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Abstract: Robust speech recognition in real world situations is still an important problem, espe-
cially when it is affected by environmental interference factors and conversational multi-speaker
interactions. Supplementing audio information with other modalities, such as audio–visual speech
recognition (AVSR), is a promising direction for improving speech recognition. The end-to-end
(E2E) framework can learn information between multiple modalities well; however, the model is
not easy to train, especially when the amount of data is relatively small. In this paper, we focus
on building an encoder–decoder-based end-to-end audio–visual speech recognition system for use
under realistic scenarios. First, we discuss different pre-training methods which provide various
kinds of initialization for the AVSR framework. Second, we explore different model architectures
and audio–visual fusion methods. Finally, we evaluate the performance on the corpus from the first
Multi-modal Information based Speech Processing (MISP) challenge, which is recorded in a real
home television (TV) room. By system fusion, our final system achieves a 23.98% character error rate
(CER), which is better than the champion system of the first MISP challenge (CER = 25.07%).

Keywords: audio–visual speech recognition; pre-training; encoder–decoder; E2E

1. Introduction

Automatic speech recognition (ASR) is an important direction in the field of speech
signal processing. In the past decades, numerous research efforts have been made to
boost the accuracy of automatic speech recognition tasks [1–4]. Through introducing deep
learning methods, especially, ASR performance has made great advances [5–12]. In the
early stages, these deep learning-based ASR systems were typically based on conventional
statistic models such as hidden Markov models (HMMs), which are also called hybrid
ASR systems [5,6]. Recently, benefiting from the development of deep learning technology
and hardware computing capacity, a new structure for speech recognition has attracted
more and more attention, which transits the ASR system from hybrid modeling to E2E
modeling [7–12]. The E2E models can directly optimize the whole network through the
objective functions, which have achieved potential results.

However, due to the wide applications of speech technologies, speech recognition
systems are now facing more challenging scenarios (e.g., at home and in meetings [13,14]).
In these scenarios, some adverse environmental factors, such as channel distortion, am-
bient noise and reversion, will degrade the ASR performance. In addition, the common
overlapping regions in multi-speaker recordings also have negative impacts on the speech
recognition system. In this case, researchers have begun to pay attention to visual infor-
mation, and have found that visual information can play a positive role in the process of
speech recognition [15–17]. To this end, AVSR has been developed. Modern AVSR systems
based on deep learning technologies can be divided into two categories. The first type
is still based on the deep neural network hidden Markov model (DNN-HMM) to build
the AVSR system, such as the AVSR system proposed by Tao et al. [18]. The second one
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performs AVSR through end-to-end modeling. For example, Chung et al. [19] propose
a ‘Watch, Listen, Attend and Spell’ (WLAS) network to recognize phrases and sentences
through a talking face with or without the audio. Petridis et al. [20] use the hybrid connec-
tionist temporal classification (CTC)/attention architecture for AVSR in the wild. Ref. [21]
utilizes the Element-wise-Attention Gated Recurrent Unit (EleAtt-GRU) network to build a
two-stage speech recognition model. References [22,23] present the audio–visual speech
recognition system based on a recurrent neural network transducer (RNN-T) architecture.
A conformer has also been used in the AVSR system [24]. In addition, in order to better
integrate audio and video features, the AV align framework is explored [25,26].

In the AVSR task, there are quite a number of audio–visual speech corpora for training
and evaluation, such as GRID [27], OuluVS [28], OuluVS2 [29], TCD-TIMIT [30], LRW [31]
and AVSpeech [32]. However, most of them are collected in a controlled environment,
which makes it difficult to measure the performance of AVSR models in real scenarios.
In addition, audio–visual data are more difficult to collect than pure audio data, which
means that most of the above audio–visual datasets are greatly limited in terms of time
duration and vocabulary size. Moreover, all the above datasets are in English, and few
of the released audio–visual datasets are in Chinese [33,34]. Therefore, the MISP2021
challenge [35] was held, which contains the Chinese audio–visual speech corpus recorded
in real-world application scenarios. The first MISP challenge was aimed at the home TV
scenario, containing multiple speakers who were chatting in Chinese while watching TV or
interacting with a smart speaker/TV [35]. Specifically, the MISP datasets were collected in
real conversation, which makes the corpus contain high overlaps ratios and real domestic
noise backgrounds, making it hard to obtain high recognition accuracy.

As mentioned above, audio–visual pairs are more difficult to collect than pure audio
data, and the storage cost of audio–visual data is very high. Therefore, the sizes of audio–
visual datasets in the real scenario are usually not very large (e.g., the duration of the MISP
dataset is about 100 h), which means that methods (e.g., the E2E-based methods) with
a large number of parameters and calculated quantities tend to be overfitting, as shown
in [36].

In order to alleviate this problem, we explored from the perspective of pre-training to
improve the accuracy and generalization ability of the AVSR model. We first investigated
the impacts of different pre-training strategies on AVSR performance. On this basis, we
also explored other parts of the AVSR system, including model architectures, audio and
video fusion methods, system fusion methods, and so on, which may further improve the
performance of the AVSR system.

We evaluated the use of different methods on the released MISP 2021 dataset [35], and
the experimental results show that the pre-training methods can help the AVSR system
achieve significant improvement. Specifically, after combining effective fusion strategies,
the performance of our AVSR system is better than that which achieved first place in the
MISP 2021 challenge [37]. The contributions of this paper can be summarized as follows:

(1) We explore different pre-training strategies in the AVSR tasks, and this can provide
some useful experience for deploying AVSR systems in real scenarios where there is
only a limited size of audio–visual data;

(2) Based on (1), we explore the impacts of different model architectures for audio–visual
embedding extractors on the AVSR performance;

(3) We explore the performance of different audio–visual fusion methods.

Our final system achieved 23.98% CER on the first MISP 2021 AVSR corpus, which is
better than the champion system [37] of the first MISP challenge (CER = 25.07%).

The rest of the paper is organized as below: In Section 2, the employed end-to-end
AVSR framework is introduced. In Section 3, the explored methods are explained in detail.
In Section 4, we present and analyze the experimental results. Finally, we conclude in
Section 5.
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2. End-to-End AVSR Framework

In this paper, we employ an advanced encoder–decoder based end-to-end AVSR
framework as the baseline system, which is presented in Figure 1. In the encoder part,
we utilize two extractors for audio and video modalities, respectively, and then splice the
extracted features as the input of the conformer [38] to model the context dependencies
within the inputs. In the decoder part, we employ the transformer [39] to generate the
posterior probabilities of the character sequence. ‘Fusion-cat’ means directly splicing the
features of audio and video.
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Moreover, we utilize the multi-task learning framework to improve the robustness of
the system, as in [40]. The overall multi-task learning (MTL) loss function is defined by the
following equations:

LCTC = −ln pe(z∗ | X) (1)

LAttention = −ln pd(z∗ | X) = −∑
u

ln pd
(
z∗u | X, z∗1:u−1

)
(2)

LMTL = α×LAttention + β×LCTC (3)

where z* denotes the ground truth character sequence. X means the input features.
pe
(
z* | X

)
and pd

(
z*

u | X, z*
1:u−1

)
are the probability distributions estimated from the shared

encoder and attention decoder, respectively. u is the index of ground truth characters.
z*

1:u−1 is the label of the previous u− 1 characters.
A compact E2E audio–visual framework can efficiently learn multi-modal information.

However, direct training procedures do not guarantee good results, especially when the
amount of training data is small. Various problems will occur, such as overfitting, non-
convergence, and even training failure. Hence, pre-training becomes the most popular
method to alleviate the training difficulty.

3. Methods
3.1. Different Pre-Training Strategies

Pre-training with the Hybrid System (HS). First, we adopted a strategy to initialize
the audio–visual encoder part of the baseline system, which is shown in Figure 2. We first
employed the conventional hybrid ASR system [5,6] to generate the corresponding force
alignment (FA), then applied them to pre-train the audio–visual encoder, as presented on
the left side of Figure 2. After pre-training, we initialize the encoder part of the AVSR
system, as shown on the right side of Figure 2, and the gray blocks represent the randomly
initialized parts.
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Figure 2. Pre-training with the hybrid system.

Pre-training with the End-to-end System (ES). As illustrated in Figure 3, we also used
the E2E ASR system to initialize the AVSR system. Note that the key difference is whether
the visual input is included in the training. Most modules in the AVSR system can directly
use the parameters in the pre-training process, and the rest use random initialization (i.e.,
the parts marked with gray blocks). Through fine-tuning, the AVSR model can gradually
absorb visual modal information and avoid training instability.
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Figure 3. Pre-training with the end-to-end ASR system.

Using Pre-trained Audio-Visual Representation. Recently, self-supervised speech
representation learning has attracted lots of attention. We used the Audio-Visual Hidden
Unit BERT (AV-HuBERT) [41] model, which has shown great recognition performance
under adverse noise conditions. Specifically, in our previous work, we found that adopting
the entire face can achieve better performance on the lipreading task compared with the
baseline method using lip as visual input [42]. Therefore, we used it as the feature extractor,
as shown in Figure 4.
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3.2. Model Architectures

In this paper, we also explored the impacts of the model architectures for audio and
visual embedding extractors. As shown in the blue box of Figure 5, we separately replaced
the audio and visual extractors with other architectures. For the audio embedding extractor,
we replaced the original VGG with gate CNN [43]. For the video embedding extractor, we
replaced the original Resnet with Swin Transformer [44].
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3.3. Audio–Visual Fusion

The fusion of audio and visual information also plays an important role in AVSR.
The widely used approach is to directly splice the two modal features, as described in our
previous system. We also explore the different audio–visual fusion methods to replace the
simple embedding concatenation from the encoder and decoder parts, respectively.

Fusion in the Encoder Part. For the encoder part, we employ the self-attention (SA)
operation, which can be expressed as:

Multihead(Q, K, V) = [H1, H2, . . . , Hh]WO (4)

Hi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(5)

Attention(q, k, v) = softmax
(

qkT
√

dk

)
v (6)

where Q, K and V denote the video, audio and audio features, respectively. [·] represents
the concatenation operation. h is the number of attention heads. WO ∈ R(h×dv)×d is the final
linear parameter matrix. WQ

i , WK
i ∈ Rd×dk and WV

i ∈ Rd×dv are the learnable parameter
for the i-th head. d, dk and dv denote the dimension of input, key and value, respectively.
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Fusion in the Decoder Part. For the decoder part, we performed the audio–visual
fusion based on the transformer [39], as shown in Figure 6. We first used the self-attention
for audio and video encoder outputs, and then we fused the two attention outputs as:

out = [Multihead audio(Q1, K1, V1), Multiheadvideo(Q2, K2, V2)] (7)

where Multiheadaudio(•) and Multiheadvideo(•) are the self-attentions based on the audio
and video encoder outputs, respectively. Q1, K1 and V1 are the vectors of text embedding,
audio encoder output and audio encoder output, respectively. Q2, K2 and V2 are the vectors
of text embedding, video encoder output and video encoder output, respectively.
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Finally, in order to further improve the overall performance, we also performed the
system fusion by averaging the posterior probabilities of various models.

4. Experiments and Analysis
4.1. Experimental Setups

We evaluated the use of different methods on the MISP2021-AVSR corpus [35], which
contained about 122 h of audio–visual data collected from 30 real-life living rooms. The
dataset includes 376 sessions, with each session consisting of an approximately 20 min
discussion under the real home TV scenario. There were 95 male speakers and 153 female
speakers. The collected data were partitioned into three distinct subsets for training
(about 101 h), development (about 9.83 h), and evaluation (about 9.94 h). Each subset was
comprised of unique sets of speakers and recording rooms that do not intersect with any
other subset. In order to be close to the realistic home TV scenario, we only used far-field
data for training (about 100 h), which included videos from the wide-angle cameras and
six-channel audios from the linear microphone arrays. The evaluation corpus was collected
by far-field devices. Because low-resource training data (about 100 h) contain simple
context and spectral information, catting continuous short segments (CAT) [45] was used to
augment the original audio–visual data. We obtained a new 300 h CAT dataset for training.
Furthermore, it is difficult for speed perturbation to align audio and video time series. We
only employed speed perturbation (SP) for audio with ratios 0.8, 1.0 and 1.2. For the hybrid
ASR/AVSR system, we utilized the baseline system in the MISP2021 challenge [35]. For the
E2E-AVSR framework, we utilized combining the main task of attention and the sub-task of
CTC as the acoustic model [24]. The two tasks shared the same encoder, and the α and β in
Equation (3) were set to 0.8 and 0.2, respectively. In the E2E-AVSR framework, we used two
layers of VGG as the audio extractor, like in [45], and the Resnet18 as the video extractor.
After VGG and Resnet, audio and video hidden representations were concatenated along
time series as inputs of the conformer [38], where the number of layers M was set to 12.
In the decoder part, we utilized a six-layer transformer [39] (i.e., N = 6). The number of
attention heads was eight. All networks were implemented using Fairseq [46]. We applied
SpecAugment [47] to improve the robustness. In addition, gradient clipping was adopted
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with a value of 10 to avoid an exploding gradient. All models were trained with a batch
size for 8 k frames and a transformer [39] learning-rate schedule with 3 k warm-up steps.
The max learning rate was set to 0.0007. Character error rate (CER) was employed as the
evaluation metric as in [35], which is defined as follows:

CER =
S + D + I

N
× 100 (8)

where S, D, I and N represent the number of substitutions, deletions, insertions and
characters in the ground truth, respectively.

4.2. Experimental Results
4.2.1. Results of the Pre-Training Strategies

The results of hybrid system (HS) pre-training. The results of pre-training with force
alignment (FA) from the hybrid ASR system are listed in Table 1. From this table, we can
make several observations: (1) the splicing of continuous segments (CAT) can effectively
expand the audio data and improve the performance of ASR, as shown in the first and
second rows of Table 1; (2) when the training data size is not large enough (i.e., the 100 h
original far-field audio–visual training data), the AVSR model using the E2E framework
(CER = 52.26%) is worse than the conventional hybrid AVSR model (CER = 44.12%), which
indicates that the AVSR system based on the E2E architecture overfits when there are not
enough training data. This is also our motivation to explore the pre-training strategies;
(3) through utilizing the force alignment (FA) from the hybrid ASR system for pre-training,
the AVSR system has been significantly improved and under the same architectures the CER
decreased by 18.84% (from 52.26% to 33.78%); (4) after using the HS pre-training strategies,
the recognition performance of end-to-end AVSR (CER = 33.78%) was significantly better
than that of hybrid AVSR (CER = 44.12%), which also shows the effectiveness of our
pre-training strategies.

Table 1. The results (CER %) of hybrid system pre-training. HS means the hybrid system. CAT means
splicing the continuous segments.

Task Model Pre-Training Data Processing Eval

ASR Hybrid N
N 45.92

CAT 41.69

AVSR

Hybrid N N 44.12

E2E [36] N N 52.26

E2E HS (CAT) N 35.93

E2E HS (CAT) CAT 33.78

The results of end-to-end system (ES) pre-training. Table 2 presents the results of
the end-to-end system (ES) pre-training. Note that, for the ASR-E2E system, we also use the
hybrid system pre-training methods to perform the system initialization. From this table,
we can draw the following conclusions: (1) Through utilizing the HS pre-training methods,
the ASR-E2E system (CER = 36.81%) can achieve better performance than the ASR-Hybrid
system (CER = 41.69%) in Table 1. (2) The recognition performance of the ASR-E2E system
will be further improved by applying both SP and CAT methods at the same time. When
we only use the CAT method, the CER is 36.81%. When we only use the SP method, the
CER is 37.44%. When we use both SP and CAT methods simultaneously, the CER is 35.90%,
indicating better performance. (3) The ES pre-training (CER = 32.21%) can achieve better
results than HS pre-training (CER = 33.78%) in Table 1, which may have two reasons. First,
the ASR-E2E model achieved better performance than the ASR-Hybrid model. Second, the
ES pre-training initialized more modules in the AVSR system, as shown in Figures 2 and 3.
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Similarly, combining CAT and SP techniques for data augmentation still yields the best
results in AVSR systems.

Table 2. The results (CER %) of the ES pre-training. HS and ES mean the hybrid system and end-to-
end system, respectively. CAT and SP mean splicing the continuous segments and speed perturbation,
respectively.

Task Model Pre-Training Data Processing Eval

ASR E2E

HS (CAT) CAT 36.81

HS (SP) SP 37.44

HS (SP + CAT) SP + CAT 35.90

AVSR E2E

ES (CAT) CAT 33.16

ES (SP) CAT 34.00

ES (SP + CAT) CAT 32.21

The results of pre-trained audio–visual representation. Table 3 presents the results
of utilizing the pre-trained audio–visual representation. Due to the system with pre-trained
audio–visual representation being unable to converge on the model with the original
configuration (M = 12, N = 6), as shown in the last row in Table 3, we also used other
configurations (M = 6, N = 3 and M = 10, N = 4). As can be seen, the introduction of
pre-trained audio–visual representation brought performance degradation to the AVSR
system (the CER increased from 38.27% to 42.78%). Furthermore, increasing the number
of model parameters (i.e., M = 10, N = 4) only leads to marginal improvement (the CER
decreased from 42.78% to 41.85%). The reason for this phenomenon may be the mismatch
in the data between the AV-HuBERT-V1 [42] training and the MISP2021 AVSR training.
Taking the pre-trained representations as auxiliary features and splicing them with the
original features may be helpful to the performance.

Table 3. The results (CER %) of pre-trained audio–visual representation on the AVSR task. HS means
the hybrid system. CAT means splicing the continuous segments. M and N denote the number of
blocks in the encoder and decoder modules, respectively. AV-HuBERT-V1 is the utilized modified
AV-HuBERT model.

Model Pre-Training Extractor Data
Processing Eval

E2E (M = 6, N = 3)

HS (CAT)

VGG/Resnet

CAT

38.27

E2E (M = 6, N = 3)

AV-HuBERT-V1

42.78

E2E (M = 10, N = 4) 41.85

E2E (M = 12, N = 6) 96.98

4.2.2. Results of Different Model Architectures

The results of replacing the audio and visual extractors with better model architectures
are shown in Table 4. It can be seen from the table that the performance of AVSR will be
improved by adopting a better audio extractor. On the contrary, if a better video extractor
is adopted, the performance of AVSR will degrade. This may be caused by the difference
in the amount of information brought by the audio and video data. In order to better
analyze these two modalities, we compared the differences between AVSR and ASR in the
original VGG/Resnet architecture under different environments in Table 5. As can be seen,
when there is considerable TV background noise (i.e., C1, C2, C5), AVSR has a significant
improvement over ASR (about 5% absolute values). On the contrary, when there is no
background noise (i.e., C7, C8), AVSR does not bring much improvement compared with
ASR. In particular, under the C6 conditions, the performance of AVSR is worse than that of
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ASR, which may be because the lights and TV interfere with the video data, leading to the
introduction of wrong information. In general, the video modality only brings an absolute
improvement of 2.53% for recognition performance. Therefore, compared with the audio
modality, the video modality contains less effective information, which may be the reason
why the recognition performances become worse when a better video extractor is used.

Table 4. The results (CER %) of the different model architectures. ES means the end-to-end system.
SP means speed perturbation. CAT means splicing the continuous segments.

Task Model Pre-Training A/V Extractor Eval

AVSR E2E
ES

(SP + CAT)

VGG/Resnet 32.21

Gate CNN/Resnet 29.88

VGG/Swin Transformer 36.13

Table 5. The comparison of ASR-E2E and AVSR-E2E under the same pre-training strategy and
training data. For the pre-training strategy, we use the ‘HS (CAT)’ method. For the training data, we
used the ‘CAT’ method.

Task Model ALL C1 C2 C3 C4 C5 C6 C7 C8

ASR
E2E

41.15 46.99 45.45 48.02 37.84 41.80 47.43 32.23 33.14

AVSR 38.62 42.44 39.80 45.61 35.13 37.42 49.60 30.71 31.98

4.2.3. Results of Audio–Visual Fusion

Table 6 shows the performance of the AVSR system after modifying the fusion methods.
Because changing the fusion method in the decoder part does not cause convergence, we
only show the recognition results for changing the fusion method in the encoder part. Note
that, when using the self-attention to fuse the audio and video information in the encoder
part, we do not need to strictly align the two modalities in time series, so we can apply the
speed perturbation to the audio–visual data, namely ‘CAT + SP’ in the ‘Data Processing’
column. As shown in Table 6, our modified fusion methods do not bring improvement.
We suspect that this is because the difference in the amount of information between these
two modalities is too large, which leads to the result that fusion methods that need to learn
parameters cannot extract useful information effectively.

Table 6. The results (CER %) of audio–visual fusion (self-attention in the encoder part) methods.
HS means the hybrid system. CAT and SP mean splicing the continuous segments and speed
perturbation, respectively. ‘Splicing’ means directly splicing the two modal features in audio–visual
fusion. SA means self-attention.

Task Model Pre-Training Fusion Data
Processing Eval

AVSR E2E HS (CAT)

Splicing CAT 33.78

SA CAT 38.16

SA CAT + SP 37.43

4.2.4. Results of System Fusion

Finally, we performed the system fusion on the posterior probabilities, and the results
are shown in Table 7. We can see that the system fusion has made significant improvements,
and the performance of our final system is better than that of the champion system in
the MISP2021 [37] challenge. Note that, in order to improve the diversity of the systems,
we also use the Transformer [39] as the encoder in the AVSR-E2E system, as shown in
‘ID 3’ of Table 7. For better comparison with other methods, we also list the MISP baseline
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results [35] and the SJTU system results in the first MISP challenge [48] at the bottom of
Table 7, which uses the same dataset as ours.

Table 7. The results (CER %) of system fusion. HS and ES mean the hybrid system and end-to-end
system, respectively. M and N denote the number of blocks in the encoder and decoder modules,
respectively. CAT means splicing the continuous segments. SP means speed perturbation.

ID Model Pre-Training Eval

1 E2E HS (CAT) 33.78

2 E2E ES (CAT + SP) 32.21

3 E2E
Transformer Encoder ES (CAT + SP) 32.54

4 E2E
Gate CNN for audio ES (CAT + SP) 29.88

5 1 + 2 + 3 + 4
Fusion - 23.98

6 NIO [37] - 25.07

7 MISP Baseline [35] - 62.74

8 SJTU [48] - 34.02

5. Conclusions

In this paper, we analyzed and investigated the AVSR system under the realistic
Chinese home TV scenario. Aiming at the overfitting problem which is often encountered
in AVSR-E2E systems, we proposed different pre-training strategies. Experimental results
showed that effective pre-training strategies can significantly improve recognition perfor-
mance. At the same time, we also explored other aspects of the AVSR system, including
model architecture, audio–visual fusion, and system fusion. Some of them can further
improve the model’s performance. By integrating the effective methods we found, our final
system was superior to the champion system from the MISP 2021 challenge. Compared to
the state-of-the-art methods, the improvement of our approach is primarily attributable
to the exploration of various initialization methods and the fusion of their results. In the
future, we will explore how to better utilize audio–visual fusion modules and pre-training
features to improve recognition performance in the AVSR task.
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