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Abstract: Computer numerically controlled (CNC) milling has been one of the most commonly used
manufacturing processes for the performance of multiple operations, from tiny integrated circuits
to heavy-duty mining machine gearboxes. It is a well-known machining process that offers close
tolerances and repeated operations. However, the choice of machining parameters to achieve a desired
part’s surface roughness (SR) remains a challenge. In the present study, artificial neural network
(ANN) and adaptive network-based fuzzy inference system (ANFIS) approaches have been used
to predict and monitor the surface roughness of aluminum Al6061 machined blocks. Furthermore,
both models have been hybridized with genetic algorithm (GA) and particle swarm optimization
(PSO) to investigate the potential enhancement in the prediction performance of the hybrid approach.
The results show that factors such as the population size, the acceleration values, the choice of
membership functions, and the number of neurons and layers significantly influence the prediction
performance of the proposed models. Through a parametric analysis, this study demonstrates how
the configuration of the models could affect the prediction performance. While exhibiting the impact
of models’ hyperparameter combination on the prediction ability, this study provides insight into the
development of suitable prediction models and the potential of soft computing techniques to predict
the surface roughness of aluminum Al6061 blocks on CNC machines.

Keywords: artificial neural network (ANN); adaptive network-based fuzzy inference system (ANFIS);
genetic algorithm (GA); particle swarm optimization (PSO); ANN-PSO; ANN-GA; ANFIS-PSO;
ANFIS-GA; aluminum Al6061; CNC machine

1. Introduction

Surface roughness is a surface irregularity with smaller intervals within the crest and
bottom, unlike waviness. Roughness is a collection of true surface harshness, traditionally
interpreted as a deviation of the measured form between a reference and the bounds of a
length when waviness is ignored [1]. The true surface is referred to as the surface curbing
the solid object configuration. It is a separate layer from the environment. The surface
roughness profile is shown in Figure 1, where yi is the vertical distance from the mean line
to a given data point along the profile line and l is the mean width of the profile line.

The surface roughness (SR) is expressed as a value in a mean arithmetical deviation Ra
(Equation (1)) of the profile from the centerline average and Rmax (also called Rt or Rtotal),
which is the height from the lowest point to the highest peak. It is expressed mathematically
as follows:

Ra =
1
L

∫ L

0
|y(x)|dx (1)
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ponents significantly affects friction, wear, and component life. When manufacturing a 
workpiece, caution is required to set the surface roughness within the recommended 
range in terms of Ra and Rt. Two common methods are used to measure the surface rough-
ness, namely the contact and non-contact methods. The contact method includes a stylus 
profilometer and a white light interferometer [2], while the non-contact method includes 
the use of a Focus Variation Microscope [3]. In the present study, the experimental results 
were measured using a Mitutoyo surface roughness tester and Press o-firm [4]. 

 
Figure 1. Surface roughness profile: yi is the vertical distance from the mean line to a given data 
point along the profile line; l is the mean width of the profile line. 

As for milling machining, several factors may affect the surface roughness. These in-
clude, but are not limited to, the following: 
• Cutting parameters: feed rate and spindle speed; 
• Depth of cut: radial and axial depths; 
• Tool configuration: insert geometry, insert materials, tool length; 
• Machining condition: method of lubrication; 
• The rigidity of the machine, tool, and workpiece; 
• and the workpiece’s raw material. 

Researchers have employed one or a combination of the above factors to study their 
influence on the surface roughness. SI Wang et al. [5] considered the effect of the cutting 
parameters, tool geometry, and tool interference, as well as the tool–workpiece relative 
movement, on surface generation to devise a 3D surface topography simulation model for 
ultra-precision raster milling processes. 

In order to achieve an optimum or at least more acceptable machining result that 
meets a work requirement, several approaches have been proposed to predict the surface 
roughness from selected variables that influence the surface texture of a workpiece in the 
end-milling machining process. Trial-and-error, empirical, and analytical methods were 
the earliest methodologies to predict surface roughness. Researchers used empirical meth-
ods to test a set of findings that were supported by experimental evidence. Analytical ap-
proaches are frequently used to solve equations for specific parameter circumstances [6]. 
However, empirical models are frequently developed by regression analysis of practical 
experiments [7]. 

Okokpujie and Okonkwo [4] explored the effects of four cutting parameters on the 
machined surface of Al 6061 alloy under minimum quantity lubricant (MQL) conditions. 

Figure 1. Surface roughness profile: yi is the vertical distance from the mean line to a given data
point along the profile line; l is the mean width of the profile line.

where y represents the absolute values of distances between profile points and the
centerline along a length L of the measured surface. The surface roughness is at the center
of the interaction between an object and elements in its proximity. For this reason, its value
is of major concern in the manufacturing process. The surface finish in contact with other
components significantly affects friction, wear, and component life. When manufacturing
a workpiece, caution is required to set the surface roughness within the recommended
range in terms of Ra and Rt. Two common methods are used to measure the surface
roughness, namely the contact and non-contact methods. The contact method includes
a stylus profilometer and a white light interferometer [2], while the non-contact method
includes the use of a Focus Variation Microscope [3]. In the present study, the experimental
results were measured using a Mitutoyo surface roughness tester and Press o-firm [4].

As for milling machining, several factors may affect the surface roughness. These
include, but are not limited to, the following:

• Cutting parameters: feed rate and spindle speed;
• Depth of cut: radial and axial depths;
• Tool configuration: insert geometry, insert materials, tool length;
• Machining condition: method of lubrication;
• The rigidity of the machine, tool, and workpiece;
• and the workpiece’s raw material.

Researchers have employed one or a combination of the above factors to study their
influence on the surface roughness. SI Wang et al. [5] considered the effect of the cutting
parameters, tool geometry, and tool interference, as well as the tool–workpiece relative
movement, on surface generation to devise a 3D surface topography simulation model for
ultra-precision raster milling processes.

In order to achieve an optimum or at least more acceptable machining result that
meets a work requirement, several approaches have been proposed to predict the surface
roughness from selected variables that influence the surface texture of a workpiece in
the end-milling machining process. Trial-and-error, empirical, and analytical methods
were the earliest methodologies to predict surface roughness. Researchers used empirical
methods to test a set of findings that were supported by experimental evidence. Ana-
lytical approaches are frequently used to solve equations for specific parameter circum-
stances [6]. However, empirical models are frequently developed by regression analysis of
practical experiments [7].

Okokpujie and Okonkwo [4] explored the effects of four cutting parameters on the
machined surface of Al 6061 alloy under minimum quantity lubricant (MQL) conditions.
The study used a numerical statistical method. The surface roughness was predicted with
accuracy of 89.5%. Furthermore, their study reveals a link between input factors (spindle
rotational speed, axial depth of cut, radial depth of cut, and feed rate) and output variables
(surface roughness obtained by CNC milling an alloy AI6061).
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Although empirical and analytical techniques are suitable for the modeling and the
analysis of the surface roughness, they have the following limitations [8,9]:

• Empirical and analytical approaches are time-consuming, especially when a large
amount of data is required for analysis;

• Because the amount of data used for the analysis is significant, building models using
these traditional approaches is relatively more challenging;

• Because there are so many variables to consider, the experiment is susceptible to failure
to generate the expected findings.

ANN is a computing system composed of a collection of connected nodes emulating
neurons in the human brain and capable of solving problems such as function approxi-
mation, classification, and time-series prediction. The ANN approach has lately gained
researchers’ interest in addressing and modeling complicated issues and dealing with
nonlinearity between parameters in various fields. It is a multilayer network in which
every neuron in one layer is fully linked to every neuron in the layer above it. Figure 2
depicts a typical ANN arrangement.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 27 
 

The study used a numerical statistical method. The surface roughness was predicted with 
accuracy of 89.5%. Furthermore, their study reveals a link between input factors (spindle 
rotational speed, axial depth of cut, radial depth of cut, and feed rate) and output variables 
(surface roughness obtained by CNC milling an alloy AI6061). 

Although empirical and analytical techniques are suitable for the modeling and the 
analysis of the surface roughness, they have the following limitations [8,9]: 
• Empirical and analytical approaches are time-consuming, especially when a large 

amount of data is required for analysis; 
• Because the amount of data used for the analysis is significant, building models using 

these traditional approaches is relatively more challenging; 
• Because there are so many variables to consider, the experiment is susceptible to fail-

ure to generate the expected findings. 
ANN is a computing system composed of a collection of connected nodes emulating 

neurons in the human brain and capable of solving problems such as function approxi-
mation, classification, and time-series prediction. The ANN approach has lately gained 
researchers’ interest in addressing and modeling complicated issues and dealing with 
nonlinearity between parameters in various fields. It is a multilayer network in which 
every neuron in one layer is fully linked to every neuron in the layer above it. Figure 2 
depicts a typical ANN arrangement. 

 
Figure 2. Artificial neural network structure. 

Various researchers have used the ANN approach to predict the surface roughness 
of machined components: Cem Boga and Tahsin Koroglu [10] investigated the impact of 
machining parameters on the surface roughness of a high-strength carbon fiber composite 
plate using ANN. The analysis showed that the cutting tool and the feed rate have a 
stronger impact on the surface roughness than the spindle speed. As for ANN settings, 
the authors chose feedforward backpropagation as the model architecture because of its 
popular application. Deshpande et al. [11] used the ANN approach to analyze the turning 
operation and predict the surface roughness of an Inconel 718. Data were obtained from 
the machining of the Inconel 718 using cryogenically treated and untreated inserts. The 
surface roughness was predicted with 98% accuracy. According to the study, the ANN 
model is more reliable than the regression-based models in predicting Inconel 718’s sur-
face roughness in the turning operation. 

The ANN parameters can be altered to allow better combinations for the model’s im-
provement. 

S. Karabulut [12] used uncoated carbide composites to produce AA7039/Al2O3 metal 
matrix composites and examined the impact of milling settings on the surface roughness 

Figure 2. Artificial neural network structure.

Various researchers have used the ANN approach to predict the surface roughness
of machined components: Cem Boga and Tahsin Koroglu [10] investigated the impact of
machining parameters on the surface roughness of a high-strength carbon fiber composite
plate using ANN. The analysis showed that the cutting tool and the feed rate have a
stronger impact on the surface roughness than the spindle speed. As for ANN settings,
the authors chose feedforward backpropagation as the model architecture because of its
popular application. Deshpande et al. [11] used the ANN approach to analyze the turning
operation and predict the surface roughness of an Inconel 718. Data were obtained from
the machining of the Inconel 718 using cryogenically treated and untreated inserts. The
surface roughness was predicted with 98% accuracy. According to the study, the ANN
model is more reliable than the regression-based models in predicting Inconel 718’s surface
roughness in the turning operation.

The ANN parameters can be altered to allow better combinations for the
model’s improvement.

S. Karabulut [12] used uncoated carbide composites to produce AA7039/Al2O3 metal
matrix composites and examined the impact of milling settings on the surface rough-
ness and cutting force using a neural network and the Taguchi method. The Levenberg–
Marquardt and the backpropagation algorithms were used to achieve better results. Further-
more, D. Baptista and Batista D. [13] pointed out that the Levenberg–Marquardt method,
which converges more frequently and speeds up training, is acknowledged as having
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substantially superior performance than backpropagation, which is likely the most widely
used ANN algorithm. S.O. Sada and S.C. Ikpeseni [14] compared the performance of
ANN and ANFIS in predicting the machining response (metal removal and tool wear).
They conducted hyperparametric evaluation by modifying learning algorithms (Levenberg–
Marquardt, scalar conjugate gradient, and resilient backpropagation) and activation func-
tions (logsig, tangsig, and purelin), and a range of neurons (2–20) were assessed to find the
most effective one to perform training, validation, and testing. According to Haykin [15],
the complexity of the system being modeled determines how many neurons are needed in
the hidden layer. A. Yeganefar et al. [16] predicted and optimized the surface roughness
and cutting forces in the slot milling of aluminum alloy 7075-T6 using ANN and a multi-
objective genetic algorithm. Machining parameters included the cutting speed, feed per
tooth, depth of cut, and tool type. Hyperparameters were fine-tuned and the Levenberg–
Marquardt and RMSprop algorithms were chosen to train the model. Furthermore, the
authors considered one or two hidden layers, as, if more are used, this can lead to a high
prediction error.

Although ANN is more efficient and accurate than mathematical models, numerous
research works have highlighted ANN’s limitations, such as becoming trapped in local vertices
and showing constraints to cross-peaks in the error function range. Shain M.A. et al. [17]
pointed out that ANN has limitations in geotechnical domains. The inability to extract
information from trained neural networks and forecast outside the range of training data
are two of these constraints. Several researchers have proposed ANN hybridization with
other optimization models to enhance the computing ability of ANN [18].

The adaptive network-based fuzzy inference system (ANFIS) is a neural network
based on the Takagi–Sugeno fuzzy inference system. It offers the possibility to harness the
benefits of pairing neural networks and fuzzy logic principles in a single structure, since
it incorporates both. Its inference system comprises a collection of fuzzy IF-THEN rules
with the capacity to approximate nonlinear equations through learning and forecasting
disordered time series. Various types of fuzzy inference systems have been identified in the
literature. They may be divided into three types, described in detail by Jang [19]. Figure 3
depicts a two-input type 3 fuzzy inference system construction with five layers separated.
Input variables are represented by x and y; layer 1 has square nodes, which are labeled A
for input x and B for input y; layer 2 has circled nodes, which are labeled Π; layer 3 has
circled nodes, which are labeled N; layer 4 has square nodes, which are labeled 1–9; and
layer 5, the sum of all incoming signals, has a circled node that is labeled Σ.
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Many researchers have studied the prediction of surface roughness using the ANFIS
model with satisfactory results.

The ANFIS model has been used as a stand-alone or hybrid in CNC turning operations
to forecast surface roughness [20–22]. T. Singh, P. Kumar, and J.P. Misra [23] employed
ANFIS modeling to predict the surface roughness by using the Wire Electric Discharge
Machining (WEDM) manufacturing method to machine the aluminum alloy AA6063. They
considered four input machining variables: pulse on time (Ton), pulse off time (Toff), peak
current (Ip), and servo voltage (Vs). Utilizing a scanning electron microscope (SEM), the
surface integrity appearance was examined. Five alternative Ton, Toff, Ip, and Vs input
parameters were used to machine the AA6063. The ANFIS was created to outperform
the trapezoidal, gbell, and Gaussian membership functions with the lowest performance
characteristic of the triangle membership function. M.A. Kumar [24] collected data using a
CNC lathe machine by turning a stork of 50 aluminum parts with varying independent
parameters: the speed, the feed, and the depth of cut. Then, the surface roughness of
each part was experimentally measured. Fifty data were collected, from which 40 data
were used to train the ANFIS model on the Matlab interface, while 10 data were used for
testing by weighing up the performance of the bell and triangular membership functions.
Furthermore, advanced regression analysis was employed in a python environment to vali-
date the predicted outcome. As result, the ANFIS model using a bell-shaped membership
function outperformed the others, with higher accuracy and a smaller error. Unlike the
ANN model, the hidden layers are decided by an FIS in the ANFIS model, thus solving
the well-known problem of finding the hidden layer in the ANN system to increase its
prediction abilities. Despite the advantages of the ANFIS model, it has some drawbacks.
Sallee et al. [25] pointed out that the burden of complexity and computing costs are two
drawbacks of ANFIS that prevent it from being used in issues with extensive inputs. In
order to address some of the limitations associated with ANN and ANFIS, algorithms such
as genetic algorithm (GA) and particle swarm optimization (PSO) are used to train ANN
and ANFIS models.

GA and PSO are optimization methods that use a fitness function to assess the popula-
tion arbitrarily generated. They all use homogenous population subgrouping to enhance
the quality of the solution by retarding the early clustering of the solution. GA is an
approach to addressing the restricted and unrestricted optimization issues found in a bio-
logically inspired natural process. The model alters a population of candidate solutions on
a regular basis. GA arbitrarily picks people from the present population to serve as parents
for the following generation’s offspring during every stage. The population mutates toward
an ideal solution throughout generations. PSO, on the other hand, is a computing approach
to solving problems by iteratively attempting to improve a candidate solution (particle)
in terms of a quality metric. It addresses the problem by generating a population (swarm)
of potential solutions, referred to as particles, and shifting them about in the search space
using a simple equation based on their position and velocity. PSO particles auto-update
using their internal velocity rather than crossover and mutation genetics.

Despite the ANN’s high success rate in handling complicated problems,
Rukhaiyar et al. [26] pointed out the model’s flaws, such as its sluggish learning rate.
The study revealed that the PSO algorithm improves the ANN model’s performance. As
a result, the PSO-ANN hybrid model was developed to estimate the slope’s safety factor
using data obtained from 85 natural slope sections. Gopan et al. [27] used a predictive
optimization algorithm combining ANN and GA. The experimental process was carried
out with a silicon carbide grinding wheel on a cylindrical grinding machine. Three ma-
chining variables were chosen with three distinct ranges of speed, feed, and depth of cut.
The authors used both a 3-5-1 ANN-type stand-alone and a hybrid ANN-GA model to
forecast the surface roughness in a grinding operation. The results show that the ANN-GA
hybrid model performs better than the ANN stand-alone model. The findings from this
study demonstrate that the proposed technique might predict the grinding parameters and
optimize them. ANN and GA have been employed by Hind H. Abdulridha [28] to predict



Appl. Sci. 2023, 13, 4147 6 of 28

the surface roughness of a mill-machined mild steel alloy. For GA, the author randomly
chose the population sizes of 40, 60, and 80 at 60 iterations with a crossover percentage of
0.75 and mutation rate of 0.01. As for ANN, the author selected 2 and 10 as the numbers of
hidden layers and neurons, respectively. The author also used Levenberg–Marquardt as a
training function.

After exploring and studying much literature, a point to note is that researchers
frequently employ soft computing models for modeling purposes in a variety of fields,
including machining, but there are currently no established guidelines that may be used as
a foundation for this study to create the ideal model.

In the present study, several models, ANN, ANFIS, ANN-PSO, ANN-GA, ANFIS-
PSO, and ANFIS-GA, were developed to analyze the prediction of the surface roughness
of aluminum Al6061. This paper proposes an approach for the prediction of surface
roughness from machining parameters. Parametric analysis has been performed to fine-
tune the variables within each model. Variables include the population size, the number
of neurons, the membership functions, and the acceleration factors. The choice of these
hyperparameters in the next section is based on their recurrence and recommendations
in more pieces of literature, as described above, as well as on trial and error. A common
practice in many predictions shows that they can be modified to improve the model’s
performance. Thiede L.A. and Parlitz U. [29] pointed out that tuning the hyperparameters
becomes a crucial step in machine learning approaches because the default setting does not
ensure the performance of the models. To find the ideal configuration of hyperparameters,
a variety of tuning techniques, including manual search and trial and error, have been
created. However, they still have to overcome these challenges. This is the particularity
of the present study, where an extended number of models and hyperparameters have
been considered, which brings to the study a variety of combinations that the best result
is dependent on. This procedure has revealed the impact of sets of variables on the ways
in which models perform. A once-for-all run of a model does not exploit its full potential
to explore all possibilities to achieve the best result until the variables within the model
are finely adjusted and systematically combined. Researchers and practitioners should
benefit from the presentation of each strategy, together with its benefits and drawbacks, by
obtaining concise yet complete information to assist them to choose the technique that best
meets their needs and unique circumstances. The contribution of the present paper is to
develop and analyze six different machine learning approaches and investigate how the
hyperparameters affect the prediction performance of Al6061’s surface roughness. This is
justified by the fact that the robustness of machine learning prediction is closely related
to the applications and the problems under investigation [30]. Details of the parameters
and the architecture considered in the formulation of the models have been disclosed to
provide clarity on the effect of the models’ configuration.

2. Materials and Methods

Aluminum is one of the most important metals used in various industries and products,
such as appliances, aviation, automotives, etc. [31]. Its chemical and mechanical properties
include high ductility, high malleability, high corrosion resistance, a highly reflective
surface, a low density, and its ability to be alloyed with other materials, such as zinc, copper,
and magnesium. Hence, the prediction of the surface finishing would assist engineers in
identifying suitable settings based on the applications. Al6061 is aluminum alloyed with
magnesium and silicon as the main constituents, precipitated and hardened.

In order to investigate the link between input variable factors that identify the ma-
chine setup and output achievement or surface roughness, 30 tests were conducted. The
training and testing datasets came from full-scale datasets that were made accessible and
documented in the paper by I. P. Okokpujie et al. [32]. In this experiment, AL6061 material
was milled using a variety of cutting dimensions and axial depths of cut, and the Press
o-firm Mitutoyo surface roughness tester was employed to measure each testing result.
The measurements of the surface roughness were performed 3 times and the average
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was taken for all 30 samples This study employed the response surface methodology to
design the template used for the experiment, and, in this design, there is room for the
repeatability of the samples, which permits a good optimization analysis. This study uses
the response surface methodology (RSM) and the least square approximation approach to
predict the surface roughness for the end-milling of an aluminum alloy machining process.
The influence of numerous factors on surface roughness was examined using ANOVA, and
the accuracy of the RSM forecast method was compared to that of the least square approxi-
mation forecast method. For illustration, Figure 4 shows two of 30 experimental samples of
surface aluminum blocks machined at two different input settings. The 30 experimental
data corresponding to the testing configurations are shown in Table 1.

Table 1. Experimental data.

# Spindle Speed
(rpm)

Feed Rate
(mm/min)

Axial Depth
(mm)

Radial Depth
(mm)

1 1500 150 25 2

2 2500 150 25 2

3 2500 300 25 1

4 1500 300 15 2

5 1500 150 15 2

6 2000 200 20 2.5

7 1500 150 15 1

8 2000 200 20 1.5

9 1500 150 25 1

10 3000 200 20 1.5

11 2000 500 20 1.5

12 2500 300 25 2

13 2000 100 20 1.5

14 2500 300 15 1

15 2000 200 30 1.5

16 2000 200 20 0.5

17 2000 200 20 1.5

18 2500 150 15 2

19 2500 150 15 1

20 2000 200 20 1.5

21 1000 200 20 1.5

22 2500 300 15 2

23 1500 300 25 2

24 2000 200 10 1.5

25 2000 200 20 1.5

26 1500 300 15 1

27 1500 300 25 1

28 2500 150 25 1

29 2000 200 20 1.5

30 2000 200 20 1.5
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mm/min, radial depth 1.5 mm, and axial depth 20 mm); (b) machine configuration 13: Ra = 0.5 µm 
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(mm) 

Radial Depth 
(mm) 

1 1500 150 25 2 
2 2500 150 25 2 
3 2500 300 25 1 
4 1500 300 15 2 
5 1500 150 15 2 
6 2000 200 20 2.5 
7 1500 150 15 1 
8 2000 200 20 1.5 
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Figure 4. (a): Aluminum blocks—machine configuration 11: Ra = 1.16 µm (speed 2000 rpm,
feed 500 mm/min, radial depth 1.5 mm, and axial depth 20 mm); (b) machine configuration 13:
Ra = 0.5 µm (speed 2000 rpm, feed 100 mm/ min, radial depth 1.5 mm, and axial depth 20 mm).

In the present paper, the surface roughness prediction has been performed using
6 modeling approaches: ANN, ANFIS, ANN-PSO, ANN-GA, ANFIS-PSO, and ANFIS-GA.
The data have been obtained from a separate study conducted by I. Okokpujie et al. [32]. The
mathematical expression and mathematical models (least square approximation method
and response surface methodology) have been developed to predict the surface roughness
on aluminum block Al6061 alloys. These AI6061 blocks were machined on an end-milling
CNC using a high-speed stainless-steel tool and minimum quantity lubrication, with results
gauged using a Mitutoyo surface roughness tester and a Press o-film. This experimental
study used the spindle speed, feed rate, cutting axial depth, and radial depth as controllable
variables to forecast the surface finish. The obtained data have been employed to train and
validate the 6 models developed using ready-made artificial intelligence models on the
Matlab interface. The 6 emerging results derived from the models were compared. The
best model has been considered to predict the surface roughness. Parametric analysis was
performed to identify the best model layout for the system under consideration through
the investigation of several configurations.

2.1. ANN Models

Experimental data have been used to train the ANN model and parametric analysis
has been performed when varying and combining the following parameters and factors:

The network type is feedforward backpropagation;
The training function is Levenberg–Marquardt;
Three successive numbers of layers were used, namely 2, 3, and 4;
Three numbers of neurons were used, namely 10, 11, and 12.

A sigmoid function, a special tool of the logistic function to comprehend how a neural
network learns to solve difficult problems, is shown in Equation (2). It is employed as an
activation function in ANN. It is applied to the weighted sum of inputs in a layer and the
outcome is used as input for the following layer. A neuron that uses this S-shaped function
is called a sigmoid unit. It changes the model’s input variables into values between 0 and
1. It makes it simple for the model to expand to a wide range of data. The variable x is
calculated using Equations (3) and (4).

f(x) =
1

1 + exp(−x)
(2)

x =
m

∑
i=1

wjiui +∅iwith j = 1 to n (3)
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x =
m

∑
j=1

wkjuj +∅kwith k = 1 to i (4)

where m represents the number of input nodes; n represents the number of hidden nodes; i
represents the number of output nodes; u represents the input node values; v represents
the hidden node values; w is the synoptic weight, and ø is a threshold.

2.2. ANFIS Models

Experimental data have been used to train the ANFIS model, and parametric analysis
has been performed when varying the following membership functions:

Four membership function shapes: triangular, trapezoidal, generalized bell, and Gaussian;
Two fuzzy inference system (FIS) generators: grid partition and sub-clustering;
Two optimization methods: hybrid and backpropagation.

Equations (5)–(8) briefly summarize the equations related to the membership func-
tions considered.

• Triangular membership function (trimf): This is the most basic of various shapes.
Three variables are used to determine its three points—a and c for the feet, and b for
the higher vertex—as shown in Equations (5)–(8).

Triangular(x; a; b; c) = max(min
(

x− a
b− a

)
, 1,

(
c− x
c− d

)
, 0) (5)

• Trapezoidal membership function (Trapmf): Its shape is defined by four scalar param-
eters: a and b for the feet; c and d for the sides.

Trapezoidal(x; a; b; c; d) = max(min
(

x− a
b− a

)
, 1,
(

d− x
d− c

)
, 0 (6)

• Generalized bell-shaped membership function (Gbellmf): This is a bell-assimilated
shape defined by three parameters: the curve width a, an integer b, and the center of
the curve.

Bell(x; a; b; c) =
1

1 +
∣∣ x−c

a

∣∣2b (7)

• Gaussian membership function (Gaussmf): Unlike the above ones, the Gaussian is
defined by two parameters, the curve center c and the curve width, as illustrated in
Equation (4).

Gaussian(x; c; σ) = e−
1( x−c

σ )
2

2 (8)

c1 and c2 are acceleration factors;
r1 and r2 are two random numbers ranging between 0 and 1;
w is an initial factor;
The initial population (swarm size) of size N and dimension D is given by X = [X1, X2,

. . . , XN]T, with ‘T’ being the transpose operator;
Individual particle Xp, with p = 1, 2, . . . , N, is defined as Xp = [Xp,1, Xp,2, . . . , Xp,D];
The initial velocity of the population is defined as V = [V1, V2, . . . , VP]T;
The velocity of each particle Vp with p = 1, 2, . . . , N is defined as Vp = [Vp,1, Vp,2, . . . ,

Vp,D]; the index p varies from 1 to N, whereas the index q varies from 1 to D.

2.3. ANN-PSO Model

Experimental data have been used to train the hybrid ANN-PSO model, and paramet-
ric analysis has been performed by adjusting the following PSO factors:
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Swarm size population values: 10, 20, 50, 100, 200, and 400;
Number of neurons: 5, 6, 7, 8, 9, and 10;
Acceleration factors c1: 1.0, 1.5, 2.0, 2.25, 2.5;
Acceleration factors c2: 2.0, 2.25, 2.5, 2.75, 3.0.

The ANN model follows the sigmoid function described in Equation (2). As for the
PSO algorithm, set to optimize the ANN, Equations (9) and (10) describe the new positions
of each particle in the search space. This new position is defined by the personal experience
(Pbest), the overall experience (Gbest), and the actual movement of the particles.

Vk+1
p,q = w x Vk

p,q + c1r1

(
Pbestk

p,q − Xk
p,q

)
+ c2r2

(
Gbestk

q − Xk
p,q

)
(9)

Xk+1
p,q = Xk

p,q + Vk+1
p,q (10)

with Pbestk
p,q representing the personal best of the qth component of pth individual, and

Gbestk
q representing the qth component of the best individual of the population up to

iteration k.

2.4. ANN-GA Model

Experimental data have been used to train the hybrid ANN-GA model, and parametric
analysis has been performed by varying the following factors:

Population size: 25, 50, 75, and 100;
Number of hidden neurons: 5 and 10.

The ANN model follows the sigmoid function described in Equation (2). As for the
GA algorithm, the set to optimize the ANN is constructed following the main compo-
nents: the chromosome encoding, the fitness function, selection, recombination, and the
evolution scheme.

2.5. ANFIS-PSO Model

Experimental data have been used to train the hybrid ANFIS-PSO model, and para-
metric analysis of the PSO factors has been performed by varying the following factors:

Six swarm size population values: 10, 20, 50, 100, 200, and 400;
Six neurons: 5, 6, 7, 8, 9, and 10;
Five acceleration factors c1: 1.0, 1.5, 2.0, 2.25, 2.5;
Five acceleration factors c2: 2.0, 2.25, 2.5, 2.75, 3.0.

2.6. ANFIS-GA

Experimental data have been used to train the hybrid ANFIS-GA model, and paramet-
ric analysis has been performed by adjusting the following GA factors:

Population size values: 25, 50, 75, and 100;
Cross-over percentage: 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9;
Mutation rate: 0.15 and 0.2.

The flowchart of the above study procedure is depicted in Figure 5 below.
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3. Results

In the present section, the emerging results of each model are described and compared,
and the best surface roughness prediction model is reported.

3.1. ANN Model

The surface roughness of machined Al6061 aluminum blocks has been predicted using
the ANN model. The 30 data given in Table 1 have been employed to train the model.
Here, 70% of the data have been used for training, 15% of the data used for testing, and the
15% remaining used for validation. The neural network structure describing four inputs,
one hidden layer that contains 10 hidden neurons, one output layer that contains a single
neuron, and one output is shown in Figure 6. The results generated by different ANN
configurations are reported in Table 2 in terms of root mean square error (RMSE) and
regression values (R2).
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Table 2. ANN training results.

Number of
Hidden Layers

Results (RMSE/R2 Trained/R2 Tested)

10 Neurons 11 Neurons 12 Neurons

1 0.06128/0.3538/0.7687 0.0518/0.8314/8466 0.03653/0.8587/0.9984

2 0.3919/0.891/0.9369 0.04487/0.9578/0.9396 0.06832/0.964/0.5667

3 0.0907/0.8425/0.8885 0.07422/0.9754/0.7466 0.1035/0.8919/0.8342

The ANN model trained and tested using the Levenberg–Marquardt training algo-
rithm, with 12 as the number of neurons and 1 layer, has yielded better results (RMSE
of 0.03653, R2 of 0.8587 for training, and R2 of 0.9984 for testing). Figure 7 shows the
regression lines of the model, where the targets are plotted against the outputs, with both
experimental and predicted mean arithmetical deviation Ra (µm).
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Figure 7. ANN regression line.

3.2. Adaptive Network-Based Fuzzy Inference System (ANFIS)

The surface roughness of the machined Al6061 aluminum blocks has been predicted
using the ANFIS algorithm. Data in Table 1 have been employed to train the model’s
varying membership functions described in Section 3: membership function shapes, FIS
generators, and optimization methods. In total, 24 data from the experimental results have
been considered for the training, while six data have been isolated for the testing of the
ANFIS model. The pictorial views of the model structure are depicted in Figure 8, and the
results generated by different ANFIS configurations are recorded in Table 3 in terms of the
root mean square error (RMSE) and regression values (R2).
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Table 3. ANFIS training results.

FIS
Generation

MF Type
Input

Train FIS
Opt Meth RMSE Training R2 Testing R2

GP Trimf Hybrid 0.019105 0.9914 0.9058

GP Trapmf Hybrid 0.019105 0.7963 0.4917

GP gbellmf Backprop 0.019231 0.7678 0.4371

GP Trimf Backprop 0.0502853 0.9023 0.5619

GP gaussmf Backprop 0.0192923 0.8261 0.4567

GP Trapmf Backprop 0.0662746 0.7988 0.4923

Sub-clust Hybrid 0.0329021 0.7984 0.4866

Sub-clust Backprop 9.55002 0.7985 0.4921

The ANFIS model trained using the configuration “triangular MF shape—grid parti-
tion FIS generator—hybrid optimization method” has generated a better RMSE of 0.019105.
The regression value is R2 of 0.9914 for training and R2 of 0.9058 for testing. Figures 9–11
show the training and testing model’s regression line and the surface view, respectively, to
express the ways in which inputs and output are related. Experimental data are plotted
against predicted data, both expressed in terms of mean arithmetical deviation Ra (µm).
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3.3. ANN-PSO Model

The surface roughness of the machined Al6061 aluminum blocks has been predicted
using the hybrid ANN-PSO model. The 30 data given in Table 1 have been employed
to train the model. The feedforward backpropagation and the number of layers of two,
obtained in Section 3.1, have been adopted for the model training. In total, 24 data were
used for training, and six data were used for testing. The PSO-ANN parameter values
considered for the sensitivity analysis in the present study are shown in Table 4. The results
generated by different ANN-PSO configurations are reported in Table 5 regarding RMSE
and R2.

Table 4. Particle swarm optimization and artificial neural network parameter values.

Population Size Number of Neurons Acceleration Factors

N n c1 c2

10 5

20 6 1.0 2.0

50 7 1.5 2.25

100 8 2.0 2.5

200 9 2.25 2.75

400 10 2.5 3.0
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Table 5. Parametric results of the PSO-ANN hybrid network.

Number
Number of
Neurons (n)

Swarm Population
Size (POP)

Best-Performing
Acceleration Factor Train R2

Train
MSE(10-4)/RMSE Test R2

c1 c2

1 5 10 2.25 2 0.92317 55/0.07416 0.291

2 5 20 2.25 2 0.95981 28/0.05292 0.7006

3 5 50 1.5 2.25 0.95174 34/0.05831 0.0823

4 5 100 1 2.75 0.96772 23/0.04796 0.1262

5 5 200 1.5 2 0.98079 14/0.03742 0.3716

6 5 400 1.5 2 0.98507 11/0.03317 0.127

7 6 10 1 3 0.97918 15/0.03873 0.4214

8 6 20 2 2.25 0.9647 25/0.050 0.2526

9 6 50 1 2.5 0.99201 5.7/0.02388 0.6251

10 6 100 1 2.5 0.98338 12/0.03464 0.7826

11 6 200 1 2.75 0.93273 47/0.06856 0.3446

12 6 400 1 2.25 0.97638 17/0.04123 0.5806

13 7 10 1.5 2.5 0.96297 27/0.05196 0.4519

14 7 20 1 2.75 0.95017 35/0.05916 0.4903

15 7 50 1 2.5 0.96638 24/0.04899 0.0823

16 7 100 1 2.5 0.99348 4.7/0.02168 0.485

17 7 200 1.5 2.25 0.97859 15/0.03873 0.3827

18 7 400 2 2 0.98933 7.7/0.02775 0.5713

19 8 10 1 2.75 0.98803 8.7/0.02950 0.0368

20 8 20 1 2.5 0.94807 37/0.06083 0.507

21 8 50 1.5 2.25 0.99351 4.7/0.02168 0.4674

22 8 100 1 2.5 0.99374 4.5/0.02121 0.2913

23 8 200 1 2.75 0.98494 11/0.03317 0.1764

24 8 400 1 2.25 0.99375 4.5/0.02121 0.2913

25 9 10 1 2.75 0.98066 14/0.03742 0.2203

26 9 20 1 3 0.98859 8.5/0.02916 0.2052

27 9 50 1.5 2.25 0.99345 4.7/0.02168 0.377

28 9 100 2 2 0.99338 4.8/0.02191 0.3081

29 9 200 1.5 2.25 0.9938 4.4/0.02098 0.7992

30 9 400 1 2.5 0.99362 4.6/0.02145 0.4983

31 10 10 1 2.75 0.98814 8.6/0.02933 0.6459

32 10 20 1.5 2.5 0.97603 18/0.04243 0.7629

33 10 50 1.5 2.5 0.99164 6.0/0.02450 0.2315

34 10 100 1 2.75 0.99295 5.1/0.02258 0.4656

35 10 200 1 2.75 0.99242 5.4/0.02324 0.219

36 10 400 1.5 2.5 0.98987 7.3/0.02702 0.3667



Appl. Sci. 2023, 13, 4147 16 of 28

It emerged that the ANN-PSO model configuration having a population size of 200,
several neurons of 9, and acceleration values c1 = 1.5 and c2 = 2.25 yielded a better RMSE
of 0.02098, R2 of 0.9938 for training, and R2 of 0.7992 for testing. Figures 12 and 13 show
the model’s trained and tested regression lines, where the targets are plotted against the
outputs, with both the experimental and predicted mean arithmetical deviation Ra (µm).
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3.4. ANN-GA Model

The surface roughness of the machined Al6061 aluminum blocks has been predicted
using the hybrid ANN-GA algorithm. A total of 24 and 6 data have been, respectively,
employed to train and test the model. The feedforward backpropagation and the number of
layers obtained in Section 3.1 have been adopted for the actual model training. All 30 data
were used for the training of the model. The results generated by different ANN-GA
configurations are reported in Table 6 in terms of the root mean square error (RMSE) and
regression values (R2).
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Table 6. ANN-GA training results.

Number of
Neurons

Size of Population

25
RMSE/R2

Trained
R2

Tested

50
RMSE/R2

Trained
R2

Tested

75
RMSE/R2

Trained
R2

Tested

100
RMSE/R2

Trained
R2

Tested

5 0.158/0.1692
0.0803

0.156/0.2104
0.7669

0.124/0.514
0.8475

0.152/0.2487
0.481

10 0.44/0.092
0.3619

0.275/0.0358
0.0861

0.285/0.1797
0.000004

0.256/0.433
0.241

The ANN-GA hybrid model using the size of the population of 75 and number of
neurons of 5 yielded better results (RMSE of 0.124 R2 of 0.514 for training and 0.8475 for
testing). Figures 14 and 15 show the regression lines of the training and testing models.
Experimental data are plotted against predicted data, both expressed in terms of mean
arithmetical deviation Ra (µm).
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3.5. ANFIS-PSO Model

The surface roughness of the machined Al6061 aluminum blocks has been predicted
using the hybrid ANFIS-PSO algorithm. A total of 21 and 9 data have been, respectively,
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employed to train and test the model. The swarm population size values and the accel-
eration factors C1 and C2, and the configuration “triangular MF shape—grid partition
FIS generator—hybrid optimization method”, reported in Section 3.2 and 3.3 have been
adopted for the model training. The results generated by different ANFIS-PSO configura-
tions are reported in Table 7 as RMSE and R2.

Table 7. ANFIS-PSO results.

POP c1 c2 RMSE R2 Training/R2 Testing

400

1.0

2.0 0.0187 0.9484/0.016

2.25 0.02821 0.9533/0.8134

2.5 0.024989 0.9785/0.8496

2.75 0.024574 0.9799/0.7399

3.0 0.052431 0.9147/0.3561

1.5

2.0 0.023474 0.9787/0.1024

2.25 0.039257 0.9555/0.1503

2.5 0.038532 0.95/0.3027

2.75 0.080054 0.8763/0.4759

3.0 0.053106 0.8492/0.6129

2.0

2.0 0.05086 0.8915/0.623

2.25 0.07433 0.8697/0.2659

2.5 0.11021 0.6779/0.7602

2.75 0.082424 0.7561/0.4472

3.0 0.090767 0.5891/0.6155

2.25

2.0 0.062678 0.8877/0.3566

2.25 0.098959 0.7556/0.3534

2.5 0.073766 0.7975/0.4726

2.75 0.087366 0.8252/0.6249

3.0 0.11701 0.6371/0.3199

2.5

2.0 0.10659 0.6907/0.6168

2.25 0.081914 0.7529/0.5442

2.5 0.094932 0.7488/0.3495

2.75 0.1099 0.6476/0.5399

3.0 0.10732 0.6062/0.5814

200

1.0

2.0 0.022436 0.9726/0.7476

2.25 0.034272 0.9601/0.8235

2.5 0.045889 0.9401/0.856

2.75 0.047704 0.9193/0.2898

3.0 0.045248 0.8934/0.6458

1.5

2.0 0.035986 0.9644/0.4331

2.25 0.044615 0.9438/0.3437

2.5 0.072488 0.8512/0.5891

2.75 0.048492 0.9126/0.4927

3.0 0.066796 0.8516/0.4622



Appl. Sci. 2023, 13, 4147 19 of 28

Table 7. Cont.

POP c1 c2 RMSE R2 Training/R2 Testing

2.0

2.0 0.042102 0.9503/0.5619

2.25 0.053739 0.8983/0.6719

2.5 0.048139 0.7162/0.2912

2.75 0.07775 0.7964/0.6474

3.0 0.088909 0.7345/0.4314

2.25

2.0 0.048438 0.9217/0.317

2.25 0.08881 0.7832/0.6137

2.5 0.10588 0.7467/0.0132

2.75 0.09074 0.6466/0.5561

3.0 0.090626 0.8123/0.3778

2.5

2.0 0.058808 0.8503/0.6027

2.25 0.079239 0.8037/0.1441

2.5 0.11467 0.5668/0.752

2.75 0.114020.8037 0.5966/0.5842

3.0 0.11955 0.5901/0.5279

100

1.0

2.0 0.028926 0.9712/0.0679

2.25 0.022645 0.9837/0.4912

2.5 0.023489 0.9833/0.4109

2.75 0.025881 0.9611/0.38

3 0.058725 0.9028/0.4228

1.5

2.0 0.04066 0.9515/0.4741

2.25 0.040224 0.9291/0.4375

2.5 0.062686 0.7855/0.5633

2.75 0.079479 0.8321/0.6167

3.0 0.078211 0.8284/0.7792

2.0

2.0 0.073684 0.8498/0.8075

2.25 0.04765 0.8905/0.5647

2.5 0.071991 0.8319/0.5242

2.75 0.10047 0.6368/0.4888

3.0 0.10602 0.6406/0.6456

2.25

2.0 0.058442 0.8768/0.1513

2.25 0.10053 0.7394/0.7145

2.5 0.096104 0.7371/ 0.6162

2.75 0.096121 0.646/0.1097

3.0 0.10717 0.7317/0.787

2.5

2.0 0.091192 0.7661/0.824

2.25 0.077545 0.815/0.2514

2.5 0.90979 0.6196/0.6105

2.75 0.095634 0.6556/0.5941

3.0 0.10024 0.6171/0.577
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Table 7. Cont.

POP c1 c2 RMSE R2 Training/R2 Testing

50

1.0

2.0 0.04131 0.9351/0.416

2.25 0.01476 0.9923/0.8026

2.5 0.0197 0.9856/0.7467

2.75 0.03924 0.9342/0.287

3 0.054687 0.8867/0.4591

1.5

2.0 0.045245 0.9266/0.4316

2.25 0.022922 0.9538/0.2011

2.5 0.056847 0.8958/0.5906

2.75 0.077929 0.8343/0.8343

3.0 0.076957 0.8008/0.4151

2.0

2.0 0.044721 0.8967/0.0098

2.25 0.071197 0.8147/0.5837

2.5 0.077373 0.8473/0.1413

2.75 0.10129 0.7439/0.4286

3.0 0.077423 0.6865/0.5952

2.25

2.0 0.058303 0.8173/0.8076

2.25 0.083255 0.7477/0.6418

2.5 0.087441 0.7232/0.3682

2.75 0.11482 0.6368/0.4699

3.0 0.085532 0.6164/0.5917

2.5

2.0 0.091206 0.7648/0.6358

2.25 0.090042 0.6172/0.5633

2.5 0.087173 0.6741/0.5435

2.75 0.088626 0.7058/0.3009

3.0 0.099032 0.6889/0.6418

20

1.0

2.0 0.021273 0.9873/0.2203

2.25 0.0275 0.9649/0.1527

2.5 0.02423 0.9816/0.7212

2.75 0.032906 0.9656/0.4996

3 0.04202 0.9388/0.8849

1.5

2.0 0.054646 0.8894/0.656

2.25 0.046345 0.9284/0.6364

2.5 0.054039 0.9181/0.6483

2.75 0.075662 0.8366/0.8086

3.0 0.097492 0.6866/0.2661

2.0

2.0 0.062218 0.8775/0.7024

2.25 0.11006 0.698/0.2057

2.5 0.088353 0.6806/0.413

2.75 0.075375 0.8243/0.5263

3.0 0.1124 0.5894/0.6809
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Table 7. Cont.

POP c1 c2 RMSE R2 Training/R2 Testing

2.25

2.0 0.051421 0.891/0.6467

2.25 0.061426 0.7713/0.7581

2.5 0.081758 0.6605/0.5281

2.75 0.11651 0.5932/0.3944

3.0 0.10019 0.7546/0.4011

2.5

2.0 0.070227 0.7341/0.6193

2.25 0.082399 0.775/0.0623

2.5 0.090748 0.6776/0.4598

2.75 0.10976 0.6597/0.6141

3.0 0.1172 0.575/0.63

10

1.0

2.0 0.032011 0.9604/0.3761

2.25 0.027135 0.979/0.2768

2.5 0.039251 0.9476/0.8061

2.75 0.049087 0.88/0.7045

3 0.047146 0.9384/0.5392

1.5

2.0 0.059121 0.9137/0.19

2.25 0.060895 0.8911/0.4527

2.5 0.073482 0.8349/0.5166

2.75 0.077196 0.828/0.2001

3.0 0.077804 0.7754/0.381

2.0

2.0 0.066434 0.9007/0.222

2.25 0.0755 0.8125/0.1046

2.5 0.082304 0.8261/0.6465

2.75 0.0745 0.6329/0.5785

3.0 0.095525 0.6601/0.4338

2.25

2.0 0.072864 0.8064/0.5028

2.25 0.093644 0.7982/0.5178

2.5 0.10063 0.6256/0.5606

2.75 0.11651 0.5825/0.6127

3.0 0.055427 0.5786/0.723

2.5

2.0 0.097329 0.715/0.646

2.25 0.075702 0.6745/0.5926

2.5 0.11007 0.6114/0.8856

2.75 0.11485 0.6429/0.2801

3.0 0.11423 0.6436/0.6004

It emerged that the ANFIS-PSO hybrid model having a population size of 50, the
acceleration factor of c1 = 1.0, and the acceleration factor of c2 = 2.25 yielded better results
(RMSE of 0.01476, training R2 of 0.9923, and testing R2 of 0.8026). In Figure 16, the prediction
error and the training behavior of the ANFIS-PSO training model are plotted against the
sample number.



Appl. Sci. 2023, 13, 4147 22 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 27 
 

2.5 

2.0 0.097329 0.715/0.646 
2.25 0.075702 0.6745/0.5926 
2.5 0.11007 0.6114/0.8856 

2.75 0.11485 0.6429/0.2801 
3.0 0.11423 0.6436/0.6004 

It emerged that the ANFIS-PSO hybrid model having a population size of 50, the 
acceleration factor of c1 = 1.0, and the acceleration factor of c2 = 2.25 yielded better results 
(RMSE of 0.01476, training R2 of 0.9923, and testing R2 of 0.8026). In Figure 16, the predic-
tion error and the training behavior of the ANFIS-PSO training model are plotted against 
the sample number. 

 
Figure 16. Error and training behavior of ANFIS-PSO model. 

Figures 17 and 18 below show the regression lines of the ANFIS-PSO model for both 
training and testing. Experimental data are plotted against predicted data, both expressed 
in terms of mean arithmetical deviation Ra (µm). 

 
Figure 17. ANFIS-PSO trained regression line. 

0 5 10 15 20 25

Sample Index

0.4

0.6

0.8

1

1.2
Train Data

Target

Output

0 5 10 15 20 25
-0.02

0

0.02

0.04

0.06
MSE = 0.00021786, RMSE = 0.01476

Error

-0.05 0 0.05 0.1
0

5

10

15
Error Mean = 9.9163e-07, Error St.D. = 0.015124
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Figures 17 and 18 below show the regression lines of the ANFIS-PSO model for both
training and testing. Experimental data are plotted against predicted data, both expressed
in terms of mean arithmetical deviation Ra (µm).
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3.6. ANFIS-GA Model

The surface roughness of the machined Al6061 aluminum blocks has been predicted
using the hybrid ANFIS-GA algorithm. A total of 23 and 7 data have been, respectively,
employed to train and test the model. The swarm population size, the acceleration factors
C1 and C2, and the configuration “triangular MF shape—grid partition FIS generator—
hybrid optimization method” obtained in 3.2 and 3.3 have been adopted for the actual
model training. The results generated by different ANFIS-GA configurations are reported
in Table 8 as the RMSE value and R2.

Table 8. ANFIS-GA training results.

Mutation Rate
Cross-Over Percentage

0.4 0.5 0.6 0.7 0.8 0.9

0.15

POP 25

RMSETraining 0.023219 0.042373 0.049839 0.049425 0.03138 0.031286

R2 Training 0.9717 0.09352 0.9107 0.8847 0.9573 0.9567

R2 Testing 0.5657 0.6259 0.4244 0.4835 0.6113 0.4851

POP 50

RMSETraining 0.032684 0.032362 0.020916 0.024854 0.04944 0.054685

R2 Training 0.9504 0.9102 0.9885 0.9843 0.8743 0.8954

R2 Testing 0.4449 0.0184 0.8478 0.4217 0.7672 0.1663

POP 75

RMSETraining 0.050853 0.031709 0.052968 0.047598 0.033513 0.043361

R2 Training 0.9053 0.9671 0.9083 0.8143 0.9333 0.9139

R2 Testing 0.4854 0.0048 0.6328 0.6682 0.4159 0.7831

POP 100

RMSETraining 0.060105 0.043957 0.052444 0.049691 0.042643 0.040179

R2 Training 0.9057 0.9064 0.9053 0.8649 0.9087 0.9159

R2 Testing 0.5369 0.6072 0.0782 0.7063 0.556 0.7504

0.2

POP 25

RMSETraining 0.010965 0.037879 0.038998 0.037956 0.032403 0.038689

R2 Training 0.9939 0.9498 0.9608 0.9472 0.9404 0.948

R2 Testing 0.8102 0.3938 0.6256 0.2204 0.243 0.5648

POP 50

RMSETraining 0.046424 0.032066 0.032723 0.03367 0.025307 0.032881

R2 Training 0.8824 0.9423 0.9716 0.9699 0.9767 0.9699

R2 Testing 0.5392 0.3335 0.1918 0.4859 0.0902 0.5423

POP 75

RMSETraining 0.055199 0.046364 0.057327 0.02951 0.033363 0.025371

R2 Training 0.8934 0.9427 0.8993 0.9747 0.9698 0.9776

R2 Testing 0.331 0.0105 0.6915 0.5921 0.1167 0.4167

POP 100

RMSETraining 0.052941 0.05037 0.055188 0.049824 0.036234 0.048645

R2 Training 0.9308 0.9184 0.9037 0.9184 0.9588 0.9217

R2 Testing 0.287 0.6151 0.5296 0.4995 0.7693 0.481

It emerged that the ANFIS-GA hybrid model trained using the size of population
POP = 25, the mutation rate Mu = 0.2, and the cross-over percentage 0.4 generated a better
RMSE of 0.01097 and the regression values R2 of 0.9939 for training and 0.8102 for testing.
In Figure 19, the prediction error and the training behavior of the ANFIS-GA training
model are plotted against the sample number.
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Figures 20 and 21 below show the regression lines of the ANFIS-GA model for both
training and testing. Experimental data are plotted against predicted data, both expressed
in terms of mean arithmetical deviation Ra (µm).
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Figure 20. ANFIS-GA training regression line.
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3.7. Results Summary

After comparing the six best results emerging from the six models considered, Table 9
summarizes the emerging training results of all algorithms used in the present study to
predict the surface roughness of aluminum Al6061 machined on a CNC machine. The
generalization of the model, described by the testing regression value, was considered an
indicator of the prediction performance. It appears that the selection of hyperparameters
can potentially enhance the robustness of the models. Through the parametric analysis
performed in this study, it is demonstrated that the prediction performance of the surface
roughness would depend on the model configuration, which cannot be estimated a priori. It
is interesting to note that ANN was the most robust approach, yielding a testing regression
value of 0.9984. This can be attributed to the flexibility of the approach, which allows for
the retraining and rearrangement of training and testing data to enhance the robustness of
the model. This was not the case for the other proposed approach, for which testing data
were selected intuitively. Nevertheless, the results revealed that the training of ANN and
ANFIS with GA yields relatively higher regression values of 0.8475 and 0.8102, compared
to the testing regression values of 0.7992 and 0.8026 obtained with ANN-PSO and ANFIS-
PSO, respectively. Many other studies have shown same result with ANN performing
better than ANFIS, but both similarly exhibiting outstanding performance in terms of
accuracy [14,33,34]. Figure 22 illustrates a example of a comparison between ANFIS-GA’s
test results and the experimentally measured results. The testing input data of ANFIS-GA
provided the following surface roughness: 0.9932, 0.9254, 0.6742, 0.7509, 0.6981, 0.9933,
0.9933, 1.2101, and 1.1160. Meanwhile, the experimental procedure yielded 1.08, 0.93,
0.6, 0.5, 0.74, 1.08, 1.01, 1.16, and 1.04. Both sets of outcome data were compared, and
variances were noted and are displayed below. The largest variation was 33.4 percent,
and the lowest was 0.5 percent, with roughly 90% of the resulting data falling within a
12-percentage-point range.

Table 9. Results summary.

Model RMSE Training R2 Testing R2 Training Function

ANN 0.03653 0.8587 0.9984
Training algorithm: Levenberg–Maquardt
Number of layers: 1
Number of neurons: 12

ANFIS 0.01911 0.9914 0.9058
Triangular MF shape
Grid partition FIS generator
Hybrid optimization method

ANN-PSO 0.02098 0.9938 0.7992
Size of the population: 200
Number of neurons: 9
Acceleration values: c1 = 1.5 and c2 = 2.25

ANN-GA 0.124 0.514 0.8475 Size of the population: 75
Number of neurons: 5

ANFIS-PSO 0.01476 0.9923 0.8026 Size of population: 50
Acceleration factors: c1 = 1.0 and c2 = 2.25

ANFIS-GA 0.01097 0.9939 0.8102
Size of population: 50
Mutation rate (Mu): 0.2
Cross-over percentage: 0.4
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4. Conclusions

Six algorithm models, ANN, ANFIS, ANN-PSO, ANN-GA, ANFIS-PSO, and ANFIS-
GA, have been employed to predict the surface roughness of blocks of aluminum Al6061
machined on a CNC milling machine. Specific parameters, namely the spindle speed
of rotation, the feed rate, and the axial and the radial depth of cut, have been used as
data inputs to train the models, while the target output was the surface roughness of
the machined aluminum. Parametric analysis has been performed to analyze how the
hyperparameters of each model affect the prediction performance. This study reveals that
an adjustment of the configuration of the models alters their robustness. Though most
models exhibit a relatively higher memorization capability, as suggested by the values of
the training regression, the ANN models would potentially yield the best results, based
on the testing regression value. The study has shown that the effectiveness of the model
being trained is heavily influenced by the hyperparameters. It highlights the impact on
the quality of the model being trained. These parameters are responsible for regulating
the behavior of the model and have a direct impact on its performance. The study has
demonstrated that the correct selection of hyperparameters can significantly improve the
overall accuracy and efficiency of the model. Thus, it is crucial for researchers and data
scientists to carefully consider the hyperparameters during the training processes of models
to ensure the best possible results. This study demonstrates that although soft computing
techniques could potentially enhance the Al6061’s surface roughness, the robustness of the
models is closely related to their hyperparameters, which cannot be estimated a priori in
many practical cases. The results reported in this study show that data could be used to
build robust machine learning models. The robustness of these models could be enhanced
through the optimization of the hyperparameters affecting their prediction performance.
To strengthen the present study, our next goal is to use the predicted data results in a
randomized manner during an experiment on the CNC milling machine. By doing so, we
can draw a comparison between the results obtained from the predicted data and the actual
experiment, which will enable us to validate the efficacy of our model. This step is crucial
in ensuring that the predictions made by our model are accurate and can be relied upon
for future experiments. It is our constant endeavor to improve the accuracy of our models
and ensure that the results obtained are reliable and trustworthy. Through this exercise, a
deeper understanding of the CNC milling machine and its behavior can be gained, which
will contribute to the advancement of the manufacturing engineering field.
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