of computers many dif-
ferent optimization methods are applied to solve these kind of scattering problems [2,3].
Metaheuristic algorithms which are a crucial component of derivative-free approaches are
becoming more and more popular due to their effective searching capabilities. Metaheuris-
tic algorithms can be categorized into groups based on what they imitate or mimic. Swarm
intelligence mimicking algorithms are gaining popularity due to a variety of features includ-
ing powerful searching capabilities, straightforward implementation, minimal parameters,
and the capacity to avoid becoming stuck in a sub-optimal position [4]. The search agents
collaborate and share information with one another in these algorithms, ensuring that the
search space’s information is effectively used. This allows the entire swarm to advance
toward more promising areas of the search space. Numerous swarm intelligence tech-
niques have been presented in several of the literatures and used to solve practical issues
during the last few decades [5–10]. Physics law mimicking algorithms imitate the physical
principles that control how agents interact with one another and their search environment.

Appl. Sci. 2023, 13, 4157. https://doi.org/10.3390/app13074157 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074157
https://doi.org/10.3390/app13074157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9945-8764
https://orcid.org/0000-0002-9642-7310
https://doi.org/10.3390/app13074157
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074157?type=check_update&version=3


Appl. Sci. 2023, 13, 4157 2 of 25

These principles include the principle of gravity, light, and refraction [11]. They are being
implemented in several areas to solve engineering challenges [12–15].

Evolution theory mimicking algorithms through various combination and permu-
tations of populations obtain the best solution. The main benefit of this method is that
the individuals with the best solutions combine to create the next generation [16–19]. The
exploitation and exploration patterns of behavior are basically the patterns the metaheuris-
tic algorithms will follow as it advances towards the optimal solution. The discovery of
new search space areas is called exploration. Exploitation is the procedure of locating and
investigating the most promising areas in the hunt for potentially superior solutions [20].
Any metaheuristic algorithms share a potential problem in trying to maintain an adequate
balance between these two patterns since they contradict each other [21].

In 2019, Anita and Yadav suggested the artificial electric field algorithm (AEFA) [22].
The leadership influence of the lead particle, in other words, the particle with the strongest
charge and the behavior of the other particles as they are drawn along the search area by the
lead particle, serve as the foundation for the search mechanism of the AEFA. This approach
ensures that the algorithm is able to exploit promising areas for the best solution consis-
tently [15]. AEFA has earned a reputation and has been effectively applied to several sectors
in recent years due its various benefits, including ease of implementation, low computing
cost, and great search efficiency. A few of the areas in which AEFA has proved a useful
optimization algorithm are tumor detection [23], multi-objective problem [24], parameter
extraction for photovoltaic model [25], assembly line balancing optimization problem [26],
and feature selection [27]. Despite AEFA being applicable in many areas, prior research has
revealed that it has significant shortcomings such as premature convergence, exploration
and exploitation imbalance, and a propensity to become stuck at sub-optima [15,28,29],
which are also present in other metaheuristic algorithms. However, the attraction force
mechanism of the AEFA has a significant impact on population diversification. In the
typical AEFA, a dominating particle directs the search process. This causes the population
to gather around a single particle. As a result, this particle’s information is crucial for the
population, and when it results in a less-than-ideal solution, it lowers the search efficiency
of the algorithm.

The absence of techniques for population mutation, the propensity to enter sub op-
timal and delayed convergence are some of the issues that restrict the practical uses of
AEFA, despite the fact that it is an effective optimization technique. To address the short-
comings of AEFA, researchers have produced a number of variants in recent years. To
improve the search efficiency and stability of AEFA, the artificial electric field algorithm
with pattern search algorithm (AEFA-PS) was suggested for open switch network prob-
lem. It was shown to be capable of getting objective function fitness values of greater
quality [30]. The improved artificial electric field algorithm (IAEFA) developed a unique
method for calculating the electrostatic force that solved the limitations of AEFA such
as early convergence and low search performance. The performance of IAEFA was as-
sessed using 18 different test functions and it was discovered to be a more effective and
efficient at solving the optimization problems [31]. Although AEFA has limited global
search capabilities, it offers excellent local search capabilities. In order to overcome this,
the adaptive search sine-cosine algorithm with artificial electric field algorithm (SC-AEFA)
technique was created to dynamically balance the global and local search abilities of the
algorithm. Experiments demonstrated the greater performance was achieved [15]. In order
to overcome the problem of entering the sub-optimality in the original AEFA, the Moth
Levy adopted artificial electric field algorithm (ML-AEFA) was proposed. In comparison to
other algorithms, experiments revealed superior performance [32]. By instantly introducing
the fittest particles into the population for the following generation and keeping the best
particles from one iteration to the next, the elitism strategy boosts the potential of AEFA for
optimization. Studies demonstrate the higher performance of AEFA [33].

The primary driving force for this study is to solve the aforementioned issues. Our
goal is to successfully strike a balance between the capacity for exploration and exploitation
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and the enhancement of population variety. The suggested AEFA is based on Gaussian
mutation specular reflection (GS) and local escaping operator (LEO) called GSLEO-AEFA.
Firstly, the convergence efficiency of an algorithm is impacted by the low diversity and
the use of starting agents that are randomly generated. The specular reflection learning
approach is applied in this study to produce high-quality starting populations. Gaussian
mutation is introduced for the mutation of the new population to further increase the
variety of the starting population. Additionally, the local escape operator mechanism
is added to the algorithm to update particle positions and prevent the population from
settling into sub-optimal, thereby enhancing the capabilities for global search. It is also
designed to advance the population toward the global optimum and achieve equilibrium
between exploration and exploitation.

During the forming of the GSLEO-AEFA, no modifications have been applied on
the combined methods except the opposition-based learning (OBL). In this paper, we
proposed an enhanced form of OBL called Gaussian mutation-based specular reflection
(GS) and applied it to the standard AEFA algorithm. OBL is a technique that generates
diverse candidate solutions in multimodal problems by having each solution learn from its
opposite candidate [34]. It is a principle that inspired from the development of specular
reflection. Specular reflection models the reflection of light in physics [35]. Our approach
involves introducing the mutated form of specular reflection using Gaussian mutation only
during the population initialization stage to enhance the diversity. This differs from the
OBL introduced by Alkayem et al. [36] which is applied at initialization and later during
iteration, and the quasi-based opposition learning introduced by Alkayem et al. [37] which
aims to improve convergence speed and escape local optima during both initialization and
iteration.

The main contributions of this paper are:

1. We introduce a GSLEO-AEFA algorithm to improve the performance and balance in
between exploitation and exploration phases of the original AEFA.

2. We introduce a Gaussian mutation with specular learning strategy to enhance popula-
tion diversity and as a new strategy for population initialization.

3. We introduce a local escaping operator as a method for avoiding stagnation in lo-
cal optimal.

4. We use real world engineering problems to evaluate GSLEO-AEFA.

The remainder of the paper is organized as follows. Section 2 contains the detailed
explanations of the artificial electrical field optimization algorithm (AEFA) and the proposed
Gaussian mutation specular refraction learning with local escaping operator based AEFA
(GSLEO-AEFA). Section 3 shows the experimental results and discussions of GSLEO-AEFA
with its counterpart algorithms using 23 benchmark functions and engineering problems.
Some necessary analyses such as convergence trajectory analysis, complexity analysis,
diversity analysis and statistical analyses are implemented and discussed here. Lastly, in
Section 4 the conclusion of the study is given.

2. Methodology
2.1. Artificial Electric Field Algorithm (AEFA)

The artificial electric field algorithm (AEFA) imitates how charged particles flow in
an electrostatic field. The repulsive force between charged particles is ignored by AEFA,
and only the attractive force between particles is considered. This enables surrounding
low-charge particles to be drawn by high-charge particles in the electric field.

Each charged particle in the search area represents a potential solution. The charge
associated with a particle determines the quality of the solution. The solution is closer to the
ideal solution as the charge increases. Figure 1 illustrates the motion of the charged particles
where the circles represent the several particles as they are located across the electric field
and the circle sizes represent the quantity values of the charges that the particles carry.
Particle C1 experiences a force named Force in Figure 1 and it accelerates in the direction of
the other three charged particles as a result of being attracted towards them. As can be seen,
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C4 has the highest charge and it strongly attract C1. As a result, the direction of the force
acting on C1 is more closely drawn towards the direction of C4. Particles in the search area
with low charges would therefore gravitate towards those with high charges throughout
the AEFA iteration phase, enabling the algorithm to reach to the best outcome [22,38].
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Equations (1) and (2) explains the theoretical formulation of the AEFA [39].

Velt+1
i = r ×Velt

i + acclt
i (1)

Pt+1
i = Pt

i + Velt
i (2)

The ith charged particle’s velocity is given as Velt+1
i and the location of that particle is

represented with Pt+1
i using Equations (1) and (2). The velocity and current position can be

updated at iteration t + 1; r denotes random number in the range [0, 1]. The acceleration of
particle at the t iteration is denoted by acclt

i .
The formula of acceleration when a particle is exposed to an electric fields’ force is

defined in Equation (3) as follows by Newton’s second law,

acclt
i =

Ct
i × EFt

i
mt

i
(3)

where mt
i denote mass of a particle and Ct

i represent the charge of a particle. The electric
field intensity of the ith particle at iteration t is expressed as,

EFt
i =

Forcet
i

Ct
i

(4)

The charged particle’s resulting force in the search space is given as,

Forcet
i = ∑N

j=1,j 6=i r× Forcet
ij (5)

According to the Coulomb’s force, the resulting force exacted on particle i by j is
computed as follows.

Forcet
ij = Kt ×

Ct
i × Ct

j ×
(

Pt
best − Pt

i
)

Rt
ij + ε

(6)

Rij = ‖Pi(t), Pj(t)‖2 (7)
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Kt = K0 × exp
(
−α× iteration

Maxiteration

)
(8)

In Equation (7), Rij denote the distance between two agents i and j, Pt
best is the particle

with ideal solution at the iteration i, and ε denote a very tiny positive value. The Coulomb
constant K0 is initially set at 500 and drops by a factor of 30 which is denoted as α in
Equation (8) at every iteration. This progressive decline enables the algorithm to start with
a global search and switch to a local search later on.

Each particles charge Ct
i at a given iteration as given as follows,

Ct
i =

cqt
i

∑N
i=1 cqt

i
(9)

cqt
i = exp

(
f itt

i −worst(t)
best(t)−worst(t)

)
(10)

In Equation (9), the total number of particles which is represented by N, the normal-
ization of cqt

i is denoted by Ct
i , where cqt

i is the charge of the ith particle. In Equation (10),
best(t) and worst(t) denote the ideal and worst fitness values at the tth iteration, respec-
tively. f itt

i is the fitness value of the ith particle. Using a greedy method, the algorithm
updates the positions particles at each iteration.

Pt+1
i =

Pt
i when fit

(
Pt

i
)
< fit

(
Pt+1

i

)
Pt+1

i when fit
(

Pt
i
)
≥ fit

(
Pt+1

i

) (11)

The position of the individual in the following generation is determined by its fit-
ness, according to Equation (11). The individual’s position is unaffected, if it has less
fitness value than the fitness value of newly generated individual. If not, its position
is re-adjusted. The pseudocode of AEFA can be seen in the following Algorithm 1.

Algorithm 1 Artificial Electric Field Algorithm (AEFA)

Initialize the population of size N within search range [Pmin, Pmax]
Set the Initial Velt

i to 0
Calculate fitness value for all particles
Set iteration i← 1
while stopping requirement is not met do

Compute Kt, best(t) and worst(t)
for i← 1 to N do

Calculate fitness values
Calculate the total force in each direction Equation (5)
Calculate acceleration Equation (3)
Velt+1

i ← r ×Velt
i + acclt

i
Pt+1

i ← Pt
i + Velt

i
end for

end while

2.2. Proposed GSLEO-AEFA
2.2.1. Population Initialization Using Gaussian Mutation Specular Reflection Learning (GS)

The variety of the starting agents has a major influence on the convergence rate
and solution precision of metaheuristic algorithms [40]. However, AEFA frequently uses
random initialization to generate the starting population. This initialization strategy lacks
prior information of the search space, which might impact the updating method of the
search agents. The population has the possibility of moving away from the ideal solution if
the optimal solution is situated in the opposite location from where the randomly produced
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individuals are positioned. Solutions generated by the specular reflection learning (SRL)
technique has been shown to outperform those produced only by random approaches [41].
This study introduces the application of specular reflection learning for the initialization of
population and will produce an opposing population of the initial population. Afterwards,
the Gaussian mutation (GM) process will be applied to the newly generated population
to improve population variety from the generated agents. It is decided which individuals
should be retained by comparing their fitness values with that of the original individuals.

Due to its superior performance, opposition-based learning (OBL) is frequently em-
ployed to enhance metaheuristic algorithms [42]. OBL uses simultaneous examination of
potential solution and its opposing solution to promote rapid convergence. Within the
range [lb, ub], the opposing value of p is defined as follows:

p∗ = lb + ub− p (12)

Zhang introduced the specular reflection learning (SRL) which was motivated by
the specular reflection in physics and illustrated in Figure 2. Figure 2a shows the clear
correlation between the incident light and the reflected light [35]. Based on this concept, it is
possible to compute a solution and its reverse solution in the manner depicted in Figure 2b.
Based on the aforementioned occurrence, it may be concluded that a solution and its
opposing solution corresponds to some extent. A superior solution could be discovered,
if both solutions are compared. The superiority of the SRL method over OBL has been
established [43,44]. Therefore, SRL is introduced during the initialization of the population
of GSLEO-AEFA. The incorporation of GM allows for further mutation to be carried out on
the population.
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(b) The model of specular reflection.

Consider point P = (a, 0) in the horizontal plane and its opposite point P′ = (b, 0),
∀P, P′ ∈ [Pl , Pu]. The incidence angle is denoted by α and the reflection angle is symbolized
by β. O = (p0, 0) represents the midpoint of [Pl , Pu]. From Figure 2b, the following equation
can be deduced.

tan(α) =
p0 − a

A0
(13)

tan(β) =
b− p0

B0
(14)

According to the reflection law α and β are equal and the Equations (13) and (14) are
represented as,

p0 − a
A0

=
b− p0

B0
(15)

From Equation (15), b is equal to either (16)–(18).

b =
B0(p0 − a)

A0
+ p0 (16)



Appl. Sci. 2023, 13, 4157 7 of 25

If B0 = µA0 then
b = µ(p0 − a) + p0 (17)

b = (µ + 1)p0 − µa = (0.5µ + 0.5) ∗ (Pl + Pu)− µa (18)

where µ denoted a preset factor for scaling and when it changes, b can be computed as
given as follows.

b =


b1, µ ∈ (0, 1),
2p0 − a, µ = 1
b2, µ ∈ (1,+∞)

(19)

When µ changes, b can explore all values of [Pl , Pu]. Hence, it may be used to initialize
the population and improve its variety and exploration.

Let P = (p1, p2, . . . , pn) represent an individual in a n-dimensional space. Individual
pi is within the range of [pmin, pmax] and i within the range of {1, 2, . . . , n} where n is
the number of individuals. The opposing individual in Equation (12) can be deduced as
follows with the in cooperation of the fundamental specular reflection law in Equation (18).
Therefore, the opposing solution of pi is expressed as follows,

p∗ = (0.5µ + 0.5) ∗ (pmin + pmax)− µpi (20)

where µ is a random number within the range of [0, 1]. Worthy of note is the fitness values
of pi and p∗ must be compared to select the best population. It is generally known that meta-
heuristic algorithms are significantly influenced by diversification of the population [45].
The use of SRL is justified because more diversity can make it possible for the search agents
to expand the search area by resulting with the avoidance of suboptimal positions. To
further enhance the diversification, GM is used to carry out mutation operations after
creating the reverse solution.

pgi = p∗ ∗ (1 + y∗Gaussian(1)) (21)

where Gaussian represents a Gaussian distribution with mean set 0 and variance set to 1, it
returns a matrix of 1*1, y denotes a weight this is set to 1, p∗ is an individual generated by
SRL in Equation (20), pgi denotes the newly generated point using Gaussian mutation.

2.2.2. Local Escaping Operator (LEO)

To improve the search capabilities of the gradient-based optimizer (GBO), local escap-
ing operator (LEO) was initially developed by Iman et al. [46] by adjusting the locations
of the individuals in relation to a certain criteria. LEO improves the quality of solutions.
In particular, it enhances the convergence of the algorithm and keeps it from becoming
stuck in local optima. It is worth to note here that local escaping operator (LEO) from the
gradient-based optimizer (GBO) has been utilized to enhance the local escaping functional-
ity of GSLEO-AEFA without altering the LEO itself. By incorporating the LEO within the
algorithm, we leverage its ability to escape local optima and converge towards the global
optimum, thereby improving the overall performance of the GSLEO-AEFA.

The best individual’s position Pbest, two randomly created individuals’ positions Pm
r1

and Pm
r2, two randomly selected positions P1m

n and P2m
n , and a new randomly generated

solution Pm
k are used to generate a new solution PLEO , which has great performance [15].

LEO formulas are expressed in Equations (22) and (24). If rand < 0.5, Equation (22) is
computed, otherwise Equation (24).

PLEO = Pm
n + f1(u1Pbest − u2Pm

k ) + f2ρ1(u3(P2m
n − P1m

n )) + u2(Pm
r1 − Pm

r2)/2 (22)

Pm+1
n = PLEO (23)
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PLEO = Pbest + f1(u1Pbest − u2Pm
k ) + f2ρ1(u3(P2m

n − P1m
n )) + u2(Pm

r1 − Pm
r2)/2 (24)

Pm+1
n = PLEO (25)

where Pm
n is the position being modified by LEO, rand is a random number within the range

of [0, 1]. Within the range of [−1, 1], f1 and f2 are random numbers uniformly distributed.

P1m
n , P2m

n = lb + rand(dim)× (ub− lb) (26)

u1 = L1 × 2× rand + (1− L1) (27)

u2 = L1 × rand + (1− L1) (28)

u3 = L1 × rand + (1− L1) (29)

where ub and lb denote the upper and lower boundaries, respectively, dim represents the
solution dimension, n denotes the number of individuals in the population, m represents a
decision variable in a given solution. u1, u2, and u3 are randomly generated variables. If
k1 < 0.5, L1 set to 1, otherwise 0. k1 is number within the range [0, 1].

ρ1 in Equations (22) and (23) is expressed as follows,

ρ1 = 2× rand× α− α (30)

α =

∣∣∣∣β× sin
(

3π

2
+ sin

(
β× 3π

2

))∣∣∣∣ (31)

β = βmin + (βmax − βmin)×
(

1−
(

i
imax

)3
)2

(32)

where βmin and βmax are set to 0.2 and 1.2, imax and i denote the maximum iteration and
current iteration, respectively. To balance exploitation and exploration ρ1 is regulated by α.

Pm
k in Equations (22) and (23) is computed as follows:

Pm
k =

{
Prand if k2 < 0.5
Pm

r otherwise
(33)

where Prand is expressed in Equation (34), Pm
r is a random solution selected from the

population. k2 denotes random float number between [0, 1].

Prand = lb + rand× (ub− lb) (34)

In Equation (35), if k1 < 0.5, L2 set to 1, otherwise 0. k1 is number within the range
[0, 1].

Pm
k = L2 × Pm

r + (1− L2)× Prand (35)

Algorithm 2 and Figure 3 show the pseudocode and the flowchart of GSLEO-AEFA,
respectively. The method begins with the population initialization using SRL and then uses
GM to further increase the population diversity. The LEO is placed afterwards to improve
the position of each particle.
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Algorithm 2 Gaussian Mutation Specular Reflection Learning with Local Escaping Operator
Based Artificial Electric Field Algorithm (GSLEO-AEFA)

Initialize the population of p∗ and pgi using Equations (20) and (21)
Calculate the fitness of all particles initialized and select N best particles after ranking fitness from
best to worst
Set the Initial Velt

i to 0
Calculate fitness value for all particles
Set iteration i← 1
while stopping requirement is not met do

Compute Kt, best(t) and worst(t)
for i← 1 to N do

Calculate fitness values
Calculate the total force in each direction Equation (5)
Calculate acceleration Equation (3)
Velt+1

i ← r ×Velt
i + acclt

i
Pt+1

i ← Pt
i + Velt

i
if rand < 0.5 then
Update Pt+1

i using Equation (22)
else
Update Pt+1

i using Equation (24)
end for
end while
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3. Experimental Results and Discussion

The suggested GSLEO-AEFA method is compared against six other algorithms, includ-
ing AEFA [22], particle swarm optimization (PSO) algorithm [5], differential evolution (DE)
algorithm [47], JAYA [48], sine-cosine algorithm (SCA) [13] and cuckoo search (CS) [49] to
precisely assess its efficiency. 1000 iterations were completed with 30 executions to obtain
the average and the standard deviation. The population size is set 30. Each algorithm’s
parameters were chosen to reflect the original, first-published standard versions by the
authors. The parameters for each algorithm are shown in Table 1.
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Table 1. Parameter Settings.

Algorithms Parameter Setting

GSLEO-AEFA k0 = 500, α = 30

AEFA k0 = 500, α = 30

PSO wmax = 0.9 wmin = 0.2 c1 = c2 = 2 vmax=6

DE F = 0.5, CR= 0.7

SCA a = 2

CS Pa= 0.25, r= 0.05

This test set consists of 10 fixed-dimension functions (F14–F23), six multi-modal
functions (F8–F13), and seven single-modal functions (F1–F7). The detailed information is
given in Table 2.

Table 2. Benchmark functions.

Function Range Dim Fmin

f1(x) = ∑ n
i=1x2

i [−100, 100] 30 0
f2(x) = ∑ n

fmin
|xi |+ ∏ n

i=1|xi | [−10, 10] 30 0

f3(x) = ∑ n
i=1

(
∑ i

j−1xj

)2
[−100, 100] 30 0

f4(x) = min{|xi |, 1 ≤ i ≤ n} [−100, 100] 30 0

f5(x) = ∑ n−1
i=1 100i

(
xi+1 − x2

i

)2
+ (xi − 1)2 [−30, 30] 30 0

f6(x) = ∑ n
i=1([xi + 0.5])2 [−100, 100] 30 0

f7(x) = ∑ n
i=1ix4

i + random[0, 1) [−1.28, 1.28] 30 0

f8(x) = ∑ n
i=1 − xi sin

(√
|xi |
)

[−500, 500] 30 −418.9892 × dim

f9(x) = ∑ n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 30 0

f10(x) = −20 exp
(
−0.2

√
1
n ∑ n

i=1x2
i

)
− exp((1/n)∑ n

i=1 cos(2πxi)) + 20
+e

[−32, 32] 30 0

f11(x) = 1/4000∑ n
i=1 ∑ x2

i −∏ n
i=1 cos

(
xi/
√

i
)
+ 1 [−600, 600] 30 0

f12(x) = π/n
{

∑ n−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+∑ n

i=1u(xi , 10, 100, 4) + π/n10 sin(πy1)

yi = 1 + xi + (1/4)u(xi , a, k, m)

=


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 30 0

f13(x) = 0.1{∑ n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]}
+0.1 sin2(3πx1)
+∑ n

i=1u(xi , 5, 100, 4)

[−50, 50] 30 0

f14(x) =
(
(1/500) + ∑ 25

j=11/j + ∑ 2
i=1
(
xi − aij

)6
)−1

[−65, 65] 2 1

f15(x) = ∑ 11
i=1
[
ai − x1

(
b2

i + bi x2
)
/b2

i + bi x3 + x4
]2 [−5, 5] 4 0.0003

f16(x) = 4x2
1 − 2.1x4

1 + 1/3x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5] 2 −1.0316

f17(x) =
(
x2 − 5.1/4π2x2

1 + 5/πx1 − 6
)2

+ 10(1− (1/8π)) cos x1 + 10 [−5, 5] 2 0.398

f18(x) = [1 + (x1 +x2 + 1)2(19− 14x1 + 3x2
1 −14x2 + 6x1x2 + 3x2

2

)
]

×[30

+(2x1 − 3x2)
2

×
(
18− 32x1 + 12x2

1 + 48x2

−36x1x2 + 27x2
2

)
]

[−2, 2] 2 3

f19(x) = −∑ 4
i=1ci exp

[
−∑ 3

j=1aij
(
xj − pij

)2
]

[1, 3] 3 −3.86

f20(x) = −∑ 4
i=1ci exp

[
−∑

j=1
j=1aij

(
xi − pij

)2
]

[0, 1] 6 −3.32

f21(x) = −∑ 5
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10] 4 −10.1532

f22(x) = −∑ F=1
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10] 4 −10.4028

f23(x) = −∑ 10
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10] 4 −10.5363
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3.1. Impact of Problem Dimension Analysis

To assess how effectively the algorithms worked in high dimensions, the F1–F13
functions in this study were expanded from 30 to 100 dimensions. The accuracy and
stability of the algorithm were assessed using the mean and the standard deviation as the
evaluation measures. Lower mean values and lower standard deviations indicate that
the method is able to tackle the optimization problem well. Maximum iterations for all
dimensions were set to 1000 and the total population size was set to 30.

The empirical results displayed in Table 3 for dimension set as 30. In order to determine
the overall effectiveness (OE) of the algorithms, we utilized the formula developed by
Qaraad et al. [50], which takes into account the number of Wins (W), Losses (L) and Ties
(T) as outlined in Tables 3–5. The resulting OE values ranged from 84.62% to 92.31% with
variation depending on the complexity of the problem in terms of dimension.

Table 3. F1-F23 Comparison with dimension = 30, significant values are in bold.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

F1 AVG 3.166 × 10−76 2.827 × 10−21 1.357 × 10−8 4.675 × 10−13 6.832 × 10−12 2.439 × 10−2 6.799 × 10−3

STD 2.431 × 10−77 2.779 × 10−21 9.256 × 10−10 1.958 × 10−14 8.728 × 10−15 7.300 × 10−3 1.435 × 10−3

F2 AVG 1.071 × 10−37 1.156 × 102 5.334 1.194 × 10−7 2.093 × 10−9 1.408 × 10−5 1.631 × 10−1

STD 3.198 × 10−38 4.408 × 101 6.310 × 10−5 5.981 × 10−8 2.115 × 10−10 3.339 × 10−6 5.914 × 10−2

F3 AVG 6.323 × 10−72 1.774 × 103 1.414 × 101 9.579 × 103 1.211 × 104 3.726 × 103 3.379 × 102

STD 6.534 × 10−73 5.231 × 102 4.401 4.586 × 102 3.148 × 103 1.379 × 103 5.314 × 101

F4 AVG 5.486 × 10−38 1.314 6.036 × 10−1 1.068 × 101 1.041 × 101 1.925 × 101 5.726
STD 1.030 × 10−38 1.196 8.508 × 10−2 5.046 6.554 1.208 × 101 3.251

F5 AVG 2.635 × 101 4.102 × 102 5.220 × 101 3.564 × 101 9.954 × 102 4.391 × 102 4.301 × 101

STD 2.495 × 10−1 4.270 × 102 7.801 1.369 × 10−1 1.519 × 10−1 5.683 × 10−1 3.175 × 101

F6 AVG 1.751 × 10−21 2.148 × 10−21 1.258 × 10−8 2.671 × 10−13 3.284 4.519 7.427 × 10−3

STD 2.239 × 10−22 5.626 × 10−22 1.805 × 10−9 1.590 × 10−14 1.952 × 10−1 9.424 × 10−2 9.015 × 10−5

F7 AVG 3.495 × 10−4 2.632 6.237 1.958 × 10−2 2.528 × 10−2 3.961 × 10−2 4.488 × 10−2

STD 4.928 × 10−5 1.781 × 10−1 4.678 × 10−3 1.513 × 10−3 8.613 × 10−3 3.066 × 10−2 1.219 × 10−2

F8 AVG −2.483 × 105 −7.901 × 104 −1.922 × 105 −2.023 × 105 −1.686 × 105 −1.158 × 105 −3.243 × 105

STD −8.278 × 103 −2.634 × 103 −6.406 × 103 −6.742 × 103 −5.619 × 103 −3.859 × 103 −1.127 × 104

F9 AVG 0 4.554 × 101 9.836 × 101 1.639 × 102 6.256 × 101 1.884 × 101 7.841 × 101

STD 0 9.949 × 101 2.097 × 101 1.246 × 101 2.709 × 101 1.204 × 10−1 1.165 × 101

F10 AVG 4.441 × 10−16 3.164 × 10−1 5.499 × 10−2 2.089 × 10−7 1.407 × 10−7 1.165 × 101 1.152
STD 0 0 8.231 × 10−1 6.441 × 10−9 2.748 × 10−8 1.008 × 101 4.479 × 10−1

F11 AVG 0 5.602 × 10−1 9.275 × 10−3 2.053 × 10−3 1.157 × 10−2 2.772 × 10−1 8.599 × 10−2

STD 0 7.477 × 10−2 7.390 × 10−3 2.460 × 10−4 7.472 × 10−14 1.884 × 10−1 7.931 × 10−2

F12 AVG 1.291 × 10−23 2.225 3.482 × 10−11 2.729 × 10−12 6.147 × 10−1 1.519 × 101 1.652
STD 6.678 × 10−24 2.885 × 10−1 2.243 × 10−11 1.113 × 10−13 1.271 × 10−2 1.020 7.550 × 10−1

F13 AVG 3.296 × 10−3 6.300 5.127 × 10−3 2.695 × 10−3 2.957 × 104 2.185 × 102 7.119 × 10−1

STD 0 7.164 × 10−1 1.099 × 10−3 1.084 × 10−3 1.166 3.592 × 10−1 3.981 × 10−1

F14 AVG 9.980 × 10−1 2.985 4.763 9.980 × 10−1 1.065 1.263 9.980 × 10−1

STD 0 1.149 2.456 0 1.062 × 10−3 7.200 × 10−4 0

F15 AVG 3.109 × 10−4 3.054 × 10−3 4.344 × 10−3 1.826 × 10−3 1.119 × 10−3 9.437 × 10−4 3.289 × 10−4

STD 1.019 × 10−5 6.377 × 10−5 1.540 × 10−4 2.196 × 10−4 2.765 × 10−4 3.308 × 10−5 6.779 × 10−6

F16 AVG −1.032 −1.032 −1.032 −1.032 −1.032 −1.032 −1.032
STD 4.441 × 10−16 0 0 0 5.000 × 10−7 3.000 × 10−6 0

F17 AVG 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.985 × 10−1 3.979 × 10−1

STD 0 0 0 0 0 8.784 × 10−4 0

F18 AVG 3 3 3 3 3.284 3 3
STD 0 0 0 0 4.250 × 10−4 5.500 × 10−6 0

F19 AVG −3.863 −3.777 −3.861 −3.863 −3.667 −3.855 −3.863
STD 0 0 0 0 1.088 × 10−1 2.215 × 10−3 0

F20 AVG −3.314 −1.646 −3.237 −3.259 −1.957 −2.886 −3.322
STD 0 3.028 × 10−1 1.527 × 10−1 5.945 × 10−2 1.353 × 10−1 1.960 × 10−1 0

F21 AVG −1.015 × 101 −6.101 −8.294 −8.652 −1.379 −2.450 −1.015 × 101

STD 0 3.735 3.735 0 1.265 5.761 × 10−1 0

F22 AVG −1.040 × 101 −1.010 × 101 −9.621 −1.023 × 101 −1.854 −3.455 −1.040 × 101

STD 0 0 0 0 1.559 1.078 0
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Table 3. Cont.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

F23 AVG −1.054 × 101 −1.054 × 101 −9.862 −1.031 × 101 −2.339 −4.853 −1.054 × 101

STD 0 0 4.057 0 7.908 × 10−2 4.472 × 10−1 0

W/L/T 12/3/8 1/18/4 0/19/4 1/17/5 0/22/1 0/23/0 1/14/8
OE 86.95% 21.73% 17.39% 26.08% 4.34% 0% 39.13%

Table 4. F1–F13 Comparison with dimension = 50, significant values are in bold.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

F1 AVG 1.312 × 10−75 1.311 × 101 3.983 × 10−3 6.081 × 10−6 9.955 × 10−8 1.376 × 102 2.774
STD 6.044 × 10−76 3.475 × 10−1 1.564 × 10−4 4.101 × 10−6 5.847 × 10−9 1.154 × 101 1.152

F2 AVG 1.620 × 10−37 2.192 × 102 2.681 × 101 1.064 × 10−3 1.191 × 10−6 1.124 × 10−2 1.990
STD 2.567 × 10−37 6.187 × 101 5.091 7.480 × 10−4 8.203 × 10−7 2.452 × 10−3 5.229 × 10−1

F3 AVG 1.773 × 10−69 5.275 × 103 6.116 × 102 7.020 × 104 6.268 × 104 3.841 × 104 3.916 × 103

STD 9.445 × 10−69 8.081 × 102 1.721 × 102 9.668 × 103 7.966 × 102 7.215 × 103 1.412 × 101

F4 AVG 5.798 × 10−38 8.926 2.353 5.746 × 101 5.065 × 101 5.776 × 101 1.445 × 101

STD 7.141 × 10−38 8.845 × 10−1 2.473 × 10−1 2.310 × 101 1.968 4.991 7.853 × 10−1

F5 AVG 4.698 × 101 5.315 × 104 1.652 × 102 1.685 × 103 9.021 × 103 1.438 × 106 6.367 × 102

STD 4.170 × 10−1 3.820 × 104 3.482 × 101 2.009 × 101 1.645 × 10−1 2.404 × 105 2.091 × 102

F6 AVG 7.007 × 10−3 1.113 × 101 2.008 × 10−3 6.021 × 10−6 7.942 1.409 × 102 2.841
STD 1.019 × 10−4 5.086 × 10−1 7.776 × 10−5 2.923 × 10−6 8.489 × 10−1 3.747 × 101 7.485 × 10−1

F7 AVG 2.918 × 10−4 4.201 × 102 4.192 × 101 6.239 × 10−2 6.597 × 10−2 5.376 × 10−1 1.918 × 10−1

STD 1.265 × 10−4 2.671 × 101 1.212 × 101 1.567 × 10−2 1.756 × 10−2 3.018 × 10−1 6.508 × 10−2

F8 AVG −1.177 × 104 −3.109 × 103 −1.020 × 104 −8.514 × 103 −6.917 × 103 −5.053 × 103 −1.381 × 104

STD 1.283 × 102 2.806 × 102 3.958 × 102 6.519 × 102 1.020 × 102 3.026 × 102 1.781 × 103

F9 AVG 0 1.906 × 102 2.523 × 102 3.497 × 102 1.150 × 102 5.247 × 101 1.637 × 102

STD 0 2.702 × 101 1.893 1.600 × 101 3.186 × 101 3.542 1.172 × 101

F10 AVG 4.441 × 10−16 3.316 6.905 × 10−1 6.402 × 10−1 4.707 × 10−5 1.824 × 101 3.490
STD 0 2.252 × 10−1 2.308 × 10−1 1.130 × 10−3 2.021 × 10−5 9.498 9.095 × 10−2

F11 AVG 0 7.215 5.453 × 10−3 2.384 × 10−3 6.795 × 10−3 2.092 9.397 × 10−1

STD 0 1.062 3.695 × 10−3 9.500 × 10−7 9.182 × 10−4 8.224 × 10−1 1.529 × 10−1

F12 AVG 2.584 × 10−3 7.278 2.718 × 10−2 6.784 × 10−2 1.357 2.117 × 106 3.802
STD 1.779 × 10−4 1.109 2.290 × 10−5 5.922 × 10−2 6.044 × 10−2 4.215 × 105 7.237 × 10−1

F13 AVG 6.550 × 10−2 1.240 × 102 7.207 × 10−3 2.900 3.611 × 103 1.074 × 107 3.649 × 101

STD 1.586 × 10−3 1.541 × 102 8.781 × 10−4 2.738 × 10−4 4.381 6.499 × 104 1.280 × 101

W/L/T 11/2/0 0/13/0 1/12/0 1/12/0 0/13/0 0/13/0 0/13/0
OE 84.62% 0% 7.69% 7.69% 0% 0% 0%

The data make it clear that GSLEO-AEFA receives the near optimal solution in seven
of the seven single-modal functions (F1–F7). It is absolutely critical to note that the achieve-
ment of GSLEO-AEFA is a significant improvement over the original AEFA and other
algorithms in F1–F7. This improvement is expected due to the introduction of LEO, which
improves GSLEO-AEFAs ability to do local search. As a result, there is significant improve-
ment in exploitation too.

GSLEO-AEFA achieves the best performance on F9–F12 and F14–F23 in the multi-
modal benchmark functions (F8–F23). Each of the results obtained by GSLEO-AEFA is
better than what the initial AEFA is able to achieve. Global search capacity and population
diversity of GSLEO-AEFA in comparison to the initial AEFA are drastically improved. Ad-
ditionally, the demonstration of multimodal functions with fixed dimension characteristics
proves that the new mechanism introduced successfully achieves a good balance between
global search and local exploitation.

Tables 4 and 5 display the results of expanding the dimension from 50 and 100,
respectively. The tables present the evidence that as the problem’s dimension increases,
it becomes less easy to find optimum solutions. Table 4 clearly shows that GSLEO-AEFA
achieves the best performance in F1–F5, F7 and F9–F12 despite the growth in dimension.
GSLEO-AEFA achieves the best results in thirteen benchmark function when dimension is
100 in Table 5. When the results from the tables are analyzed, it can be seen that GSLEO-
AEFA is quite robust for handling complex problems. This indicates that population
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diversity improved based on proposed GM based SRL. Additionally, LEO is used to update
the positions of particles, so that they continually progress in the direction of the global
best, achieved early exploration and late exploitation.

Table 5. F1–F13 Comparison with dimension = 100, significant values are in bold.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

F1 AVG 1.825 × 10−73 1.091 × 103 3.321 4.915 1.084 × 102 5.953 × 103 3.227 × 102

STD 3.217 × 10−74 3.016 × 102 2.080 3.551 5.745 × 10−3 6.759 × 102 5.338 × 101

F2 AVG 2.717 × 10−37 4.315 × 102 1.135 × 102 1.405 1.336 × 10−3 1.799 1.579 × 101

STD 2.624 × 10−37 1.948 × 101 8.413 6.684 × 10−1 3.283 × 10−4 6.289 × 10−3 5.369 × 10−1

F3 AVG 6.493 × 10−71 1.600 × 104 1.097 × 104 3.346 × 105 2.863 × 105 1.876 × 105 3.266 × 104

STD 2.866 × 10−72 7.989 × 102 8.134 × 102 3.184 × 104 7.466 × 104 1.587 × 103 2.355 × 103

F4 AVG 3.877 × 10−37 1.662 × 101 9.432 9.636 × 101 9.338 × 101 8.730 × 101 2.282 × 101

STD 6.640 × 10−38 1.495 2.698 × 10−1 6.600 × 10−1 6.479 × 10−1 8.400 × 10−1 2.082

F5 AVG 9.737 × 101 2.570 × 106 5.257 × 103 1.481 × 104 7.654 × 103 6.989 × 107 7.093 × 104

STD 4.531 × 10−1 2.367 × 103 7.594 × 101 5.708 × 102 3.352 × 103 1.956 × 107 2.230 × 104

F6 AVG 2.314 1.067 × 103 2.575 3.749 2.248 × 101 5.981 × 103 3.865 × 102

STD 1.672 × 10−1 4.358 × 101 1.103 1.543 6.895 × 10−1 1.614 × 103 5.581 × 101

F7 AVG 2.347 × 10−4 1.842 × 103 3.258 × 102 5.446 × 10−1 4.352 × 10−1 4.594 × 101 1.285
STD 6.276 × 10−5 7.705 × 101 1.977 6.282 × 10−2 1.667 × 10−1 9.523 4.334 × 10−1

F8 AVG −2.052 × 104 −5.031 × 103 −1.824 × 104 −1.176 × 104 −1.053 × 104 −7.068 × 103 −1.954 × 104

STD 2.074 × 102 1.335 × 103 3.748 × 102 6.889 × 102 1.966 × 103 4.924 × 102 1.082 × 103

F9 AVG 0 8.151 × 102 7.145 × 102 8.851 × 102 3.946 × 102 2.222 × 102 4.332 × 102

STD 0 9.659 × 101 5.014 × 101 1.278 × 101 1.397 × 101 2.628 × 101 1.417

F10 AVG 4.441 × 10−16 8.082 2.605 4.815 1.090 × 10−2 1.971 × 101 6.946
STD 0 8.989 × 10−2 2.132 × 10−1 2.543 2.179 × 10−3 5.400 × 10−3 6.168 × 10−1

F11 AVG 0 4.747 × 101 4.632 × 10−2 7.983 × 10−1 6.488 × 10−2 4.328 × 101 4.429
STD 0 2.710 3.568 × 10−3 2.028 × 10−1 9.182 × 10−4 7.405 7.023 × 10−1

F12 AVG 3.018 × 10−2 6.694 × 101 2.211 1.185 × 104 5.679 × 104 1.592 × 108 1.092 × 101

STD 1.485 × 10−2 4.174 × 101 1.714 2.051 × 103 1.489 4.429 × 107 1.461

F13 AVG 2.857 2.595 × 105 1.454 × 101 8.643 × 104 5.953 × 104 2.934 × 108 5.143 × 103

STD 3.944 × 10−1 1.496 × 105 6.216 3.281 × 104 3.263 × 102 2.322 × 108 2.547 × 103

W/L/T 12/1/0 0/13/0 0/13/0 1/12/0 0/13/0 0/13/0 0/13/0
OE 92.31% 0% 0% 7.69% 0% 0% 0%

3.2. Convergence Trajectory Analysis

In Figure 4, with F1–F13 set to 30 dimensions, displays the convergence curves of seven
different methods. GSLEO-AEFA converged to the global optimum on F9–F11, F16–F17, and
F16–F23 and exhibited a greater convergence rate than compared algorithms in multi-modal
functions. GSLEO-AEFA significantly increased the convergence accuracy for unimodal
functions as compared to the original AEFA (F1–F7). The effective implementation of the LEO
mechanism and application of changes to the initial population generation approach ensure
that GSLEO-AEFA has enhanced optimization and convergence performance.
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3.3. Statistical Test

It is suggested that not only mean and standard deviation comparisons but more evalua-
tion metrics should be used to assess the effectiveness of the metaheuristic algorithms [51].
The use of statistical tests such as the Friedman test and Wilcoxon rank-sum test are advised
as effective evaluation metrics to compare the performance of different algorithms.

The significance threshold for the Wilcoxon rank-sum test was set at 0.05. The approach
was deemed statistically better, when p < 0.05. Table 6 displayed the Wilcoxon rank-sum
test findings with the notation “+/−/=” denoting whether the recommended approach
was superior to, inferior to, or equal to the compared approach [52]. According to Table 6,
GSLEO-AEFA always provides R+ values that are greater than R− values. Additionally,
Table 6 reveals that the p values of the six algorithms are less than 0.05, indicating that
GSLEO-AEFA is superior to the others. The + value of GSLEO-AEFA increased as the
dimension increased from 50 to 100, as shown in Table 6. This indicates that the GSLEO-
AEFA algorithm performs better than other algorithms, as the dimension increases. The
results show that GSLEO-AEFA has higher level of solution accuracy.

Table 6. Wilcoxon test analysis results.

Dimension Case − + = R− R+ p-Value

30 GSLEO-AEFA vs. AEFA 0 19 4 0 190 1.32 × 10−4

GSLEO-AEFA vs. PSO 0 19 4 0 190 1.32 × 10−4

GSLEO-AEFA vs. DE 1 17 5 6 165 5.35 × 10−4

GSLEO-AEFA vs. JAYA 0 21 2 0 231 6.00 × 10−5

GSLEO-AEFA vs. SCA 0 20 3 0 210 8.90 × 10−5

GSLEO-AEFA vs. CS 2 13 8 19 101 1.99 × 10−2

50 GSLEO-AEFA vs. AEFA 0 13 0 0 91 1.32 × 10−4

GSLEO-AEFA vs. PSO 2 11 0 7 84 1.32 × 10−4

GSLEO-AEFA vs. DE 1 12 0 7 87 5.35 × 10−4

GSLEO-AEFA vs. JAYA 0 13 0 0 91 6.00 × 10−5

GSLEO-AEFA vs. SCA 0 13 0 0 91 8.90 × 10−5

GSLEO-AEFA vs. CS 1 12 0 12 79 1.99 × 10−2

100 GSLEO-AEFA vs. AEFA 0 13 0 0 91 1.47 × 10−3

GSLEO-AEFA vs. PSO 0 13 0 0 91 1.47 × 10−3

GSLEO-AEFA vs. DE 0 13 0 0 91 1.47 × 10−3

GSLEO-AEFA vs. JAYA 0 13 0 0 91 1.47 × 10−3

GSLEO-AEFA vs. SCA 0 13 0 0 91 1.47 × 10−3

GSLEO-AEFA vs. CS 0 13 0 0 91 1.47 × 10−3
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The validity of the experiments is evaluated using the Friedman test by contrasting
the proposed GSLEO-AEFA with other algorithms. The Friedman test is one of the widely
used statistical tests which is used to determine whether more than one techniques’ outputs
differ significantly [53]. The outcomes of the Friedman tests are presented in Table 7. The
technique that obtains the lowest rank is the most efficient according to Friedman test. In
each of the various scenarios, the suggested GSLEO-AEFA is always rated first. Table 7
shows the results for the 30, 50 and 100 dimensions. The GSLEO-AEFA outperforms other
algorithms in terms of competitiveness.

Table 7. Friedman test for dimension 30, 50, and 100 dimensions for 20 functions.

Test Dimension GSLEO-AEFA AEFA PSO DE JAYA SCA CS

Friedman value 30 1.7 4.74 4.3 3.35 5.07 5.33 3.52
Friedman rank 1 5 4 2 6 7 3

Friedman value 50 1.31 5.69 3.31 3.69 4 5.92 4.08
Friedman rank 1 6 2 3 4 7 5

Friedman value 100 1 5.69 3.08 4.62 3.69 5.77 4.15
Friedman rank 1 6 2 5 3 7 4

In conclusion, AEFA-CSR is more competitive than innovative algorithms such as SCA
and CS as well as traditional algorithms such as DE and PSO. The greater accomplishments
of GSLEO-AEFA can be attributed to the newly implemented strategies. The LEO solution
strategy makes the local optimal escape mechanism better and the GM based SRL makes the
population more diversified. As a result, when the two methods are combined, the capacity
of GSLEO-AEFA to solve multimodal and unimodal functions is significantly improved.

3.4. Diversity Analysis

In order to comprehensively evaluate the performance of the GSLEO-AEFA optimiza-
tion algorithm, it is imperative to thoroughly investigate the impact of Gaussian mutation
and specular reflection on its diversity. To accomplish this, we must calculate the population
diversity of both GSLEO-AEFA and AEFA using the following equation [20].

Diversity =
1
N ∑

N

i=1

√
∑

D

j=1

(
xi,j − xj

)2, xj =
∑ N

i=1xi,j

N
(36)

Here, D denotes dimension, N represents the number of particles, xj is jth dimension
for the particle at the center of the population and xi,j represents jth dimension of a given
particle i. To validate the success of GSLEO-AEFA on diversity over the algorithm which is
originated from, diversity plots for two unimodal; F1 and F2 and two multimodal; F10 and
F12 functions are plotted in Figure 5.

According to the diversity plots for all of the functions analyzed GSLEO-AEFA pro-
duces higher diversity than AEFA at each time when it is analyzed. This is an indication of
well applied and well suited principles that GSLEO-AEFA contains. Gaussian mutation
with local escaping operator successfully enhance the diversification ability of the original
algorithm and this is well observed in the plots.

On the other hand, AEFA produces lower diversity and as a result its convergence
speed is high. This was expected because of the hybrid nature of the GSLEO-AEFA, since it
contains multiple methods to be executed during the optimization.

3.5. Computational Time and Space Complexity Analyses

The total amount of memory used by an algorithm points out the space complexity
of that algorithm through the optimization process. The Big O notation of GSLEO-AEFA
space complexity can be considered as O (Maxiteration × N × D) where Maxiteration is the
number of iterations, N is the number of agents in the population and D is the dimension.

With respect to the computational time, GSLEO-AEFA and the counterpart algorithms
are analyzed and the results are shown in Table 8. Out of 23 benchmark functions analyzed,
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for 22 functions, GSLEO-AEFA needs higher CPU time than the others. As a consequence
of its hybrid nature, the algorithm GSLEO-AEFA requires more time to figure out the
optimization. On the other hand, in terms of precise solutions, GSLEO-AEFA produces
high quality results and a researcher may negotiate between the high solution quality and
the computational time depending on the problem specifications.
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Table 8. Computational time comparison, high values are in bold.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

F1 23.990 23.874 40.696 1.801 10.423 10.757 9.059

F2 23.468 23.744 37.481 1.889 10.821 11.391 9.719

F3 30.354 26.628 14.308 4.643 7.535 14.579 15.415

F4 25.580 23.877 11.405 1.593 2.984 10.922 9.229

F5 25.433 24.087 11.716 1.926 3.235 11.538 9.476

F6 32.218 23.863 11.717 1.811 3.135 11.492 9.388

F7 26.256 24.369 12.371 2.109 3.374 11.440 9.427

F8 25.878 24.007 12.553 1.805 3.158 11.541 9.496

F9 25.843 24.081 11.327 1.857 3.075 10.961 9.703

F10 54.693 24.279 12.558 2.208 3.476 11.874 33.917

F11 92.284 24.405 12.796 2.244 3.545 21.765 36.307

F12 90.376 25.107 13.412 3.071 4.267 12.985 37.827

F13 28.186 25.230 13.675 3.263 4.528 12.889 11.843

F14 27.039 15.286 12.312 12.026 10.989 12.206 21.921

F15 8.413 6.382 2.331 1.406 0.968 2.211 2.726

F16 6.080 4.495 0.983 0.740 0.312 0.911 1.224

F17 6.240 4.504 1.017 0.762 0.331 0.947 1.290

F18 6.562 4.608 1.084 0.856 0.414 1.027 1.444

F19 9.443 6.186 2.421 1.785 1.328 2.296 3.366

F20 11.910 8.449 3.723 1.913 1.719 3.529 4.399



Appl. Sci. 2023, 13, 4157 18 of 25

Table 8. Cont.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

F21 17.979 10.459 6.707 5.602 5.251 6.713 10.894

F22 21.677 12.070 8.376 7.261 6.798 8.481 16.520

F23 27.239 14.630 24.862 9.742 9.256 11.081 21.001

3.6. Overall Discussion

To observe the performance of the newly proposed algorithm GSLEO-AEFA, proper
analyses and a set of various experiments were conducted. Considering the original AEFA
suffers from the insufficient diversification such powerful tools are added to overcome
this issue as well as by allowing the algorithm to escape from local optima and to find
solutions that are closer to the global optimum. By achieving this equilibrium between
exploration and exploitation, high solution quality is achieved. However, there may be
some limitations to consider. Since the proposed algorithm is a hybrid one and formed
by multiple methods, the computational time of the algorithm is slightly worse than the
other algorithms analyzed. It is because of the running each of the methods during the
optimization process, respectively. However, for the ones who consider the precise solution
quality, this limitation might be omitted. It is important to consider these factors carefully
and to tailor the used of these techniques to the specific problems being solved.

3.7. Engineering Problems

The application of metaheuristics to the solution of engineering problems is one
important area of research. In this section, the ability of GSLEO-AEFA to solve engineering
problems was evaluated. Four common engineering problems with low and high variables
from CLEC 2011 Real World Optimization Problems were used for this test [54]. The
evaluation is based on 30 independent runs with 30 populations and a maximum of 1000
iterations. For comparison, the best solution from each optimization algorithm was used.

3.7.1. Parameter Estimation for Frequency-Modulated (FM) Sound Waves

Frequency modulation is a complex multimodal problem. The parameter vector is
defined as at X = [a1, ω1, a2, ω2, a3, ω3] and the fitness function used in the analysis is the
sum of the square errors between the estimated wave and the target wave and is given as
follows:

F(
→
X) = ∑100

t=0(y(t)− y0(t))
2 (37)

where
y(t) = a1 · sin(ω1 · t · θ + a2 · sin(ω2 · t · θ + a3 · sin(ω3 · t · θ))) (38)

y0(t) = (1.0) · sin((5.0) · t · θ − (1.5) · sin((4.8) · t · θ + (2.0) · sin((4.9) · t · θ))) (39)

The minimum value that needs to be attained is 0. The parameters in the aforemen-
tioned equation are defined in the range [−6.4, 6.35] and θ = 2π/100.

Table 9 shows that GSLEO-AEFA discovered superior solution and PSO and DE
followed with competitive accuracy. In comparison to other optimizers, GSLEO-AEFA has
performed exceptionally well.

3.7.2. Lennard–Jones Potential Problem (LJ)

The Lennard–Jones potential energy minimization problem is a multi-modal optimiza-
tion problem that involves finding the minimum molecular potential energy of a molecular
cluster using the Lennard–Jones potential. The problem has an exponential number of
local minima, and the global minima often have structures based on Mackay icosahedrons.
The Lennard–Jones potential for N atoms is given by Equation (40), and the optimization
algorithm can be used to conform the molecular structure in a way that minimizes energy.
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To reduce the dimensionality of the problem, one approach is to fix an atom at the origin,
choose the second atom to lie on the positive X-axis, and the third atom to lie in the upper
half of the X-axis. For each additional atom, three variables (coordinates of the position of
the atom) are added to determine the potential energy of the cluster. The variables of the
problem have three components for three atoms, six components for four atoms, and so on.
The coordinates of each atom are restricted to certain ranges.

Table 9. Results of parameter estimation for frequency-modulated sound waves.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

x(1) 1.00 0.43 −1.00 1.00 −0.63 −1.06 −1.04
x(2) 5.00 0.15 −5.00 5.00 0.00 0.00 −5.02
x(3) −1.50 2.03 1.50 1.50 4.29 0.69 −1.36
x(4) 4.80 4.98 4.80 −4.80 4.87 0.00 −4.75
x(5) 2.00 0.83 −2.00 −2.00 0.18 −4.45 2.01
x(6) 4.90 −4.41 −4.90 4.90 0.08 −4.88 −4.90
f(x) 0 1.963 × 101 1.950 × 10−27 7.796 × 10−21 1.164 × 101 1.220 × 101 1.888

Lennard–Jones pair potential for N atoms is given as follows:

→
p i =

{→
x i,
→
y i,
→
z i

}
, i = 1, . . . , N (40)

VN(p) = ∑N−1
i=1 ∑N

j=i+1

(
r−12

ij − 2 · r−6
ij

)
(41)

where rij = ‖
→
p j −

→
p i‖2 with gradient

∇jVN(p) = −12 ∑N
i=1,i 6=j

(
r−14

ij − r−8
ij

)(→
p j −

→
p i

)
(42)

The first decision variable due to the second atom, i.e., x1 ∈ [0, 4], then the second and
third variables are such that x2 ∈ [0, 4] and x3 ∈ [0, π]. The coordinates xi for any other
atom is taken to be bound in the range;

[
−4− 1

4

[
i−4

3

]
, 4 + 1

4
i−4

3

]]
.

The performance results of GSLEO-AEFA and other optimization methods in resolving
the Lennard–Jones potential problem are shown in Table 10. The findings make it simple to
draw the conclusion that GSLEO-AEFA has superior performance when compared to other
algorithms and is capable of solving this issue with high-quality outcomes.

Table 10. Results Lennard–Jones Potential Problem.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

x(1) 0.673 1.338 0.000 0.319 0.551 0.000 2.140
x(2) 0.329 3.307 4.000 0.567 0.035 0.000 2.789
x(3) 0.847 2.115 3.142 1.947 0.745 0.000 1.473
x(4) 0.316 3.639 −4.000 −3.980 −0.237 1.184 0.508
x(5) −0.608 −3.723 −0.687 3.761 0.661 0.008 −0.682
x(6) 0.884 0.427 4.000 3.855 0.820 0.341 0.722
x(7) −0.292 0.706 −1.507 −3.970 −0.992 0.337 0.393
x(8) −0.419 1.807 −3.925 2.768 1.094 −1.074 0.265
x(9) −0.750 −3.380 −0.706 4.250 0.559 0.005 0.443
x(10) −0.533 −1.841 −1.260 −4.250 −0.219 −0.909 −1.221
x(11) 0.298 −2.964 −4.109 4.500 0.658 0.382 0.694
x(12) −0.148 −3.440 0.286 4.453 1.910 −4.500 −1.556
x(13) 0.359 2.205 −1.105 4.500 2.766 0.220 0.327
x(14) −0.092 2.806 −4.750 −3.053 0.004 0.575 −0.435
x(15) −0.019 1.921 −1.239 −1.506 −4.750 0.921 −0.238
x(16) −0.390 2.510 −3.925 −4.357 −0.384 0.172 −2.438
x(17) −0.681 2.646 −0.770 3.520 0.064 −0.396 0.519
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Table 10. Cont.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

x(18) 0.193 −2.276 5.000 5.000 0.109 0.901 −2.169
x(19) 0.601 0.835 −1.502 −4.099 0.002 0.314 0.090
x(20) −0.780 3.274 −4.848 5.202 −0.400 −4.879 −1.240
x(21) −0.879 1.261 −0.337 5.188 1.740 0.073 1.516
x(22) 0.596 −0.687 −3.449 −5.197 0.242 −0.085 0.888
x(23) −1.042 −0.199 −1.414 4.858 0.795 −0.164 −1.337
x(24) 0.065 3.430 4.400 4.681 −0.010 −0.999 0.042
x(25) −0.130 0.348 −0.642 −4.883 1.285 −1.179 −1.877
x(26) −1.369 3.231 −4.341 3.459 0.341 0.350 −0.091
x(27) −0.494 2.142 −0.456 4.257 0.277 0.044 −1.566
x(28) −0.289 0.692 −0.814 −3.372 −0.743 −0.659 1.224
x(29) 0.147 4.094 −3.390 5.390 0.003 −0.579 −0.373
x(30) 0.774 1.788 −0.224 4.311 1.361 0.296 0.015
f(x) −26.027 −7.072 −15.126 −10.615 −14.233 −11.513 −11.646

3.7.3. Tersoff Potential Function Minimization Problem (TPF)

Researchers have shown a lot of interest in the evaluation of inter atomic potentials
for covalent systems, notably for silicon. One such potential is the Tersoff potential, which
controls the interaction of silicon atoms with strong covalent bonding [54]. Two parame-
terizations of silicon have been provided by Tersoff and are known as Sc (B) and Sc (C).
According to the Tersoff formulation, the binding energy is expressed as a sum over atomic
sites in the form,

Ei =
1
2 ∑j 6=i fc

(
rij
)(

VR
(
rij
)
− BijVA

(
rij
))

(43)

where VR is a repulsion term, VA is an attraction term, fc
(
rij
)

is a switching function,
and Bij is a many-body term that relies on the locations of atoms i and j as well as atom
i’s neighbors.

Bij =
(

1 + γn1 ξn1
ij

)−1/2n1
(44)

n1 and γ are standard fitted parameters. For i and j the term ξn1
ij is given as,

ξij = ∑k 6=i fc
(
rij
)

g
(

θijk

)
exp

(
λ3

3
(
rij − rik

)3
)

(45)

The bond angle between ij and ik is denoted as θijk which is given as,

g
(

θijk

)
= 1 + c2/d2 − c2/

(
d2 +

(
h− cos

(
θijk

))2
)

(46)

λ3, c, h and d are known as fitted terms. From Equation (41), VR and VA are ex-
pressed as,

VR
(
rij
)
= Ae−λ1rij (47)

VA
(
rij
)
= Be−λ2rij (48)

Expressed as fitted parameters are A, B, λ1 and λ2. In Equation (43), the switching
function fc

(
rij
)

is expressed as,

fc
(
rij
)
=


1

1
2 −

1
2 sin

[
π(rij−R)

D

]
0

i f rij < R− D
i f R− D < rij < R + D

i f rij ≥ R + D
(49)

We must determine the energy of each atom in order to determine the minimal
potential energy for atoms. Each atom, let us say atom i has a unique potential energy, Ei,
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which is determined by Equation (43). Therefore, in order to compute Equation (43), which
requires the computation of Equations (44)–(49) for each neighbor of that atom, to know
the potential energy of a single atom.

Similar to the Lennard–Jones potential problem, the first decision variable due to the
second atom, i.e., x1 ∈ [0, 4], then the second and third variables are such that x2 ∈ [0, 4]
and x3 ∈ [0, π]. The coordinates xi for any other atom is taken to be bound in the range;[
−4− 1

4

[
i−4

3

]
, 4 + 1

4
i−4

3

]]
.

Table 11 of the test results for the TPF demonstrates that GSLEO-AEFA outperformed
other optimizers and was able to offer a significantly superior solution. Additionally, it has
performed effectively as engineering issues have become more constrained.

Table 11. Results of Tersoff Potential Function Minimization Problem.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

x(1) 0.000 2.497 1.984 3.427 1.135 4.000 1.613
x(2) 4.000 1.998 2.758 3.992 3.908 0.000 0.041
x(3) 3.142 2.318 2.274 0.482 0.544 0.000 1.485
x(4) −1.000 3.773 −0.367 −1.000 −1.000 −0.643 2.922
x(5) −1.000 −0.847 2.762 −0.564 2.594 1.112 1.791
x(6) 3.708 2.595 2.675 1.612 1.478 0.203 3.856
x(7) 2.029 1.302 1.293 −0.282 0.650 −0.004 2.913
x(8) 3.931 4.107 −0.081 4.250 −0.336 4.250 4.246
x(9) 4.250 1.767 3.521 −1.000 1.907 0.869 −0.678

x(10) 4.250 1.168 2.749 4.250 3.417 0.378 2.498
x(11) 0.988 3.042 4.337 2.937 −0.068 −1.000 1.256
x(12) −1.000 −0.259 0.648 4.500 0.543 −0.008 −0.216
x(13) −0.252 3.947 2.291 4.500 0.733 2.123 2.467
x(14) 0.925 −0.869 −0.738 0.681 3.206 4.536 3.973
x(15) 4.750 0.265 1.450 3.802 2.760 0.635 3.515
x(16) 1.140 3.452 3.454 0.258 4.672 1.995 0.205
x(17) −0.914 3.721 −1.000 1.553 −1.000 0.314 0.707
x(18) 4.581 1.334 3.504 2.542 −1.000 1.082 −0.223
x(19) 5.000 2.934 0.756 1.062 −0.443 0.957 1.043
x(20) −1.000 4.288 4.810 0.250 5.148 0.865 2.234
x(21) −0.085 −0.324 1.972 1.091 2.056 4.665 1.313
x(22) 0.438 1.828 4.238 −1.000 5.167 1.721 0.115
x(23) 5.500 −0.530 0.585 1.432 1.281 3.192 −0.580
x(24) 4.847 −0.955 1.934 0.299 −0.048 −0.799 4.081
x(25) 1.548 5.123 3.034 3.795 −0.393 −0.054 3.977
x(26) 5.689 1.252 4.830 2.514 −1.000 −0.474 2.986
x(27) 2.827 2.750 2.998 2.063 −0.757 2.376 1.977
x(28) −0.686 4.798 1.078 1.325 5.491 −1.000 4.752
x(29) −0.972 4.188 3.857 2.934 −0.865 −0.077 3.163
x(30) 6.000 4.687 4.240 −1.000 1.094 4.160 4.110
f(x) −34.108 −14.888 −30.559 −24.606 −31.065 −20.620 −31.737

3.7.4. Antenna Optimization Problem

Zhang et al. suggested a validated a benchmark test suite for Antenna S-parameter
optimization [55]. In the test suite there are unimodal, multimodal, and compositional
functions. Each of these functions matches a typical landscape of electromagnetic simulated
antenna problems. For this analysis two functions were chosen which can approximate
the s-parameter optimization function behavior of two different antennas. Equations (50)
and (51) model the single antenna and multi-antenna problems, respectively. Function in
Equation (50) is continuous and separable and the landscape has a rose shape which is
similar to the patterns of the dual band antenna. Function in Equation (51) is continuous
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non-differentiable and non-separable and its landscape is similar to the reflection pattern
of the (multiple input–multiple output) MIMO antenna.

s1(x) = 20 log

(
2

(
∑n

i=1

∣∣∣∣(sin
( xi

8

))2
∣∣∣∣+ n

∏
i=1

∣∣∣sin
( xi

8

)∣∣∣)+ 1

)
(50)

s2(x) = 100
√∣∣∣x2 + 1− 0.01(x1 − 10)2

∣∣∣+ 0.01|x1|

+20 log
(

0.01(∑n
i=1|xi|)2(sin(0.8x1) + 2)4 + 1

) (51)

We evaluated GSLEO-AEFA and its counterpart algorithms with a population size
of 30, iteration of 500 and a dimension set to 8, as recommended by Zhang et al. [55], by
considering that the s-parameters of most antennas are around 10. The performance of each
algorithm after 30 independent runs in Table 11, using average and standard deviation
metrics are recorded. Our analysis indicates that GSLEO-AEFA provided the best results
for both single-antenna and multi-antenna problems by demonstrating its effectiveness in
solving complex optimization problems in this domain, as seen in Table 12.

Table 12. Results of antenna S-parameter optimization problem, significant values are in bold.

GSLEO-AEFA AEFA PSO DE JAYA SCA CS

s1 AVG 0.000 1.351 1.083 × 10−2 1.603 5.448 1.370 × 101 5.477
STD 0.000 2.469 × 10−1 5.946 × 10−4 2.752 × 10−1 4.379 1.915 5.862 × 10−1

s2 AVG 8.611 × 10−7 6.839 × 101 7.255 × 101 3.407 × 101 9.047 × 101 8.684 × 101 8.040 × 101

STD 1.756 × 10−6 9.564 4.589 5.161 1.687 × 10+1 1.192 × 101 3.057

To observe the performance of the newly proposed algorithm GSLEO-AEFA, proper
analyses and a set of various experiments were conducted. Considering the original AEFA
suffers from the insufficient diversification such powerful tools are added to overcome
this issue as well as by allowing the algorithm to escape from local optima and to find
solutions that are closer to the global optimum. By achieving this equilibrium between
exploration and exploitation, high solution quality is achieved. However, there may be
some limitations to consider. Since the proposed algorithm is a hybrid one and formed by
multiple methods, the computational time of the algorithm is slightly worse than the other
algorithms analyzed. It is because of running each of the methods during the optimization
process, respectively. However, for the ones who consider the precise solution quality, this
limitation might be omitted. It is important to consider these factors carefully and to tailor
the used of these techniques to the specific problems being solved.

4. Conclusions

The performance of the proposed methodology GSLEO-AEFA with its counterpart
algorithms were tested on 23 benchmark functions by conducting overall effectiveness,
convergence analysis, Friedman and Wilcoxon rank-sum statistical tests as well as compu-
tational analysis. Even in the varying dimension sizes, GSLEO-AEFA has achieved the best
optimization accuracy among the algorithms tested.

The performance of GSLEO-AEFA was then validated on real engineering design
problems including antenna optimization. In here, it has been outlined that the success of
the proposed algorithm was maintained at the same level for all of the design problems.
The proper use of local escaping operator (LEO), Gaussian mutation (GM) and specular
reflection learning (SRL) techniques in the algorithm GSLEO-AEFA provides a better
balance in exploration and exploitation by overcoming not only the original algorithm
which is derived from but the other algorithms used in the comparison.

Although its performance is quite satisfactory, it can be acknowledged that the com-
putational time is not always satisfactory. This is mainly caused because of the structure
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of the GSLEO-AEFA, since it was generated by having three individual methods as well
as AEFA. However, researchers may debate for a fine balance between the optimization
accuracy and the computational time for the problem to be solved.
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